
sustainability

Article

Stationary Forestry with Human Interference

Petri P. Kärenlampi

Faculty of Science, University of Eastern Finland, PO Box 111, FIN-80101 Joensuu, Finland;
petri.karenlampi@uef.fi; Tel.: +358-50-371-1851; Fax: +358-13-251-4422

Received: 17 August 2018; Accepted: 5 October 2018; Published: 12 October 2018
����������
�������

Abstract: Here, we present stationarity criteria for forest stands and establish ecological embodiments
using an empirical stand development model. We introduced human interference in terms of
diameter-limit cutting. Financial sustainability was investigated as a function of the cutting limit
diameter. It was found that nonoperative capitalization along with its appreciation rate dictates the
sustainability of management practices. In the absence of nonoperative capitalization, stationary
forestry produces high capital return rates at a rather small volume of growing trees. In the case of
large but constant nonoperative capitalization, a large operative capitalization resulting in a large
harvesting yield provides the best capital returns. A high nonoperative appreciation rate requires a
small volume of growing trees.
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1. Introduction

Multiannual plants are often produced in growth cycles, including terminal harvesting and
artificial or natural regeneration [1–3]. However, that is not the only option. It is also possible to
maintain a continuous cover of plants [4–8]. A few investigations indicate that continuous-cover
forestry has particular benefits [9–17]. As a special case of the continuous-cover process, a stationary
system may appear. A stationary system is supposed to display some kind of a demographic
equilibrium [18–23]. In principle, a stationary stand may develop naturally, provided the system
is given enough time for transient effects to level off. However, in quite a few cases, transient times
in natural development may be significant, resulting in scarcity of naturally developed stationary
states [22–25].

It has been postulated that in a natural state, the appearance frequency of trees would decay
exponentially as a function of tree size [26–28]. However, we are not aware of any criterion
of stationarity that would specifically produce exponential distributions. Exponential tree size
distribution within a forest stand may be approached through specially designed harvesting
schedules [8,29–31]. It however appears that such tailored systems are not stationary but in some kind
of transient state [20,32].

In this paper, we discuss systems that fulfill a stationarity criterion, because of their conceptual
simplicity and practical implementability. We concentrate on financial capital return in stationary
forestry. We distribute capitalization to operative and nonoperative capitalization and investigate the
latter’s effect of magnitude on financial return. It is worth noting that Buongiorno and Michie [12]
applied a similar kind of growth model but with a very different economic treatment (cf. [33]). We do
not discuss any net present value of cash revenues but describe forest economics in financial terms only.

First, we establish stationarity conditions for the size distribution of forest trees. The established
steady-state equations were then parameterized using a Norwegian empirical model for the growth
and mortality of Spruce trees, as well as recruitment of new trees [24,34]. The outcome is a description
of a natural stationary state. Provided dying trees can be harvested, the natural state produces revenue

Sustainability 2018, 10, 3662; doi:10.3390/su10103662 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0001-6475-7385
http://dx.doi.org/10.3390/su10103662
http://www.mdpi.com/journal/sustainability
http://www.mdpi.com/2071-1050/10/10/3662?type=check_update&version=2


Sustainability 2018, 10, 3662 2 of 17

corresponding to the financial return of the bound capital. However, when only harvesting dying trees,
the volumetric yield is small. Introducing diameter-limit cutting, in addition to removal of dying trees,
produces another stationary system, now with human interference. The effect of capitalization on the
financial return is investigated with a variety of cutting-limit diameters.

Nonoperative capitalization due to excess demand for real estate, recreational values, speculation
for future real estate values, etc., may well evolve over time. In the final section of this paper, we discuss
the effect of the eventual appreciation of the nonoperative capitalization on the financial return in
stationary forestry.

2. Methods

2.1. Stationary Stand of Forest Trees

A stationary structure requires stationary distributions of population properties. Let us define
stationary conditions on the basis of three processes of diameter ingrowth, diameter outgrowth,
and mortality. The process of outgrowth obviously must be related to ingrowth into another group.
The size distribution of trees can be stationary only if the number of individuals involved in the three
processes sums up to zero. Consequently, a stationarity condition is

Id5(Di−1)n(Di−1)− Id5(Di)n(Di)−m(Di)n(Di) = 0 (1)

where n(Di) is the number of trees in diameter class i, Id5(Di) is the probability that a tree survives and
grows into the next diameter class, and m(Di) is mortality. Such a stationarity criterion is rather generic
and appears in a variety of contexts. For forest stands, we established the criterion independently
before finding out that it has been several times mentioned by Schütz [18,20,21] and applied to the
growth of US Northern hardwoods by Buongiorno and Michie [19].

Taking the indices i as positive natural numbers in Equation (1), i − 1 becomes ill defined with
the smallest value i = 1. In other words, for the smallest diameter class, we need a boundary condition

R− Id5(D1)n(D1)−m(D1)n(D1) = 0 (2)

where the first term R corresponds to the number of trees recruited into the smallest diameter class.

2.2. Empirical Model Applied

In order to solve the tree size distribution in a stationary state according to Equations (1) and (2),
the three functions appearing in the equations have to be clarified. We utilized the empirical model of
Bollandsås et al. [24,34]. The three functions become

Id5(Di) =
a1 + a2 × Di + a3 × Di

2 + a4 × Di
3 + a5 × BAL(Di) + a6 × SI + a7 × BA + a8 × LAT

∆
(3)

m(Di) =
1

1 + exp
{
−1× [b1 + b2 × Di × 10 + b3 × (Di × 10)2 + b4 × BA]

} (4)

R =
c1 × (BA)c2 × (SI)c3

1 + exp{−1× [d1 + d2 × BA + 0.0655× SI + d3]}
(5)

where ak, bk, ck, and dk are constants, given in [24,34] and reprinted in Supplementary Materials.
BAL(Di) is basal area in trees larger than Di, SI is site index (dominant height at 40 years of age), BA
is total basal area, LAT is latitude, and ∆ is diameter increment from diameter class i-1 to class i.

Within the underlying experimental material, the site fertility indices ranged from 6 to 26. We here
intend to discuss the outcome of the model at three site fertilities, with fertility indices 11, 17, and 23.
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These values correspond to moderate, good, and very good sites. Fertilities poorer than 11 were
neglected due to their marginal economic importance.

2.3. Effects of Human Interference

Let us now consider a case where a human interferes with the stationary state by a particular
harvesting program of periodic character. Let us discuss a practice where trees larger than a particular
diameter are periodically harvested. Then, Equations (1) and (2) are still valid in other diameter classes,
but for the largest diameter class,

n(DMax) = 1/2Id5(DMax−1)n(DMax−1) (6)

The largest diameter class here corresponds to trees larger than the cutting limit diameter.
Immediately after diameter-limit cutting, there are no such trees. However, some appear before
the next diameter-limit cutting, and a simple approximation of a representative (or “average”) number
of them is half of the number of ingrowth according to Equation (6).

2.4. Financial Methods

In order to discuss financial return rate, we need to introduce a financial potential function
K. The financial potential corresponds to capitalization per surface area unit. The capitalization is
distributed to operative and nonoperative capitalization. The operative capitalization corresponds
to the monetary value of the standing trees as well as the nonamortized value of eventual forestry
investments like regeneration investments, fertilizations, drainage expenses, etc. However, in this
paper, we do not discuss any investments. The nonoperative capitalization corresponds to real
estate value exceeding the value of trees and eventual nonamortized investments. Nonoperative
capitalization may be due to excess demand for real estate in comparison to supply, recreational values,
speculation for future real estate development, etc. (It is worth noting that generalized Faustmann
formulae may contain variable land expectation values [35,36]. The generalized formulation could
be used to assess the effect of real estate valuation on silvicultural practices [10]. However, such a
treatment is not relevant for stationary forestry since there is no need for discounting). An eventual
value of bare land is included in the nonoperative capitalization.

The monetary value of standing trees is constituted as the product of assortment volumes and
assortment prices. The number of trees per surface area unit in any breast height diameter class is
clarified by substituting any of Equations (3)–(5) into (1) and (2). It is noticed that the stand basal area
contributes to any of the Equations (3)–(5). On the other hand, the stand basal area can readily be
reconstituted from the tree diameter distribution resulting from Equations (1) and (2). We experiment
with the stand basal area, and an iteration rapidly results as a stationary state where the input value is
regained from Equations (1) and (2).

The stem diameter can be converted to trunk volume in a variety of ways. We simply applied the
relationship given by Rämö and Tahvonen [14,37] for fertile spruce stands. Any breast height diameter
was converted to the volume of two assortments—pulpwood and sawlogs—according to the appendix
given by Rämö and Tahvonen [14,37]. The stumpage value of the assortments was calculated on the
basis of stumpage prices given by Rämö and Tahvonen ([14], p. 1104).

The momentary capital return rate is the relative change rate of the potential function

r(t) =
dκ

K(t)dt
(7)

The net return rate dκ
dt in Equation (7) here corresponds to the monetary value of the net growth

rate of trees. In the case of operative investments, amortizations would be deducted from the gross
growth rate. In case there are dying trees that are not harvested, their value is deducted. The number
of trees growing to a larger diameter class was produced using Equation (3), along with the number of
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trees in any diameter class produced using Equations (1)–(5), as explained above. The trees transferred
to a larger diameter class contained a larger amount of pulpwood and sawlogs according to the
appendix of Rämö and Tahvonen [14,37]. The monetary value of the incremental assortment volumes
was clarified according to stumpage prices by Rämö and Tahvonen [14]. Finally, the monetary net
growth rate was integrated over all the diameter classes.

In Equation (7), there is a slight difference between κ in the numerator and K in the denominator
relating to eventual operative investment or divestment. The potential (or capitalization) K is
immediately affected by any eventual operative investment or withdrawal and then consequently
becomes affected by amortizations. The net return rate dκ

dt in the numerator, however, characterizes the
growth rate in financial terms and thus is not immediately affected by changes in capitalization but
considers eventual investments in terms of amortizations. In addition, changes in capitalization are
likely to contribute to growth: investments probably increase growth rate, whereas withdrawals may
reduce growth rate. Such effects, however, are not discussed here in detail since this study does not
consider any investments.

In the stationary state, the potential K(t) does not evolve persistently but possibly experiences
some fluctuation around its characteristic value. In the natural stationary state, in the absence of
harvesting and of mortality offsetting growth, the change rate of potential dκ

dt is zero, also resulting in
constancy of the potential function K(t).

In stationary states with human interference, dκ
dt is nonzero since potential created by growth does

not rot in the ground but becomes harvested. On the other hand, K(t) is not strictly a constant but
fluctuates around a characteristic value Kch, accumulated growth periodically being divested in terms
of harvesting.

Let us then distribute capitalization K(t) to the operative capitalization O(t) and the nonoperative
capitalization U(t). Now, Equation (7) can be rewritten as

r(t) =
dΩ + dU

[O(t) + U(t)]dt
(8)

In Equation (8), the difference between Ω in the numerator and O in the denominator again
relates to eventual operative investment or divestment. The capitalization O is immediately affected
by any eventual operative investment or withdrawal and then consequently becomes reduced by
amortizations. The net return rate dΩ

dt in the numerator is not immediately affected by changes
in capitalization. Correspondingly, the accumulated net yield Ω(τ) may differ from operative
capitalization O(τ) in the occurrence of withdrawals (harvesting, etc.).

In stationary states with human interference, dΩ
dt is nonzero since potential created by growth

does not rot in the ground but is stored through harvesting of produced timber. On the other hand,
O(t) is not strictly a constant but fluctuates around a characteristic value Och, with accumulated growth
periodically being divested in terms of harvesting. Consequently, at a stationary state

r(t) ≈ dΩ + dU
[Och + U(t)]dt

(9)

Equation (9) reveals that in the case in which the operative capitalization is much higher than
the nonoperative capitalization, the role of the latter vanishes. On the other hand, if nonoperative
capitalization is much higher than operative capitalization, the role of the operative capitalization
vanishes. In case the nonoperative capitalization is large but constant, the highest operative return
might simply be the one corresponding to greatest average yield rate dΩ

dt . The situation is more delicate
if there is a nonvanishing time change rate of the nonoperative capitalization dU/dt.

The nonoperative capitalization U should be parametrized somehow. We chose to normalize
it with the operative capitalization at the natural steady state. In other words, our measurement
gauge for nonoperative capitalization was U/Och_nat. Now, provided the relative appreciation rate of
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nonoperative capitalization dU
U(t)dt is known, it is possible to investigate the capital return as a function

of cutting-limit diameter on the one hand and nonoperative capitalization on the other hand.

3. Results

3.1. Properties of the Stationary State

Figure 1 shows the number of trees within any diameter class in a stationary state on a spruce
stand for three site fertility classes according to Equations (1)–(5). The only free parameter appearing
in Equations (1)–(5) is latitude, which is given value 61.9.

The total number of trees of diameter in excess of 50 mm per hectare is 310, 346, and 383 for
the tree site indices. The corresponding basal areas at breast height are 27.1, 32.5, and 37.3 m2/ha.
An interesting feature in Figure 1 is that in the case of the lowest fertility, the size distribution is
bimodal. As the growth rate decreases with size according to Equation (3), there is some crowding of
trees at 475-mm diameter class. Increased mortality, according to Equation (4), however, reduces the
appearance frequency of larger trees.
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Figure 1. Number of trees in 50-mm diameter classes in the stationary state according to
Equations (1)–(5) for three site fertility classes.

The commercially utilizable trunk volume in trees of different diameter classes is given in Figure 2.
We found that the total commercial stand volume per hectare is 242, 285, and 326 m3/ha for the three
fertility classes.
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Figure 2. Commercial trunk volume in 50-mm diameter classes in the stationary state according to
Equations (1)–(5) for three site fertility classes.

The stumpage value of the standing trees can be calculated on the basis of stumpage prices given
by Rämö and Tahvonen [14]. The outcome is given in Figure 3. We found that the total stumpage value
per hectare is 12,962, 15,278, and 17,516 Eur/ha for the three fertility classes.
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Figure 3. Commercial stumpage value in 50-mm diameter classes in the stationary state according to
Equations (1)–(5) for three site fertility classes.

According to Equation (1), the number of dying trees within any diameter class corresponds to
the number of trees growing out subtracted from the number of trees growing into the class. In a
stationary state, the commercial wood trunk volume remains constant. Correspondingly, in the absence
of harvesting, the reduction of the volume of living trees through death equals volumetric growth
(Equation (1)). The total amount of growth per hectare during a five-year period is 5.8, 11.4, and 19.4 m3

for the three site fertility classes. Correspondingly, the annual growth rate varies from 1.2 to 3.9 m3/ha.
It is of interest to compare the stumpage values of dying trees to the total value of standing trees.

Provided the five-year growth can be technically harvested and yields the expected stumpage value,
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the annualized operative return of the capital standing on trees becomes 0.5%, 0.8%, and 1.2% for
the three different site fertility classes. Obviously, gaining the full stumpage value requires that the
harvester is a professional capable of identifying dying trees before they suffer any deterioration of
commercial value.

3.2. Effects of Human Interference

The commercial volume of trees harvested within any five-year period in diameter-limit cutting is
shown in Figure 4. The effect of human interference is introduced according to Equation (6), in addition
to Equations (1)–(5). It is assumed that in the context of diameter-limit cutting, dying trees are removed
from all diameter classes. Figure 4 shows that when the cutting limit approaches the diameter of the
largest trees, the harvesting pattern approaches removal of naturally dying trees. With reduced cutting
diameter limit, the proportion of harvesting volume from dying trees reduces rapidly. The greatest
harvesting volume is gained at a cutting limit of 400–450 mm. With a smaller harvesting limit diameter,
the harvesting volume becomes rapidly reduced.
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Figure 4. Commercial trunk volume harvested in diameter-limit cutting within any period of five
years, including dying trees from all diameter classes, according to Equations (1)–(6) for three site
fertility classes.

Commercial stumpage value of trees harvested in diameter-limit cutting within any period of five
years is shown in Figure 5. The highest commercial value is gained with a cutting diameter limit of
450 mm. As a function of cutting diameter limit, the greatest increment of stumpage value is found
between 150 and 200 mm, where sawlogs appear in the harvesting yield instead of merely pulpwood.
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Figure 5. Commercial stumpage value of trees harvested in diameter-limit cutting within any period
of five years, including dying trees from all diameter classes, according to Equations (1)–(6) for three
site fertility classes.

3.3. Financial Return Rate

3.3.1. Nonappreciating Nonoperative Capitalization

Let us first investigate the case where the time change rate of the nonoperative capitalization
dU/dt equals zero. In this case, the numerator of Equation (9) only corresponds to the first term,
which is closely related to Figure 5 but is here discussed on an annual basis. Even if the change rate of
the nonoperative capitalization dU/dt vanishes, some amount of nonoperative capitalization U may
appear in the denominator of Equation (9).

Figure 6 shows the capital return rate for vanishing nonoperative capitalization, i.e., U/Och_nat = 0.
We find that the greatest capital return rate is achieved by harvesting small trees. This is, however,
problematic, since the volumetric harvesting yields according to Figure 4 are rather low.
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Figure 6 shows that there is another peak value in capital return at the cutting limit of 200 mm,
where sawlogs are first gained. However, the volumetric harvesting yields according to Figure 4 still
are low.

Figure 7 shows the capital return rate for U/Och_nat = 0.01. Interestingly, such a smallish
nonoperative capitalization completely changes the financial profile. In the case of the 100-mm
cutting limit diameter, the originally tiny capitalization increases significantly, and the relative capital
return collapses correspondingly. On the other hand, in the case of the greatest diameter cutting limits,
the capitalization increases only by 1%, and the decline of relative capital return rate is of a similar
magnitude. However, according to Figure 7, the greatest capital return rate is achieved with a cutting
limit diameter of 200 mm, where sawlogs are first gained.

Sustainability 2018, 10, x FOR PEER REVIEW  9 of 17 

Figure 6. Annualized capital return rate from diameter-limit cutting within any period of five years, 
including dying trees from all diameter classes, according to Equations (1)–(6) and (9) for three site 

fertility classes. 
_

0
ch nat

U
O = . 

Figure 6 shows that there is another peak value in capital return at the cutting limit of 200 mm, 
where sawlogs are first gained. However, the volumetric harvesting yields according to Figure 4 still 
are low. 

Figure 7 shows the capital return rate for 
_

0.01
ch nat

U
O = . Interestingly, such a smallish 

nonoperative capitalization completely changes the financial profile. In the case of the 100-mm 
cutting limit diameter, the originally tiny capitalization increases significantly, and the relative capital 
return collapses correspondingly. On the other hand, in the case of the greatest diameter cutting 
limits, the capitalization increases only by 1%, and the decline of relative capital return rate is of a 
similar magnitude. However, according to Figure 7, the greatest capital return rate is achieved with 
a cutting limit diameter of 200 mm, where sawlogs are first gained. 

 
Figure 7. Annualized capital return rate from diameter-limit cutting within any period of five years, 
including dying trees from all diameter classes, according to Equations (1)–(6) and (9) for three site 

fertility classes. 
_

0.01
ch nat

U
O = . 

Figure 8 shows the capital return rate for 
_

0.1
ch nat

U
O = . In the case of the 100-mm cutting 

limit diameter, the capitalization is now 10 times greater than the one corresponding to Figure 7. On 
the other hand, in the case of the greatest diameter cutting limits, the capitalization increases only by 
10%, and the decline of relative capital return rate is of a similar magnitude. According to Figure 8, 
the greatest capital return rate is achieved with a cutting limit diameter of 250 mm instead of 200 mm 
in Figure 7. 

Figure 7. Annualized capital return rate from diameter-limit cutting within any period of five years,
including dying trees from all diameter classes, according to Equations (1)–(6) and (9) for three site
fertility classes. U/Och_nat = 0.01.

Figure 8 shows the capital return rate for U/Och_nat = 0.1. In the case of the 100-mm cutting limit
diameter, the capitalization is now 10 times greater than the one corresponding to Figure 7. On the
other hand, in the case of the greatest diameter cutting limits, the capitalization increases only by
10%, and the decline of relative capital return rate is of a similar magnitude. According to Figure 8,
the greatest capital return rate is achieved with a cutting limit diameter of 250 mm instead of 200 mm
in Figure 7.
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Figure 8. Annualized capital return rate from diameter-limit cutting within any period of five years,
including dying trees from all diameter classes, according to Equations (1)–(6) and (9) for three site
fertility classes. U/Och_nat = 0.1.

Figure 9 shows the capital return rate for U/Och_nat = 1.0. In comparison to Figure 6, capital return
rate is 300 times smaller at the smallest cutting limit diameter and halved at the greatest cutting limit
diameters. The greatest capital return rate, even if small, is achieved with cutting limit diameters
of 350–400 mm. Further increments in nonoperative capitalization would increase the cutting limit
diameter corresponding to the greatest capital return to 450 mm, thus providing the greatest harvesting
yield according to Figures 4 and 5.
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Figure 9. Annualized capital return rate from diameter-limit cutting within any period of five years,
including dying trees from all diameter classes, according to Equations (1)–(6) and (9) for three site
fertility classes. U/Och_nat = 1.0.

3.3.2. Appreciating Nonoperative Capitalization

A previous study indicates that in the case of periodic rotation forestry, appreciating nonoperative
capitalization significantly reduces financially optimal rotation age [38]. This obviously is not the case
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in stationary forestry because no rotation age exists in a stationary growth process. However, it is
obvious that the total capital return depends on the appreciation rate of nonoperative capitalization.
Correspondingly, we investigated a few cases where the second term in the numerator of Equation (9)
is also possibly nonzero.

Motivated by Figures 7 and 9, we report in Figures 10–12 the evolution of capital return rate
with two cutting limit diameters: 200 and 350 mm. We plot the capital return rate as a function
of the capitalization ratio U/Och_nat. Annual appreciation rates of 0%, 2%, and 4% were used for the
nonoperative capitalization in Figures 10–12, respectively.

Figure 10 shows that with an annual nonoperative capital appreciation rate of 0%, harvesting large
trees of sizes in excess of 350 mm yields a better capital return than harvesting small trees (200 mm)
with capitalization ratios U/Och_nat greater than 0.1–0.2. It is worth noting that the bigger cutting limit
diameter corresponds to more than doubled harvesting yield according to Figures 4 and 5.
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and (9), as a function of capitalization ratio U/Och_nat.

Figure 11 shows that with an annual nonoperative capitalization appreciation rate of 2%,
harvesting large trees of sizes in excess of 350 mm yields a better capital return than harvesting
small trees (200 mm) with capitalization ratios U/Och_nat greater than 0.3–0.4. However, that result
applies only to high and intermediate site fertilities. In the case of the lowest site fertility, the capital
return rates unify at high capitalization ratios: the high capitalization case of 350-mm cutting limit
diameter never shows a greater capital return rate.
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350 mm, with 2% annual increment rate in nonoperative capitalization, according to Equations (1)–(6)
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Figure 12 shows that with an annual nonoperative capital appreciation rate of 4%, harvesting
small trees (200 mm) always produces a greater capital return than harvesting large trees of sizes in
excess of 350 mm, regardless of capitalization ratio U/Och_nat. This result indeed significantly differs from
Figures 10 and 11 and indicates that appreciation of nonoperative capitalization plays a fundamental
role in forestry finances.

It is of interest to note that in the case of the lowest fertility and higher cutting limit diameter,
the capital return rate increases with increased nonoperative capitalization. A natural reason is that
the return rate in the absence of nonoperative capitalization is below the 4% nonoperative appreciation
rate (cf. Figures 10 and 11).
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4. Discussion

The empirical models (3)–(5) utilized in this study describe growth, mortality, and recruitment
in a statistical sense. Significant scattering beyond modeled trends appears in any dataset [24].
Consequently, some amount of uncertainty in the present results obviously is related to the reliability
of the used models. However, qualitatively, the appearance of slow recruitment, in accordance with
Equation (5), appears to agree with quite a few observations [6,23,39–41]. Also, observations indicating
a higher rate of recruitment exist [42–44].

The amount of trees in the stationary forest, in terms of number of individuals (Figure 1),
appears rather small in comparison to nonstationary forest systems [7,11,14,17,45,46]. On the other
hand, basal area and standing volume are more comparable (Figure 2). Growth rate is smaller than
generally reported for comparative fertilities in nonstationary forestry (Figure 4) [7,11,14,17,45–48].
These observations are directly due to Equations (3)–(5). Especially, the recruitment rates given by
Equation (5) appear rather slow, inducing stationary systems with a small number of trees.

All the empirical data used in this paper were taken from one single modeling of one large
Norwegian dataset [24,34]. The present results may be due to the generic diameter distributions of
the type shown in Figure 1. However, it would be of interest to compare with different tree species,
climates, and regions. Quite a few investigations have been published reporting recruitment, growth,
and mortality [5,47–51]. However, it apears that most of such modelings have been unsuccessful.
A modeling should be considered unsuccessful if Equations of type (3)–(5) do not converge to a
stationary structure according to Equations (1) and (2). A common reason for such failure appears to
be an inappropriate description of mortality: in case growth rate diminishes but mortality does not
increase, Equation (2) accumulates a large and increasing number of trees to large diameter classes.
A positive exception, apparently, is the model by Buongiorno and Michie [12], which we hope to apply
in the future.

Regarding the financial results of this paper, some of the results appear rather surprising.
Firstly, in the absence of nonoperative capitalization, the best capital return rates are gained with rather
small cutting limit diameters (Figure 6). However, the situation significantly changes with a small
amount of nonoperative capitalization, with the best return being gained with a cutting limit diameter
where sawlogs are first gained (Figure 7). A further increment of nonoperative capitalization, however,
again changes the situation, with the best capital return rates being gained at much greater cutting
limit diameters (Figures 8 and 9). Such higher cutting limits provide greater volumetric and monetary
harvesting yields in comparison to the previous ones (Figures 4 and 5).

Still more interestingly, eventual appreciation of the nonoperative capitalization significantly
contributes to the financial return. Figure 10 shows that in the absence of appreciation, small
capitalization favors harvesting of smallish trees, whereas large capitalization favors large cutting limit
diameters. However, the situation partially changes with a 2% annual appreciation rate (Figure 11).
An appreciation rate of 4% completely changes the situation, favoring small cutting limit diameters
corresponding to small operative capitalization. This obviously requires some kind of an explanation.

In order to explain the effect of the appreciation rate of the nonoperative capitalization, at least
partially, let us process Equation (9) further. First, let us define two “pure” capital return rates as

g ≡ dΩ
Ochdt

(10)

and
f ≡ dU

Udt
(11)

Now, Equation (9) can be rewritten

r ≈
g + f U

Och

1 + U
Och

(12)
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Before proceeding any further, we must remember that in Equation (10), the pure capital return
rate depends strongly on Och. In addition, r depends strongly on U/Och_nat, even if f ≡ dU

Udt would
be zero. This dependency is clearly seen in Figure 10: with increasing capitalization ratio U/Och_nat,
the larger cutting diameter limit corresponding to greater operative capitalization Och overtakes the
smaller in terms of total capital return rate r. So, why does this not happen in the case of Figure 12,
where f ≡ dU

Udt is nonzero?
Obviously, the difference between Figures 10 and 12 can be explained in terms of Equation (12).

In case f ≡ dU
Udt = 0, increment in Och in the denominator tends to increase r. However, if f ≡ dU

Udt
essentially differs from zero, that increment is less pronounced, 1/Och now appearing also in the
numerator of Equation (12). Correspondingly, significantly nonzero f ≡ dU

Udt in Figure 12 favors the
smaller cutting limit diameter, corresponding to smaller Och, in relation to Figure 10. In the mind of
the author, this essentially explains the difference between Figures 10 and 12, with Figure 11 being an
intermediate case.

In order to summarize the outcomes of this paper, we find from Figure 6, Figure 7,
and Figure 10 that the annual capital return rate in stationary forestry may be rather significant.
However, as Figures 4 and 5 indicate, in such financially highly productive low-capitalization cases,
the volumetric and monetary harvesting yields are low. The harvesting yield can be increased by
increasing the cutting diameter limit (Figures 4 and 5), which simultaneously increases operative
capitalization (cf. Figure 3). Consequently, the capital return rate becomes reduced (Figure 6, Figure 7,
and Figure 10).

Increasing nonoperative capitalization significantly reduces capital return rates, provided that
the nonoperative capitalization is stationary (Figures 6–10). Simultaneously, the optimal cutting limit
diameter increases towards that corresponding to maximum sustainable yield (Figures 6–10).

High but stationary nonoperative capitalization may be considered a possibly infrequently
appearing situation, since significant capitalization probably is established through capital appreciation.
The appreciation rate of nonoperative capitalization contributes to the total capital return according
to Equations (9) and (12). Along with increasing nonoperative capitalization, the nonoperative
capital return starts to dominate total capital return (Figures 11 and 12). However, at intermediate
nonoperative capitalizations, an increasing nonoperative appreciation rate favors low operative
capitalization, which corresponds to a relatively low cutting limit diameter (Figure 9, Figure 11,
and Figure 12; Equation (12)). Again, low operative capitalization corresponds to low volumetric and
monetary harvesting yield, according to Figures 4 and 5.

5. Conclusions

We have found that nonoperative capitalization, along with its appreciation rate, dictates the
financial sustainability of management practices in stationary forestry. In the absence of nonoperative
capitalization, stationary forestry produces high capital return rates at a rather small volume of growing
trees. In the case of large but constant nonoperative capitalization, a large operative capitalization,
resulting in large harvesting yield, provides the best capital returns. A high nonoperative appreciation
rate requires a small volume of growing trees.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/10/10/3662/
s1, Table S1: the values of constants appearing in Equations (3), (4) and (5).

Conflicts of Interest: The author declares no conflict of interest.
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