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Abstract: The net ecosystem productivity (NEP) of drainage basins plays an important role
in maintaining the carbon balance of those ecosystems. In this study, the modified CASA
(Carnegie Ames Stanford Approach) model and a soil microbial respiration model were used to
estimate net primary productivity (NPP) and NEP of the Yellow River Basin’s (YRB) vegetation in the
terrestrial ecosystem (excluding rivers, floodplain lakes and other freshwater ecosystems) from 1982 to
2015. After analyzing the spatiotemporal variations in the NEP using slope analysis, the coefficient of
variation, and the Hurst exponent, precipitation was identified as the main factor limiting vegetation
growth in the YRB. Hence, precipitation was treated as the control variable and a second-order partial
correlation method was used to determine the correlation between diurnal asymmetric warming
and the YRB’s NEP. The results indicate that: (i) diurnal asymmetric warming occurred in the YRB
from 1982 to 2015, with nighttime warming (Tmin) being 1.50 times that of daytime warming (Tmax).
There is a significant correlation between variations in NPP and diurnal warming; (ii) the YRB’s
NEP are characterized by upward fluctuations in terms of temporal variations, large differences
between the various vegetation types, high values in the western and southeastern regions but low
values in the northern region in terms of spatial distribution, overall relative stability in the YRB’s
vegetation cover, and changes in the same direction being more dominant than those in the opposite
direction (although the former is not sustained); and (iii) positive correlations between the NEP and
nighttime and daytime warming are approximately 48.37% and 67.51% for the YRB, respectively,
with variations in nighttime temperatures having more extensive impacts on vegetation cover.

Keywords: vegetation carbon sequestration; NPP; CASA model; diurnal asymmetric warming;
Yellow River Basin

1. Introduction

The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concluded
that mean global surface temperatures have risen by approximately 0.85 ◦C in the past century [1],
and that sustained increases in atmospheric CO2 concentration is the main cause of global climate
change [2–4]. The resultant series of climatic and environmental issues have a significant impact on
the survival and development of humankind. [5] Hence, research on the carbon cycle has attracted
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increased attention among scholars and governments around the world [6–9]. Terrestrial ecosystems
form an important component of the global carbon cycle [10] and comprise the main platform through
which atmospheric CO2 enters the terrestrial zone [11]. Vegetation forms the bulk of terrestrial
ecosystems, plays an important bridging role in the global carbon cycle [12], and is able to effectively
regulate the global carbon balance and mitigate increases in atmospheric greenhouse gases.

In the context of global climate change, the net primary productivity (NPP) of vegetation is an
important part of the biogeochemical carbon cycle [13,14]. The NPP not only directly reflects the
production capacity of vegetation communities under natural environmental conditions [15–17], but is
also a major factor for the determination of carbon sources/sinks and the regulation of ecological
processes [18–20] and a global study on carbon storage in forest ecosystems initiated by the International
Biological Program (IBP) [21] in the 1960s marked the beginning of studies on net ecosystem productivity
(NEP).

In the past, researchers often collected atmospheric data to estimate NPP, which is expensive
and time consuming to collect and process [19]. Although direct measurement of bioaccumulation
is the key to the true accumulation process of NPP, it is only applicable to local area studies [22].
At present, the combination of model simulation and field measurement is the hot spot of NPP
research. An et al. using AVHRR NDVI to estimate the above-ground net primary productivity of
the high grassland ecosystem in the Central Plains have achieved good results [22]. Among these,
the Carnegie-Ames-Stanford Approach (CASA) model has been extensively applied to NPP
calculations because of its ease at regional scale conversions and applicability at both the global
and regional scales. The CASA model was first proposed by Potter et al. [23] to measure the global
carbon storage of terrestrial ecosystems. Field et al. [18] then used the model to calculate the NPP of
terrestrial and marine ecosystems, arriving at the conclusion that both ecosystems contributed equally
to global NPP. Hicke et al. [24] and Nayak et al. [25] also used the CASA model to estimate the NEP of
North America and the carbon storage of various vegetation types in India, respectively. It is worth
mentioning that the study by Zhang et al. fully demonstrates the practicality of the CASA model
in the evaluation of NPP in northern China [26]. The aforementioned studies on the carbon cycle in
ecosystems promoted the development of global research on the carbon cycle.

China’s overall topography is characterized by altitudes decreasing in a west–east direction,
with large river systems traversing the country. The total area of its drainage basins accounts for
approximately 82.09% of its total land area, such that the NEP of basin ecosystems play an important
role in the country’s carbon balance. NEP research in China commenced in the 1970s, with the majority
of studies focusing on the vegetation carbon storage of forest ecosystems [27,28]. However, there are
relatively few studies on complete ecosystems at the basin scale. In addition, studies on responses to
NEP variations have mostly focused on temperature and precipitation [29,30], without considering
the vastly different responses to diurnal warming of different vegetation types [31,32]. The Yellow
River Basin (YRB), the birthplace of Chinese civilization, has undulating terrain, varied landform
types, and complex ecological environments. These features create favorable conditions for the growth
and development of various vegetation types. The YRB is also located in an arid/semi-arid region
where climate change and human activities have made increasingly stronger impacts on the vegetation
cover, resulting in an increasingly fragile ecological environment. Understanding changes in the
carbon storage function of vegetation under diurnal warming conditions has great significance to the
formulation of appropriate policies for protecting ecosystems at the regional scale.

Past studies have mostly focused on the impact of climate change on the YRB’s vegetation
coverage but neglected the important function played by vegetation in terms of carbon sequestration.
Furthermore, there were substantial differences in the methods for interpolating climatic factors [33].
To address these deficiencies, this study used the maximum temperature (Tmax) and minimum
temperature (Tmin) to represent daytime and nighttime temperatures, respectively. The multi-model
theoretical method was then used to calculate the YRB’s NEP from 1982 to 2015 and its spatiotemporal
variations. The dynamic responses of vegetation’s carbon sequestration abilities were also analyzed
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using diurnal warming as the backdrop. The aim was for the findings to serve as a reference for
decision making to reduce greenhouse gas emissions and protect regional ecosystems. This study is of
great significance for the effective coordination of the drainage basin, nature, the economy, and society,
as well as for sustainable development. The findings can also provide a reference for research on the
NEP of mid- and high-latitudinal terrestrial ecosystems.

2. Overview of Study Area and Data Sources

2.1. Overview of Study Area

The Yellow River is the fifth longest river in the world. It has a total length of 5464 km and
an altitudinal difference of 4444 m. The area of the YRB is 79.5 × 104 km2, and it has a continental
climate with an annual mean precipitation of 534 mm and an annual mean temperature varying in
turn from northwest to southeast in the range of 2–4 ◦C. The diverse landform types within the basin
have facilitated the development of various vegetation types. Within the study area, agricultural
crops, grasslands and savannah bushes, shrubs and coppice forests, meadows and marshes, deserts,
broadleaf forests, coniferous forests, and non-vegetated areas account for 34.86%, 28.79%, 18.78%,
7.39%, 5.20%, 2.64%, 1.77%, 0.57% of the total land area, respectively (Figure 1).

Figure 1. Overview of the study area.

2.2. Data Sources

2.2.1. Remote Sensing Data of the Normalized Difference Vegetation Index (NDVI)

The United States National Aeronautics and Space Administration has developed highly accurate
Global Inventory Modeling and Mapping Studies (GIMMS) NDVI datasets [34]. In this study,
the GIMMS NDVI 3g V1.0 datasets for 1982–2015 were selected to ensure data continuity and
consistency. The spatial and temporal resolutions of the data are 8 km and 15 days, respectively.
The NDVI data for the entire study duration were merged month by month using the maximum value
composites method [35]. Abnormal data (non-vegetated areas) in the datasets were removed.
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2.2.2. Meteorological Data

All data on the monthly mean temperature (T), maximum monthly mean temperature (Tmax),
minimum monthly mean temperature (Tmin), precipitation (R), and sunshine duration were acquired
from the daily datasets of the country’s terrestrial climate data (V3.0) published on the China
Meteorological Data Network (http://data.cma.cn/). These datasets contain daily data recorded
by the 824 national reference and basic climatological stations. The highest temperature occurs around
2 p.m., and the lowest temperature occurs around 2 a.m., so the highest and lowest temperatures
can be used to indicate daytime and nighttime temperatures. Considering the lack of data from solar
radiation stations, the amounts of solar radiation were calculated using sunshine duration. Next,
standard and reasonable methods [36,37] were used to compile the various monthly data, followed by
spatial interpolation of the meteorological factors using ANUSPLIN [38,39].

2.2.3. Vegetation Data

This study utilized maps of China’s vegetation cover at a scale of 1:1 million published by the
Cold and Arid Regions Science Data Center, Chinese Academy of Sciences (CAS) [40]. Considering the
impact of accurate vegetation categorization on the research findings, the Reclass function of ArcGIS
10.1 was used to divide the YRB’s vegetation covers into seven main categories: (i) Broadleaf forests,
(ii) coniferous forests, (iii) meadows and marshes, (iv) shrubs and coppice forests, (v) agricultural
crops, (vi) grasslands and savannah bushes, and (vii) deserts.

3. Research Method and Models

3.1. The modified CASA Model for Calculating NPP

NPP is the basis for using the remote sensing method to study NEP. The starting point for the
CASA model is the vegetation’s physiological processes, which are combined with climatic conditions
of the vegetation growth regions to build an NPP estimation model [41]. However, this model is
based solely on the vegetation types found in North America. Given the large variations between
different regions in the world, the YRB’s NPP was estimated using an improved CASA model by
Zhu [42,43], which is more applicable to China’s climate and vegetation. Zhu’s model determines
NPP using two variables: the vegetation’s absorbed photosynthetic active radiation (APAR) and solar
energy utilization rate (ε).

NPP(x, t) = APAR(x, t)× ε(x, t) (1)

where x is the spatial position; t is time; NPP(x,t) denotes the NPP of pixel x at time t (gC·m−2·a−1);
APAR denotes the APAR of pixel x at time t (MJ·m−2·a−1); and ε(x,t) denotes the actual solar energy
utilization rate of pixel x at time t (gC·MJ−1).

The vegetation’s APAR is dependent on the total amount of solar radiation and the vegetation’s
ability to utilize solar radiation. The equations are as follows [44]:

APAR(x, t) = SOL(x, t)× 0.5× FPAR(x, t))

The FPAR and NDVI could be linearly correlated and their linearity is determined by the FPARmax

and FPARmin which are corresponded to the NDVImax and NDVImin [45–47].

FPAR(x, t)NDVI =
(NDVI(x, t)− NDVIi,min)× (FPARmax − FPARmin)

(NDVIi,max − NDVIi,min)
+ FPARmin (3)

There is also a strong linearity between FPAR and SR [48–50].

FPAR(x, t)SR =
(SR(x, t)− SRi,min)× (FPARmax − FPARmin)

(SRi,max − SRi,min)
+ FPARmin (4)

http://data.cma.cn/
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SR(x, t) =
1 + NDVI(x, t)
1− NDVI(x, t)

(5)

where SOL(x,t) denotes the total amount of solar radiation received by pixel x at time t (MJ·m−2·t−1);
FPAR(x,t) and FPAR(x,t) SR are the vegetation absorption rates of incident photosynthetically active
radiation derived from NDVI and SR, respectively. The constant 0.5 indicating the ratio of effective
solar radiation used by the vegetation to the total amount of solar radiation [43]; NDVIi,max and
NDVIi,min denote the maximum and minimum NDVI values of the ith type of vegetation, respectively;
SR(x,t) denotes the SR value of pixel x at time t; SRi,max and SRi,min denote the maximum and minimum
SR values of the ith type of vegetation; and FPARmax and FPARmin denote the maximum and minimum
values of the fraction of photosynthetically active radiation (FPAR) [51] which are 0.950 and 0.001,
respectively [52].

The FPAR values derived from NDVI are greater than ground truths, while the FPAR derived
from NDVI are smaller than ground truths with fewer differences. In order to minimize the “distance”
between FPAR and ground truth data, we used the average FPAR estimated from both NDVI and
SR [50].

FPAR(x, t) =
FPAR(x, t)NDVI + FPAR(x, t)SR

2
(6)

FPAR(x,t) is the vegetation absorption rate of incident photosynthetically active radiation.
The solar energy utilization rate (ε) is jointly affected by temperature and soil moisture and has a

direct impact on the fixed NPP amount. The calculation equations are as follows:

ε(x, t) = Tε1(x, t)× Tε2(x, t)×Wε(x, t)× ε∗ (7)

where Tε1(x,t) and Tε2(x,t) are the temperature stress coefficients; Wε(x,t) is the water stress coefficient;
and ε* is the vegetation’s maximum solar energy utilization rate under ideal conditions.

Tε1(x, t) = 0.8 + 0.02× Topt(x)− 0.0005× (Topt(x))2 (8)

where Topt(x) denotes the mean temperature of the month in which the maximum NDVI for a specific
region is reached within a year. The value of Tε1 is 0 if the mean temperature of a particular month is
≤10 ◦C.

Tε2(x, t) = 1.1814/
{

1 + e0.2×[Topt(x)−10−T(x,t)]
}
× 1/

{
1 + e0.3×[−Topt(x)−10+T(x,t)]

}
(9)

For a particular month, if its mean temperature T(x,t) is 10 ◦C higher or 13 ◦C lower than the
optimum temperature, the Tε2 value of that month is equal to 50% of the value when =.

Wε(x, t) = 0.5 + 0.5× EET(x, t)
PET(x, t)

(10)

where PET(x,t) denotes the potential evapotranspiration amount (mm) and EET(x,t) denotes the
estimated evapotranspiration amount (mm). Both PET and EET are treated as 0 when the monthly
mean temperature is ≤0 ◦C. In this situation, the Wε(x,t) of that month is equal to the value of the
previous month, meaning that Wε(x,t) = Wε(x,t-1).

3.2. Calculation of NEP

NEP can be understood as the difference in value between the NPP and the amount of CO2

emission through soil microbial respiration, without considering the impact of other natural and
anthropogenic factors. It can be calculated using the equation [53]:

NEP = NPP− RSM (11)
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where NEP and NPP are the vegetation’s net ecosystem productivity and net primary productivity,
respectively, and RSM is soil microbial respiration. When NEP > 0, the amount of CO2 being sequestered
by the vegetation is larger than that emitted by the soil. Positive and negative values denote carbon
sinks and sources, respectively.

Based on the findings of past studies [54], the equation for calculating the amount of soil microbial
respiration is as follows:

RSM = 0.22× (exp(0.0912T) + ln(0.3145R + 1)× 30× 46.5%) (12)

where T is the monthly mean temperature and R is the amount of precipitation.

3.3. Analysis of NEP Changes

Based on the estimation of NEP, the trend analysis model, a stability analysis model and Hurst
index model based on R/S analysis were used to study the time scale change, spatial stability analysis
and future change trend of vegetation carbon sink. The second-order partial correlation analysis of
the pixel by pixel is used to analyze the response of vegetation carbon sink under the asymmetry of
daytime and nighttime.

3.3.1. Model for Slope Analysis

Univariate linear regression analysis reflects the linear relationship between a dependent variable
and an independent variable. [55] This method can eliminate the impact of abnormal factors during
slope analysis of NEP, thereby, ensuring that the evolutionary trend of NEP over a long time series is
accurately reflected. Its calculation equation is as follows:

Slope =
n×

n
∑

i=1
(i× NEPi)−

n
∑

i=1
×

n
∑

i=1
NEPi

n×
n
∑

i=1
i2 − (

n
∑

i=1
i)2

(13)

where Slope is the slope of the linear fitting equation, NEPi is the NEP value of the ith year obtained
using the maximum value composites method, and n is the duration of the study period.

3.3.2. Model for Stability Analysis (CV)

The coefficient of variation reflects the degree of dispersion among the random variables in terms
of the unit mean value. It was selected to measure and evaluate the stability of the NEP time series [56].
Its equation is:

CV =
σ

x
(14)

where CV represents the coefficient of variation, x is the mean value, and σ is the standard deviation.
A largevalue indicates that the data are more dispersed, and highly volatile and unstable over time.
In the opposite scenario, data distribution is concentrated, and data stability is good.

3.3.3. Hurst Exponent Model Based on R/S Analysis

Time series with long-term dependencies are ubiquitous in nature. The Hurst exponent can
quantitatively describe the long-term dependence of NEP in a time series (Table 1) [57]. The basic
principle is as follows: for times t1, t2, . . . , tn, the corresponding response time series is assumed to be
µ1, µ2, . . . , µn; for any positive integer τ ≥ 1, the average of the time series is:

< µ >τ=
1
τ

τ

∑
t=1

µ(t)τ = 1, 2, · · · , n (15)
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The cumulative deviation with X(t) is expressed as:

X(t, τ) =
τ

∑
t=1

(µ(t)− < µ >τ)1 ≤ t ≤ τ (16)

For every τ, the difference between the corresponding maximum X(t) and minimum X(t) is
termed the range, which is denoted as:

R(τ) = maxX(t, τ)−minX(t, τ)τ = 1, 2, · · · , n (17)

The standard deviation used by Hurst is:

S(τ) =

[
1
τ

τ

∑
t=1

(µ(t)− < µ >τ)
2

]1/2

τ = 1, 2, · · · , n (18)

Table 1. Grading based on the Hurst exponent.

Grade Range of Hurst
Exponent

Strength of
Sustainability Grade Range of Hurst

Exponent
Strength of

Unsustainability

1 0.50 < H ≤ 0.55 Very weak −1 0.45 < H ≤ 0.50 Very weak
2 0.55 < H ≤ 0.65 Quite weak −2 0.35 < H ≤ 0.45 Quite weak
3 0.65 < H ≤ 0.75 Quite strong −3 0.25 < H ≤ 0.35 Quite strong
4 0.75 < H ≤ 0.80 Strong −4 0.20 < H ≤ 0.25 Strong
5 0.80 < H ≤ 1.00 Very strong −5 0.00 < H ≤ 0.20 Very strong

Note: Two decimals are reserved for the Hurst exponent and the intensity of net ecosystem productivity (NEP) time
dependence is also classified. When Hurst exponent is equal to 0.50, it indicates weak strength of unsustainability.

3.4. Partial Correlation Analysis between the Nep and Climatic Factors

Since the NEP is jointly affected by multiple meteorological factors, the coefficient obtained
using traditional correlation analysis is unable to simply explain the impact of a meteorological
factor. In other words, the singular impact of a factor cannot be distinguished when the factors are
mutually related. As such, second-order partial correlation analysis was used in this study. Specifically,
the impact of two meteorological factors on the NEP was controlled to analyze the response of the
NEP to variations in a third meteorological factor. In so doing, the strength of the correlation can be
determined while being free of interference. The second-order partial correlation is calculated using
the first-order partial correlation coefficient. In order to obtain the latter, it is necessary to first calculate
the correlation coefficient using the equation [58]:

rxy =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2
(19)

The equation for calculating the first-order partial correlation coefficient is:

rxy·1 =
rxy − rx·1ry·1√

1− r2
x·1

√
1− r2

y·1

(20)

The equation for calculating the second-order partial correlation coefficient is:

rxy·12 =
rxy·1 − rx2·1ry2·1√
1− r2

x2·1

√
1− r2

y2·1

(21)



Sustainability 2018, 10, 3646 8 of 20

where xi, yi are the elements for partial correlation calculation;x, y are the mean values of elements
x, y, respectively; 1, 2 are the control variables; rxy., rxy·1, and rxy·12 are the correlation coefficient,
first-order partial correlation coefficient, and second-order partial correlation coefficient of elements x,
y, respectively; rx·1 and ry·1 are the correlation coefficients of x,1 and y,1, respectively; and rx2·1 and
ry2·1 are the first-order partial correlation coefficient of x,2 and y,2, respectively.

The t-test is generally used to determine the significance of the partial correlation coefficients.
The statistical equation for this test is: [59]

t =
√

n− q− 1√
1− r2

(22)

where r is the partial correlation coefficient, n is the number of samples, and q is the number of degrees
of freedom.

4. Results and Discussion

4.1. Comparative Analysis of the YRB’s Diurnal Asymmetric Warming and NPP

For the YRB, both its daytime warming (Tmax) and nighttime warming (Tmin) exhibited upward
trends from 1982 to 2015 (Figure 2). Based on the fitting model, the Tmin and Tmax in Yellow River basin
increased 0.0674 ◦C and 0.0449 ◦C respectively every 10 years. A significant and positive correlation
existed between Tmax and Tmin, with the correlation coefficient being 0.55 (P < 0.1). It indicates that
the temperature increased faster in nighttime than in daytime in the Yellow River basin. Diurnal
asymmetric warming was obvious. In addition, the upward trend of Tmin was significantly higher than
that of Tmax, with the rate of increase of the former being 1.50 times that of the latter (1.4 and 1.5 times
according to Solomon [60] and Zhao [32], respectively). In the context of unbalanced temperature
changes between daytime and nighttime, we investigated the influences of terrestrial vegetation in the
carbon sink dynamic. On this basis, we will carry out research on the changes of vegetation carbon
sink function under the asymmetry of day and night warming in the Yellow River Basin.

Figure 2. Diurnal warming situation of the Yellow River Basin (YRB) from 1982 to 2015.

A comparison was made between the NPP estimated by this study and past studies to illustrate
the accuracy of the former. Specifically, comparisons were made between this study’s NPP estimates
(Figure 3) and those of the Resources and Environmental Science Data Center (RESDC), and the
research findings of Chen et al. [61] for the same study area (Figures 4 and 5, respectively).



Sustainability 2018, 10, 3646 9 of 20

The spatial distributions of the YRB’s NPP was consistent for the three studies. The maximum
difference in the estimates between Figures 3 and 4 did not exceed 60 g C·m−2·a−1, with the NPP
changes from 2000 to 2010 being consistent. This study’s NPP estimates were also significantly higher
when Figures 3 and 5 were compared. Overall, the interpolation method used in this study was more
accurate and had wider solar radiation coverage, making it more plausible.

Figure 3. Spatial distribution of the net primary productivity (NPP) from 2000 to 2010, as estimated by
this study.

Figure 4. Spatial distribution of NPP from 2000 to 2010, as estimated by the Resources and
Environmental Science Data Center (RESDC).

Figure 5. Changes in the YRB’s NPP from 2001 to 2010 and analysis of NPP changes driven by
meteorological factors (from [61]).

Since the time series of NPP estimation data of the Resource and Environmental Science Data
Center is 2000–2010, the NPP estimation results of the same period were intercepted and compared.
As can be seen from Figure 6, the results of this study are higher than the NPP estimates of the
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Resource and Science Data Center. The average values of 2000–2010 are 231.10 g C·m−2·a−1 and
195.32 g C·m−2·a−1, respectively, with a difference of 35.78 g C·m−2·a−1. The NPP of the Resource and
Environmental Sciences Data Center was estimated by GLM_PEM model, while the CASA model was
used in this study. Considering the limiting effect of temperature and water on the potential utilization
of light energy, it is considered that the limiting effect of temperature and water follows the minimum
factor rule of ecology, that is, the ultimate environmental limitation depends on the environmental
factors with the strongest stress. Therefore, the estimation result is more accurate, and is more widely
used in the global NPP estimation [62].

Figure 6. Comparison between the NPP estimation data of the Resource and Environmental Science
Data Center and the results in this study.

Heterogeneity in the distribution of the YRB’s vegetation causes great spatiotemporal changes
in the resultant carbon sequestration capacities. With the aforementioned NPP estimates as the base,
changes in the YRB’s NEP over time were calculated according to Equations (11) and (12). The results
are shown in Figure 7. From 1982 to 2015, fluctuations in the YRB’s carbon sequestration capacities
exhibited an overall upward trend. The annual minimum and maximum mean carbon sequestration
amounts were recorded in 1982 and 2012, at 78.24 and 155.33 g C·m−2·a−1, respectively.

Figure 7. Changes in the Yellow River Basin’s NEP from 1982 to 2015.
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There were differences in carbon sequestration amounts by the YRB’s different vegetation types
(Figure 8). The types and amounts, arranged in descending order, are as follows: (i) broadleaf
forest (210.28 gC·m−2·a−1), (ii) coniferous forest (208.75 gC·m−2·a−1), (iii) meadow and marsh
(155.43 gC·m−2·a−1), (iv) shrub and coppice forest (126.99 gC·m−2·a−1), (v) agricultural crop
(113.25 gC·m−2·a−1), (vi) grassland and savannah bush (100.76 gC·m−2·a−1), and (vii) deserts
(12.27 gC·m−2·a−1). The strong carbon sink function of broadleaf forest is also suggested by existing
literature [63]. In addition, the amount of carbon sink of forest is much higher than agricultural crops
and grassland [64,65].

Figure 8. Changes in the Yellow River Basin (YRB)’s NEP by vegetation type from 1982 to 2015.

The NEP is an important indicator of carbon sequestration by a region’s vegetation. The spatial
distribution of NEP from the YRB vegetation cover from 1982 to 2015 was calculated according to
Equations (10) and (11) and is shown in Figure 9. This NEP of Inner Mongolia grassland is validated
with 1000 soil heterotrophic respiration samples [66]. The convincing validation results support
the NEP accuracy. In addition, the comparison between different NEP models verified the spatial
uniformity of NEP in the study area [67]. The values were higher in the western and southeastern
regions. The former is predominantly mountainous with high altitudes and the main vegetation
types (forests and grasslands) have good carbon sequestration capacities; the latter has an extensive
distribution of cultivated land and a relatively large area of forested land, endowing it with relatively
good carbon sequestration capacities. The northern region of the study area has lower NEP values
mainly because the natural environmental conditions are relatively poor; with the predominance
of deserts and plateaus, the degree of vegetation cover is relatively low. Consequently, its carbon
sequestration capacity is also significantly lower than that of the other regions.

Figure 9. Spatial distribution of the Yellow River Basin (YRB)’s annual mean NEP from 1982 to 2015.
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Based on a univariate linear regression analysis and the maximum composite data for the YRB’s
annual NPP from 1982 to 2015, the ArcGIS 10.1 software was used to visualize spatial changes in the
annual mean NEP within the study area (Figure 10). There was a general trend of slow increases over
the study period; areas with increases and decreases accounted for 60.21% and 31.49% of the total area,
respectively. The former was mainly distributed in the YRB’s southeastern region, while the latter was
mainly located in the upper reaches of the Yellow River. There were relatively few areas where the
NEP remained unchanged. These included the high-altitude mountainous areas and areas with low
vegetation coverage, accounting for only 8.30% of the total area.

Figure 10. Linear trends in the Yellow River Basin (YRB)’s NEP from 1982 to 2015.

The coefficient of variation for the annual mean NEP was calculated according to Equation (13)
and is shown in Figure 11. The overall spatial distribution pattern showed high values in the northern
region and low values in the southern region. Low fluctuations were predominant while high
fluctuations mainly occurred in the YRB’s northern region, where the vegetation coverage varied
greatly over the study period, the impacts of anthropogenic activities were clearer, and the overall
stability of the vegetation’s carbon sequestration capacity was poor. Nevertheless, the coefficient of
variation for the majority of the study area was 3% or less, indicating that the NEPs were relatively
stable as a whole.

Following the ‘pattern–process’ analysis described above, the Hurst exponent was introduced to
further explore potential future trends in the YRB’s NEP (Figure 12). The mean Hurst exponent for the
YRB’s NEP was 0.52, with a range of 0.35–0.69. The Hurst exponent for 59.49% of the total area was
greater than 0.5, while that for the balance 40.51% was smaller than 0.5. These indicate that for the
YRB’s NEP, changes in the same direction were more dominant than those in the opposite direction.

Figure 11. Degree of stability in changes of the Yellow River Basin (YRB)’s NEP from 1982 to 2015.
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Figure 12. Future trends in changes to the Yellow River Basin (YRB)’s NEP based on data from 1982
to 2015.

The results for the trend in NEP changes were superimposed onto those from the Hurst exponent
for analysis, from which the coupling characteristics of the trend and continuity in the YRB’s NEP
changes were obtained (Figure 13). This study divided the coupling characteristics into 14 situations.
Among these, the proportions of the YRB’s total land area being under four situations are as follows
(in descending order): (i) weak but increasing sustainability (21.89%), (ii) weak but increasing
unsustainability (15.75%), (iii) very weak but increasing sustainability (15.58%), and (iv) quite strong
and increasing sustainability (11.74%). This result indicates that there was no significant change in the
distribution of the YRB’s NEP from 1982 to 2015 and that sustainability was relatively poor.

Figure 13. Spatial distribution of changing characteristics of the Yellow River Basin (YRB)’s NEP from
1982 to 2015.

It should be noted that areas with the same and weak sustainability accounted for 8.30% of
the YRB’s total area. These are mainly distributed in the YRB’s western region, representing the
basin’s headwater area, where vegetation cover is fragile. Given the poor sustainability of these areas,
action should be taken to prevent the degradation of vegetation covers. Governance of ecological
environments must also be strengthened.
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4.2. Response of the YRB’s NEP to Diurnal Asymmetric Warming

Most of the regions in the YRB have an arid or semi-arid climate, with precipitation being one
of the main factors limiting vegetation growth. Hence, precipitation was used as the control variable
during second-order partial correlation analysis to calculate the correlations of Tmax and Tmin with
NEP. The partial correlation coefficient of Tmax and Tmin with NEP of different vegetation types was
shown in Table 2.

Table 2. Partial correlation coefficient of Tmax and Tmin with NEP.

Vegetation Types Tmax Tmin

Broadleaf forests 0.457 ** –0.261
Coniferous forests 0.072 0.014

Meadows and marshes –0.005 0.011
Shrubs and coppice forests 0.381 * 0.266

Agricultural crops 0.383 * 0.163
Grasslands and savannah Bushes 0.195 * 0.097

Deserts 0.323 0.101

Note: * was passed p < 0.05 statistically significant test; ** was passed p < 0.01 statistically significant test.

The correlations of Tmax and Tmin with NEP are not significant. On one hand, except grassland
and meadow and marsh, the Tmax is positively correlated with NEP of other vegetation covers with
minimal significance. On the other hand, except broadleaf forest, Tmin has slight positive correlation
NEP of with other vegetation covers. The different responses of different vegetation to diurnal
temperature increase lie in physiological variations of vegetation. The increase of Tmin may increase
vegetation productivity by reducing the frequency of frost occurrence [68]. This may lead to a
positive partial correlation between NEP and Tmin in some vegetation. Previous studies have shown
that water use efficiency at different levels in typical grasslands of northern China has a specific
response to daytime and night warming. Warming during the day reduced the water use efficiency
of the ecosystem by 5.66% [69]. Therefore, the increasing of Tmax modifies the way that water is
utilized in meadows and herbaceous swamp vegetation, further restraining the growth of vegetation.
The increase of Tmin exacerbates autotrophic breath of meadow and marsh and steppe at night. As a
result, the compensation would improve their productivity. The partial correlation between Tmin and
various vegetation types in the study area did not pass the significance test, indicating that the response
of NEP to diurnal and night warming of different vegetation types was not significant. The partial
correlation between Tmin and NEP is not significant, which is consistent with previous research
results [70–72]. Except for meadow and herbaceous swamp, Tmax shows positive correlations with
NEP of other vegetation. Meanwhile, except for broad-leaved forest, Tmin shows positive correlations
with NEP of other vegetation. The difference of the response of different vegetation types to the
diurnal warming is mainly due to the difference of the physiological structure and the environmental
response strategy of different vegetation. The increasing of Tmin increases the spontaneous respiration
in the broadleaf forest at night, further accelerating the consumption of photosynthate. This process
would have negative impacts on the growth and development of broad-leaved forest. Moreover,
the negative correlation between the meadow and the herb marsh on the Tmax is due to the difference
in the utilization strategy of the vegetation type to water resources. The increasing of Tmin gives rise
to the nighttime autotrophic respiration of meadow and steppe, and the consequent compensation
would increase their productivity [73]. Crops have a more positive response to daytime warming,
daytime warming is conducive to increasing photosynthetic intensity of crops, thereby increasing the
accumulation of organic matter; while night warming plays a role in promoting crops, but the positive
correlation is not significant, which is consistent with previous research results [32].

The difference between the vegetation physiological process and different resource utilization
strategies is one of the main reasons for the different response of vegetation to day and night warming.
However, the different natural environments of vegetation growth is another important reason for the
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different response of vegetation to day and night warming. The calculation of the second-order partial
correlation coefficient between the grid-by-grid NEP and day–night warming is helpful to express
the spatial distribution of vegetation and day-night warming more intuitively, so as to formulate
reasonable protection policies for different regions. The spatial distribution of partial correlation
coefficients between maximum and minimum temperatures and NEP is shown in Figures 14 and 15.

Figure 14. Partial correlation coefficients between the Yellow River Basin (YRB)’s NEP and Tmin from
1982 to 2015.

Figure 15. Partial correlation coefficients between the Yellow River Basin (YRB)’s net NEP and Tmax

from 1982 to 2015.

It can be seen from Figure 13 that significant spatial differences exist in terms of the impacts of
diurnal warming on the YRB’s vegetation carbon sequestration capacity, with both showing opposite
spatial distribution trends. Under constant precipitation and Tmax, approximately 48.37% and 51.63%
of the regions in the YRB had positive and negative correlations between NEP and Tmin, respectively.
However, when precipitation and Tmin remained unchanged (Figure 15), approximately 67.51% and
32.49% of the regions had positive and negative correlations between NEP and Tmax, respectively.
The proportion of regions in the YRB’s total area that passed the significance test was calculated.
The results show that areas with a partial correlation between NEP and Tmin that had passed the
significance test exceeded those with a partial correlation between NEP and Tmax by 3.89%. This
finding confirms that nighttime temperature changes in the YRB have had more extensive impacts on
vegetation cover.
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5. Conclusions

Protection of the vegetation cover in China’s YRB is an issue of global concern. The YRB’s
NPP from 1982 to 2015 was estimated using a combination of multiple models. The soil microbial
respiration model was also used to determine the study area’s NEP and its spatiotemporal distributions.
The study’s findings are as follows:

1. The YRB experienced obvious diurnal asymmetric warming from 1982 to 2015, with the rate
of increase for Tmin being 1.50 times that of Tmax. The total NPP showed an overall linear
upward trend with large inter-annual fluctuations. In terms of spatial distribution, the YRB’s
NPP exhibited a pattern of high spatial differentiation, with low values in the northern region
and high values in western and southeastern regions.

2. Temporal variations of the YRB’s NEP were characterized by upward fluctuations. There
were substantial variations in NEP between the various vegetation types in the following
order: broadleaf forests > coniferous forests and meadows and marshes > shrubs and coppice
forests > agricultural crops > grasslands and savannah bushes > deserts. For temporal fluctuations
of NEP arising from different vegetation types, the characteristics were similar. Spatially,
NEP values were highest in western and southeastern regions of the YRB, and lowest in the
northern region. Overall, the NEP within the basin were relatively stable.

3. There were significant spatial differences in terms of the impacts of diurnal warming on the
YRB’s vegetation carbon sequestration capacity, which were enhanced by daytime warming but
significantly inhibited by nighttime warming. The numbers of areas with nighttime warming
that passed significance testing were slightly higher than those with daytime warming.

During the study period, NEP changes in the same direction were significantly stronger than
that in the opposite direction. Although there was no significant change in the distribution of NEP,
sustainability was generally poor. Therefore, future developments of the YRB should focus on the
recovery of vegetation cover and governance of the ecological environments in the headwater area.

NEP is jointly affected by the natural environment and anthropogenic activities; however,
in this study, only the impacts of temperature and precipitation on the YRB’s NEP were
discussed. Anthropogenic factors, such as a region’s economic development, were not considered.
In future studies, a comprehensive analysis should be made by incorporating correlations between
anthropogenic activities and the NEP. In addition, there is a time lag when it comes to the impact of
meteorological factors on vegetation growth, which differs depending on the region and meteorological
factor involved.

Using a mathematical model to simplify the complex ecosystem process is conducive to a more
intuitive understanding of the simple ecosystem operation process, and easy to adjust the future
development of the ecosystem. However, the measured data can more truly reflect the changes of an
ecosystem to a certain extent, so combining the measured data with the mathematical model can more
scientifically and accurately reflect the actual situation of NEP in the Yellow River Basin. In order to
study, we will focus on the acquisition of measured data, and based on the measured data to establish
the ecosystem carbon cycle function evaluation index suitable for the actual situation of the study area,
and focus on the heterogeneity of NEP between different regions.

Thus, future studies must also examine the time-lag effect of meteorological factors on NEP.
The findings of this study can serve as a reference for the protection of vegetation covers in drainage
basins, as well as for regions in Asia, South America, and Northern Europe with developmental
experiences that are similar to that of the study area.
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