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Abstract: Short-term wind speed prediction is of cardinal significance for maximization of wind
power utilization. However, the strong intermittency and volatility of wind speed pose a challenge to
the wind speed prediction model. To improve the accuracy of wind speed prediction, a novel model
using the ensemble empirical mode decomposition (EEMD) method and the combination forecasting
method for Gaussian process regression (GPR) and the long short-term memory (LSTM) neural
network based on the variance-covariance method is proposed. In the proposed model, the EEMD
method is employed to decompose the original data of wind speed series into several intrinsic mode
functions (IMFs). Then, the LSTM neural network and the GPR method are utilized to predict the
IMFs, respectively. Lastly, based on the IMFs’ prediction results with the two forecasting methods,
the variance-covariance method can determine the weight of the two forecasting methods and offer
a combination forecasting result. The experimental results from two forecasting cases in Zhangjiakou,
China, indicate that the proposed approach outperforms other compared wind speed forecasting
methods.

Keywords: short-term wind speed forecasting; ensemble empirical mode decomposition; the combination
forecasting method; long short-term memory neural network; Gaussian process regression

1. Introduction

Wind energy is becoming a crucial part in the supply mix to meet the growing demand for
electric energy. Compared with the conventional fossil energy, wind energy can reduce greenhouse
gas emission and mitigate energy shortage. With the incorporation of wind farms into electric power
grids, the installed capacity of wind power is increasing worldwide, and a discussion is going on
concerning the utilization of wind power [1]. However, the intermittent characteristic of wind speed
leads to strong randomness and instability for wind power generation. Moreover, the unstable wind
power generation brings challenges to the power system transmission and consumption [2]. Therefore,
an accurate prediction method for short-term wind speed data is needed.

Traditionally, wind speed forecasting models have been separated into two kinds of forecasting
models: statistical analysis models and artificial intelligence models. Statistical analysis models
generally adopt curve fitting and parameter estimation based on the historical value to establish
mathematical models. For example, the autoregressive (AR) [3] and the autoregressive integrated
moving average (ARIMA) [4] models are the common statistical analysis models. However, statistical
analysis models present difficulties in forecasting the complicated nonlinear components. Artificial
intelligence models are extensively utilized to predict wind speed, for such approaches offer good
prediction results, especially in dealing with nonlinear problems. For example, the artificial neural
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network (ANN) is widely used in wind speed prediction [5–7]. Perceived as the classical ANN
model, the feed-forward neural network (FFNN) possesses a good nonlinear fitting ability to build
the non-linear relationship between the output and various impact factors [8]. As a variant type of
ANN, the support vector machine (SVM) is also diffusely applied into wind speed prediction, which
is on the basis of the statistical learning theory and the structural risk minimization principle [9,10].
Gaussian process regression (GPR) is a method for generating probabilistic data in the process of
prediction. Furthermore, it has good adaptability and strong generality to process complex nonlinear
problems. Hu [11] used the GPR method to simulate wind speed data and obtained a better prediction
result. Recently, the deep learning methods originating from ANN have been developed rapidly.
The advantage of the deep learning models is the ability to extract the deep inherent features in
data [12]. For example, Wang [13] designed a convolutional neural network (CNN) for probabilistic
wind power prediction. Cao [14] conceived of the wind speed information as the sequence data and
used the recurrent neural network (RNN) to solve this sequence prediction problem. Liu [15] used the
long short-term memory (LSTM) model, which is a transformation of RNN model, to predict wind
speed and to obtain the satisfactory result.

The strong intermittency and randomness in wind speed increase the difficulty to the performance
of the prediction model; thus, the wind speed features must be taken into consideration. To achieve
this goal, the data decomposition method was proposed and embedded into the forecasting model [16].
The aim of the data decomposition method is to reduce the non-stationarity of the initial wind
speed series and at the same time to offer more messages for the wind speed forecasting. Therefore,
to some extent, the data decomposition method is able to enhance the prediction performance.
For example, Liu [17] used the wavelet transform (WT) method before the SVM forecasting model,
and the forecasting result demonstrated that the suggested prediction model that combines WT and
SVM performs better than the single SVM. Fan [18] put up a hybrid forecasting model to predict
load. In the hybrid forecasting model, the initial load data can be decomposed by the empirical
mode decomposition (EMD) method before the SVM forecasting model. However, the EMD method
fails to solve the mode mixing problem. Therefore, the ensemble empirical mode decomposition
(EEMD) method was introduced in [19]. Lu [2] employed the EEMD method to decompose initial
wind speed into some subsequences; then, the forecasting model based on SVM was used to predict
these subsequences. In the paper, the EEMD method is utilized for the data decomposition process.

In the forecasting model with the data decomposition method, the prediction target is the different
subsequences. However, the single forecasting method has difficulty to provide good prediction results
for all subsequences. Therefore, various forecasting methods should be employed to predict these
subsequences. For example, Liu [20] used the convolutional neural network to forecast a part of the
subsequences and a convolutional long short-term memory network to forecast the other subsequences.
To combine the advantage of different forecasting methods, the combination forecasting method was
proposed [21]. For example, Xiao [22] employed the no negative constraint theory (NNCT) combination
model to combine five forecasting methods and to obtain better prediction results compared to the other
combination models. Niu [23] combined three different forecasting models by the variance-covariance
method and offered a combination forecasting result. In this paper, based on the subsequences’
prediction results with the different forecasting methods, the variance-covariance method [24] is
adopted to decide the weighted average coefficients of different forecasting approaches.

Based on the previous literatures, a novel forecasting model including the EEMD method and
two forecasting methods, which are the LSTM neural network and the GPR method, is put forward.
The EEMD method is used to decompose the original wind speed data into various subsequences.
To predict these subsequences, this paper adopts the LSTM neural network and the GPR method.
The LSTM neural network is suitable for dealing with important events with longer intervals and
delays in time series, and the GPR method has a good adaptability and strong generality to process
the complex nonlinear problems. The forecasting accuracy of the EEMD-LSTM and the EEMD-GPR
has been promoted; however, the stability is not good enough because different subsequences need to
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be predicted. Therefore, the variance-covariance method can combine the subsequences’ prediction
results with the two forecasting methods and offer an accurate and stable forecasting result.

The structure of this paper is organized as follows. In Section 2, the relevant methods are described
in detail, and the integrated prediction framework is also presented. Furthermore, this paper provides
two forecasting cases to validate the proposed method in Section 3. Finally, Section 4 shows the
conclusion of this paper.

2. Methods

2.1. Ensemble Empirical Mode Decomposition

Empirical mode decomposition (EMD) is a new time series processing approach to extract the
characteristic message from the original data [25]. A set of intrinsic mode functions (IMFs) can
be obtained by the EMD method. In line with the EMD method, the ensemble empirical mode
decomposition (EEMD) method is put forward for solving the mode mixing problem in the EMD
method. The procedure of the EEMD method [2] is shown as follows:

(1) Initialize the parameters in EEMD, such as the number of ensembles and the amplitude of the
added white noise.

(2) Add a white noise to the initial wind speed data x(t):

x′i(t) = x(t) + wi(t) (1)

where xi(t) denotes the i-th added white noise and wi(t) denotes the new wind speed data with
the added white noise.

(3) Calculate the upper envelope u(t) and lower envelope l(t) for original wind speed data x(t).
Then, the mean of the two envelopes m(i) can be obtained.

m(i) =
u(t) + l(t)

2
(2)

d(i) = x′i(t)−m(i) (3)

(4) Repeat Steps (2) and (3) using d(i) in the place of x′i(t), until the average envelope is smaller than
the acceptable error. Then, take the d(i) as the first IMF c(i), and then, calculate the residual r(i)
as follows:

r(i) = x′i(t)− d(i) (4)

(5) Repeat the previous Steps (2) to (4) until the last residual datum fails to be decomposed into an
IMF. Hence, we can obtain the other IMFs and the last residual. Finally, original wind speed data
x(t) can be presented as different IMFs and the last residual rn(t):

x(t) =
n

∑
i=1

ci(t) + rn(t) (5)

2.2. Gaussian Process Regression

A Gaussian process is a stochastic process and has good adaptability for solving the nonlinear
and high dimensional problem. In the given dataset, D = (xi, yi)

n
i=1, where x stands for the input

data for the GPR method and y represents the target data. A Gaussian process sets the function f as
a joint Gaussian distribution, and f (x1), f (x2), ..., f (xn) can constitute a set of the random variables.
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In addition, a Gaussian process is completely described by its mean function m(x) and covariance
function k(x, x′). Therefore, the Gaussian process is written as:

f (x) ∼ GP(m(x), k(x, x′)). (6)

To take the noise in the observation value y into account, we can construct the standard model of
Gaussian process regression problem [26]:

yi = f (xi) + εi, i = 1, ..., n (7)

where this noise ε follows an independent, identically distributed Gaussian distribution with zero
mean and variance σ2:

ε ∼ N(0, σ2). (8)

To overcome the complicated nonlinear problem in the GPR model, the input data can be projected
into the high dimensional space utilizing the kernel function, so the complicated nonlinear problem is
converted into the linear problem. The common covariance function in the GPR method is the squared
exponential (SE) function [27].

kSE(xi, xj) = σ2exp[
1
2
(xi − xj)

T M(xi − xj)] (9)

where σ2 is a magnitude parameter that scales the overall variation of the unknown function,
and M = diag(l−2) indicates the symmetric matrix for l, which is a length-scale parameter for
controlling how fast the correlation decreases as the distance increases in the input dimension k.

According to Bayesian theory, the GPR model builds the prior function and then transforms it to
the posterior distribution using new input X∗. Hence, the joint prior for latent variables f and f∗ is:[

y
f∗

]
∼ N(0, [

[
K(X, X) + σ2

n I K(X, X∗)
K(X∗, X) K(X∗, X∗)

]
]) (10)

where I denotes the N × N unit matrix and K(X, X) denotes the N × N kernel matrix and its element
Kij = k(xi, xj). To find the optimal parameter of the kernel function in the GPR method, this paper
uses the Bayesian frame of maximum likelihood for parameter optimization. The maximum likelihood
function [28] for the GPR method is:

lgp(y|X, θ) = −1
2

yTK−1
y y− 1

2
lg|K| − n

2
lg2π (11)

To obtain optimal parameter θ, the maximum likelihood function for the GPR model is required
to reach the maximum value. Hence, we take the derivative for Equation (11) about θ, and the optimal
parameter is determined.

2.3. Long Short-Term Memory Neural Networks

LSTM is a especial form of the recurrent neural network (RNN), and it has been extensively
applied in various fields. Especially, LSTM is suitable for solving the time series forecasting problem
because it has a powerful ability for dealing with important events with longer intervals and delays in
time series.

Traditional neural networks have no memory function. Therefore, they fail to use the information
that has already appeared at the previous moment. Other than conventional neural networks, RNN is
able to store memory since the current output is dependent on the previous computations. The structure
of RNN is described in Figure 1.
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Figure 1. The structure of RNN.

In Figure 1, a chained neural network represents a recurrent neural network that can be considered
as multiple copies of the same neural network, and the neural network at each moment transmits
information to the next moment. However, RNN is confronted with the vanishing gradient problem
when it stores much memory. To deal with this problem, LSTM is designed.

Figure 2. The structure of LSTM.

The core of LSTM is the memory block shown in Figure 2. Specifically, the critical components
of LSTM are the memory cell and three gates, including the forget gate, input gate and output gate.
The LSTM employs the recurrence to represent the input data x1, x2, ..., xn:

ht = f (ht−1, xt) (12)

where xt is the input at time t, ht is the hidden state at time t and ht−1 is the hidden state at time t− 1.
The calculation of the LSTM network [15] is described as follows:

(1) In line with the previous output ht−1 and the current input xt, the forget gate can decide whether
to forget the information learned at the last moment in light of Equation (13).

(2) This step produces the input information C̃ using Equation (14). In addition, once the input gate
is activated by Equation (15), the input information can be accumulated to the cell.

(3) The combination of Step (1) and Step (2) is to filter the undesired information and add new
information according to Equation (17).
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(4) This step determines the output of the model using the output gate. The output gate can control
whether the latest cell output can be propagated to the ultimate state by Equations (16) and (18).

(5) The above steps then continue to repeat. The parameter in LSTM can be obtained by maximizing
the similarity between the target data and the output of LSTM.

ft = σ(W f · [ht − 1, xt] + b f ) (13)

C̃ = tanh(WC · [ht − 1, xt] + bC) (14)

it = σ(Wi · [ht − 1, xt] + bi) (15)

ot = σ(Wo · [ht − 1, xt] + bo) (16)

Ct = ft � Ct − 1 + it � C̃t (17)

ht = ot � tanh(Ct) (18)

2.4. Variance-Covariance Method

The combination prediction model can utilize the merits of every independent model and promote
the prediction accuracy. The key problem of the combination forecasting model is to calculate the
weight of each forecasting model. The variance-covariance combined method can find the optimum
combination weight coefficient. Therefore, using the variance-covariance combined method can
promote the robustness and accuracy for the wind speed forecasting problem.

The variance of every prediction model is calculated as follows:

vi =
1
n
[(e1 − e)2 + (e2 − e)2 + ... + (en − e)2] (19)

where n denotes the number of the training set; e1, e2, ..., en denote the absolute percentage error for the
training data; e denotes the average value for e1, e2, ..., en. The weights for each forecasting method can
be obtained based on the following formula:

w1 = 1/[v1(1/v1 + 1/v2)] (20)

In line with the weights for each forecasting method, we can obtain the combined prediction
result, which is shown as follows:

s = w1s1 + w2s2 (21)

where s is the combination prediction result; s1 and s2 are the forecasting results from different methods.
Therefore, the variance-covariance method can adjust the corresponding weights dynamically
according to the training and test results to obtain a better adaptability.

2.5. The Proposed Forecasting Model

The EEMD method, the LSTM neural network, the GPR method and the variance-covariance
method constitute a combination forecasting model. The flowchart of the proposed forecasting model
is shown in Figure 3, and the methodology in this study involves the following main steps:
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Figure 3. The flowchart of the proposed forecasting model.

Step 1: The data preprocessing This step includes the data decomposition and the selection for the
input of the forecasting method. Original wind speed data are decomposed into various IMFs
using the EEMD algorithm. In addition, the PACF method is employed to select the input data
of the forecasting method.

Step 2: The prediction for the IMFs LSTM neural network and GPR method with the Bayesian
frame of maximum likelihood for parameter optimization are employed to predict the IMFs
decomposed by EEMD, respectively.

Step 3: The combination of the two forecasting methods The variance-covariance method is
employed to combine the forecasting results from the LSTM neural network and the GPR
method.

Step 4: The reconstruction for wind speed information By Equation (5), the prediction result for
wind speed is the sum of the predicted IMFs.

3. Case Study

3.1. Collection of Data

In recent years, Zhangjiakou, North China, has vigorously promoted the development of new
energy industry focusing on wind power generation and has become an important new energy industry
base in North China. At present, the wind power installed capacity of Zhangjiakou, North China, has
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reached 8.71 million kilowatts. Therefore, to investigate the wind speed forecasting problem, this paper
collects the wind speed data from a wind farm of Zhangjiakou, North China. To consider the effect of
different time resolutions, two forecasting cases are represented in this case study. One forecasting case
is based on Dataset A, and another forecasting case is based on Dataset B. The data in the Dataset A
are recorded every 5 min and from 1 January 2014 to 4 January 2014. Additionally, the data in Dataset
B are recorded every 60 min and from 1 July 2014 to 25 July 2014. Therefore, for each forecasting case,
the total data groups for each wind turbine reach 660. In these data groups, the former 600 data groups
are perceived as a training set, and the rest of data groups are a testing set. The original wind speed
series for the two forecasting cases are shown in Figure 4.

Figure 4. Original wind speed series.

3.2. Model Performance Evaluation

In this study, the performance of the proposed model needs to be measured for the comparison
with other forecasting models. The mean absolute error (MAE), root mean square error (RMSE) and the
mean absolute percentage error (MAPE) are adopted to evaluate the result of the forecasting model.

RMSE =

√
1
n

n

∑
i=1

(Yi −Y′i )
2

MAE =
1
n

n

∑
i=1
|Yi −Y′i |

MAPE =
1
n
|
Yi −Y′i

Yi
| × 100%

(22)

where Yi denotes the real wind speed data; Y′i denotes the wind speed prediction data; i = 1, 2, ..., n.

3.3. Wind Speed Forecasting

Step 1: Wind speed decomposition. The EEMD method is employed to eliminate the
non-stationarity of the original wind speed data. The amplitude of the added noise and ensemble
number are 0.01 and 100, respectively. The data decomposition results can be seen in Figure 5.
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Figure 5. Wind speed series decomposition using EEMD.

Step 2: Input selection based on PACF. Before the IMFs’ prediction, the input variables of the
forecasting method should be determined. The input variables are the time lag of the current wind
speed point, since the IMFs are considered as the time series. Hence, the PACF method is employed
to determine the number of the time lag. The inputs’ combinations for IMFs identified by the PACF
method are illustrated in Table 1.

Table 1. The inputs’ combinations for IMFs.

IMF IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 R0

time lag number 3 6 7 9 6 8 8 6 3 10
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Step 3: The prediction for IMFs. The LSTM neural network and the GPR method are considered
the prediction model for the ten subsequences. The architecture of LSTM and the kernel function in the
GPR method have a great influence on the forecasting performance. Specifically, the number of layers
and units in LSTM neural network, as well as the form and the parameters of the kernel function in
the GPR method need to be determined properly. Therefore, this paper selects a suitable number of
layers and units in LSTM for these IMFs and residual series in Table 2. The kernel function of GPR
method adopts the squared exponential (SE) function. The values of the parameter in the GPR method
optimized by the Bayesian frame of maximum likelihood are shown in Table 3.

Step 4: The combination forecasting method. After obtaining the prediction results for LSTM
and the GPR method, this paper uses the variance-covariance method to determine the combination
weights of the two forecasting methods. The combination weights for LSTM neural network and the
GPR method are 0.66 and 0.34.

Table 2. The number of layers and units in LSTM for each IMF.

IMF IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 R0

Layers 2 3 1 2 1 3 3 2 1 2
Units 100 200 50 50 100 200 100 50 200 50

Table 3. The parameter in GPR method for each IMF.

IMF IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 R0

length scale 11.9 3.1 108.4 0.01 100.9 146.4 223.3 529.7 205.6 107.7
sigma 2.2 0.5 142.2 0.02 62.5 73.6 111.2 239.0 69.6 34.2

3.4. The Comparisons and Analysis

To investigate the performance of the proposed method, the forecasting case in Dataset A has been
provided in this paper. Furthermore, six other wind speed prediction methods are also carried out
for the comparison with the proposed method. The compared models are ARIMA, BPNN, the single
LSTM, the single GPR, EEMD-LSTM and EEMD-GPR. Specifically, ARIMA, BPNN, the single LSTM
and the single GPR are utilized for the prediction of the original wind speed data. EEMD-LSTM is
the model that employs LSTM to forecast the subsequences decomposed by the EEMD method and
reconstructs the IMFs to obtain the wind speed prediction results. In addition, EEMD-GPR is similar to
EEMD-LSTM. Based on the IMFs’ prediction results with LSTM and GPR, the proposed model offers a
combination forecasting result using the variance-covariance method. Figure 6 displays the real wind
speed data and prediction data from different methods in Dataset A. The MAE, RMSE and MAPE
values of the above prediction models are given in Figure 7.

Figure 6. The real wind speed data and prediction data from different methods in Dataset A.
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Figure 7. Wind speed forecasting results in Dataset A.

As we can see in Figure 7, the MAPE value of the proposed method is 12.10%, while the MAPE
values for ARIMA, BPNN, the single LSTM, the single GPR, EEMD-LSTM and EEMD-GPR are 27.65%,
25.05%, 19.18%, 18.33%, 12.29% and 13.17%, respectively. In addition, the RMSE values of ARIMA,
BPNN, the single LSTM, the single GPR, EEMD-LSTM, EEMD-GPR and the proposed method are
1.39 m/s, 1.05 m/s, 0.85 m/s, 0.81 m/s, 0.55 m/s, 0.57 m/s and 0.51 m/s, respectively. The MAE
value for the proposed method is 0.45 m/s, which is also smaller than that obtained by ARIMA,
BPNN, the single LSTM, the single GPR, EEMD-LSTM and EEMD-GPR, which are 1.09 m/s, 0.92 m/s,
0.77 m/s, 0.64 m/s, 0.49 m/s and 0.51 m/s, respectively.

From Figure 6 and Figure 7, it can be discussed that:

(a) The single LSTM and the single GPR can obtain better results than ARIMA and BPNN.
Therefore, it can be concluded that the adopted forecasting methods can obtain higher forecasting
accuracy than the conventional forecasting methods, such as ARIMA and BPNN. Additionally,
the prediction accuracy of the single LSTM is close to the single GPR.

(b) In comparison with the single LSTM and the single GPR, the EEMD-LSTM and the EEMD-GPR
model have better forecasting accuracy obviously. The reason for the forecasting accuracy
difference is the EEMD method. It can facilitate the determination of the characteristics of the
complex non-linear time series, thereby effectively improving the performance and robustness
for wind speed prediction.

(c) By the variance-covariance method, the proposed model combines LSTM and the GPR
method to obtain the combination forecasting result. According to the evaluation criteria MAE,
RMSE and MAPE, the proposed model outperforms the EEMD-LSTM and the EEMD-GPR
model. The combination method can take full advantage of various forecasting models, so the
the proposed model can improve the adaptability and accuracy.

(d) The forecasting objective for the proposed method is the wind speed information. As described
in Figure 4, the wind speed varies as time changes, and it has strong randomness and instability.
In addition, time resolution for wind speed is 5 min or 60 min. Hence, the proposed model
can be also applied to forecast short-term time series data, such as short-term wind power and
short-term electrical load.

In general, the pro of our suggested method is the improvement in the forecasting performance.
Specifically, the EEMD method can facilitate the determination of the characteristics of the complex
non-linear time series. Furthermore, the LSTM neural network is suitable for dealing with important
events with longer intervals and delays in time series, and the GPR method has a good adaptability
and strong generality to process the complex nonlinear problems. To combine the advantages of the
two forecasting methods, the variance-covariance method is applied to the proposed method and
offers an accurate and stable forecasting result. However, the con of our suggested method is the
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single form of the kernel function in the GPR method. In the proposed method, we adopt the squared
exponential (SE) function. For future work, different kernel functions can be adopted.

3.5. Additional Forecasting Case

To further investigate the performance of the proposed method, another forecasting case in
Dataset B has been provided in this paper. The difference between Dataset A and Dataset B is the
time resolution. The wind speed data in Dataset A are recorded every 5 min, while the wind speed
data in Dataset B are recorded every 60 min. The forecasting results in Dataset B are presented
in Figures 8 and 9.

As we can see in Figure 9, the MAPE value of the proposed method is 14.28%, while the MAPE
values for ARIMA, BPNN, the single LSTM, the single GPR, EEMD-LSTM and EEMD-GPR are 35.42%,
25.16%, 18.74%, 20.04%, 17.67% and 16.78%, respectively. In addition, the RMSE values of ARIMA,
BPNN, the single LSTM, the single GPR, EEMD-LSTM, EEMD-GPR and the proposed method are
1.89 m/s, 1.57 m/s, 1.07 m/s, 1.27 m/s, 1.02 m/s, 0.94 m/s and 0.83 m/s, respectively. The MAE
value for the proposed method is 0.67 m/s, which is also smaller than that obtained by ARIMA,
BPNN, the single LSTM, the single GPR, EEMD-LSTM and EEMD-GPR, which are 1.57 m/s, 1.19 m/s,
0.84 m/s, 1.02 m/s, 0.79 m/s and 0.71 m/s, respectively.

The prediction results in this forecasting case from Dataset B are consistent with the prediction
results in dataset A. Therefore, it can be recommended that the proposed method can adapt to different
time resolutions and provide better forecasting results for the short-term wind speed series.

Figure 8. The real wind speed data and prediction data from different methods in Dataset B.

Figure 9. Wind speed forecasting results in Dataset B.
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4. Conclusions

To improve the performance of the wind speed prediction, a new combination forecasting model
based on the EEMD method, LSTM, GPR and the variance-covariance method is proposed in this paper.
The EEMD method is used to decompose the original wind speed series into numerous intrinsic mode
functions (IMFs). Then, the variance-covariance method combines the LSTM neural network and the
GPR method and offers a combination forecasting result. The results of the case study in Zhangjiakou,
China, show that the proposed model tends to outperform other compared prediction models. It is
recommended that: (a) the single LSTM and the single GPR can obtain higher forecasting accuracy than
the conventional forecasting methods, such as ARIMA and BPNN; (b) the EEMD method can effectively
improve the forecasting accuracy by decomposing the original wind speed; (c) the variance-covariance
method can combine the advantages of LSTM and the GPR method, and the combination forecasting
results are better than the individual prediction method; (d) the EEMD method, the LSTM neural
network, the GPR method and the variance-covariance method are integrated reasonably and provide
a new idea for short-term wind speed forecasting; (e) the forecasting results in Dataset A and Dataset B
indicate that the suggested method can adapt to different time resolutions. In summary, the suggested
method in this paper is expected to provide a useful reference for the power sector to forecast the
short-term wind speed.
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Abbreviations

The following abbreviations are used in this manuscript:

EEMD ensemble empirical mode decomposition
LSTM long short-term memory
SVM support vector machine
EMD empirical mode decomposition
RNN recurrent neural network
MAE mean absolute error
MAPE mean absolute percentage error
GPR Gaussian process regression
WT wavelet transform
PACF partial autocorrelation function
PACF partial autocorrelation function
CNN convolutional neural network
IMFs intrinsic mode functions
RMSE root mean square error
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