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Abstract: This paper considers a recently developed consumption-based carbon emissions database
from which emissions calculations are made based on the domestic use of fossil fuels plus the
embodied emissions from imports minus exports, to test directly for the importance of trade in
national emissions. The People’s Republic of China (PRC) alone is responsible for over half the global
outflows of carbon via trade. The econometric estimations—which focused on a panel of 20 Asian
countries—determined that: (i) trade flows were significant for consumption-based emissions but
not for territory-based emissions; and (ii) exports and imports offset each other in that exports lower
consumption-based emissions, whereas imports increase them. Hence, all countries should have
both an interest and a responsibility to help lower the carbon intensity of energy in countries that are
particularly important for global carbon transfers—the PRC and India.

Keywords: consumption-based emissions; international trade; trade and environment; common
factor panel models; net global carbon flows; Asia

1. Introduction

Recently, a consumption-based carbon emissions database has been developed [1] from which
emissions calculations are made based on the domestic use of fossil fuels plus the embodied emissions
from imports minus exports. There has long been a concern that countries—particularly wealthy
ones—might lower emissions via international trade in such a way that those emissions reductions
are (at least) offset by increases elsewhere—i.e., in the territory(ies) where the traded goods/services
originate (e.g., [2]). Yet, despite that concern and the availability of data that allows researchers to
test directly for the importance of trade in national emissions, most economic-based inquiries into
the trade-emissions relationship still employ conventionally-measured territory-based carbon data
(e.g., [3]).

This paper compares and analyzes both consumption-based and territory-based carbon emissions
data to estimate relationships among emissions, trade flows, income, energy structure, and economic
structure/energy intensity. We focus on 20 Asian countries/economies for which data could be
assembled (Those countries/economies (and their World Bank code) are: Bangladesh (BGD); Cambodia
(KHM); the People’s Republic of China (CHN/PRC); Hong Kong, China (HKG); India (IND); Indonesia
(IDN); Japan (JPN); Kazakhstan (KAZ); Kyrgyz Republic (KGZ); Malaysia (MYS); Mongolia (MNG);
Nepal (NPL); Pakistan (PAK); Philippines (PHL); Singapore (SGP); Republic of Korea (KOR); Sri Lanka
(LKA); Taipei, China (TWN); Thailand (THA); and Viet Nam (VNM)). Not only does this group include
many of the world’s most rapidly growing economies, these 20 countries/economies account for over
half of the world’s population and nearly half (45%) of all territory-based carbon emissions.

Whether the global trade system would facilitate the re-location of pollution-intensive industries
to countries with less concern for environmental quality has been a popular topic in environmental
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economics. The literature has developed in two somewhat distinct strands: Mostly theoretical models
and mostly empirical analyses. The theoretical literature has tended to support a finding of the
migration of polluting industries (either through trade or capital flight) from a country that has
introduced a pollution policy (e.g., References [4–6]). By contrast, the empirical literature produced
more ambiguous results. For example, References [7–10] rejected the so-called “pollution haven”
hypothesis, by finding that factor endowments were more important than pollution tolerance in
determining trade patterns and plant location decisions. Meanwhile, References [11–15] determined
that openness to trade in developing countries led to specialization or an increase in pollution-intensive
production there. The recent literature review in Reference [3] suggests that the ambiguity among the
empirical studies remains. Yet, as mentioned above, the recent development of a consumption-based
carbon emissions dataset creates the potential to substantially advance the trade-emissions literature.

Some studies that have employed both consumption-based data and regression analysis
have not, however, considered trade variables as drivers of those consumption-based emissions
(e.g., References [16,17]). Again, the recent trade-focused, environmental economics literature has
maintained the use of the territory-based emissions data only (e.g., References [3,18]).

The only papers we know of that have (i) compared estimations made with consumption-based
emissions to estimations made with territorial-based emissions and (ii) considered trade variables
are References [19–23]. Knight and Schor [19] analyzed high income countries only and did so
by considering a short-run model (i.e., the data were first-differenced after converting to natural
logarithms), and Reference [20] was purely cross-sectional (only data from 2008 was used) and
did not consider imports (only exports/GDP was analyzed). Fernandez-Amador et al. [21] used
a panel-based dataset (observations from five intermittent years), and they did not estimate separate
effects for imports and exports (rather, they considered trade openness only). Hasanov et al. [23]
focused on nine oil exporting counties. Liddle [22] employed the same methods as used here
and analyzed a global dataset. The present paper is different from Reference [22]—and the other
four papers mentioned above—in that it (i) focuses on Asian countries and (ii) considers a more
structurally-based model. What is important is that all five of the published papers—as well as the
present one—found an insignificant (to mostly insignificant for the case of Reference [23]) impact of
trade on territorial-based carbon emissions; and the three papers (References [19,22,23])—as well as
the present one—that considered imports and exports separately found significant, offsetting impacts
on consumption-based emissions.

2. Data, Model, and Methods

2.1. Initial Look at Carbon Emissions and Trade both Globally and in Asia

Consumption-based carbon emissions in million tonnes of carbon per year cover 117 countries
over 1990–2013 and are updated from [1] (That data is accessed via: http://www.globalcarbonproject.
org/carbonbudget/16/data.htm). Consumption-based carbon emissions data can be compared to
territory-based carbon emissions (also in million tonnes of carbon per year and for the same countries
and time-frame) from [24,25], and a new series can be created: the ratio of consumption-based to
territory-based emissions.

If the consumption-to-territory emissions ratio is greater than one, then a country effectively
imports carbon emissions. Of the 117 countries in the global dataset, only 28 countries had a mean
ratio (over 1990–2013) of less than one [22]. The average country mean ratio was 1.26, and the
mean ratio for each year ranged from 1.2–1.4 [22]. For most countries, the annual ratio was stable:
Most countries’ maximum and minimum yearly ratio was within 20–30% of their mean ratio [22].
For the 20 countries/economies considered here, only six had ratios of less than one (see Figure 1).
As such, the vast majority of those countries consume more carbon emissions than they produce/emit
at home, and the “average” country consumes about one-quarter more carbon emissions than it
produces/directly emits.

http://www.globalcarbonproject.org/carbonbudget/16/data.htm
http://www.globalcarbonproject.org/carbonbudget/16/data.htm
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capita data from World Bank World Development Indicators. Equation and corresponding R-squared 
for a polynomial trend line, as well as the World Bank three-letter code for each data point, are shown. 
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The consumption-based and territory-based emissions series can be used to create another new 
variable, viz., the difference between territory-based and consumption-based emissions, or the net 
emissions flow; when that net emissions flow is calculated for each country, the importance to world 
carbon emissions flows of admitting the People’s Republic of China (PRC) into the World Trade 
Organization (WTO) (the PRC became a member of the WTO on 11 December 2001) becomes evident. 

Indeed, since 2005, the PRC has been responsible for over half of global net carbon emissions 
transfers [22]. Further, the PRC and three other countries—Russia, India, and Kazakhstan—have been 
responsible for 50–80% of yearly net carbon outflows over 1990–2013, as displayed in Figure 2. The 
importance of the PRC and India (which surpassed Russia as the second largest source of net 
emissions flows) for global carbon transfers reflects a combination of (i) the scale of their economies 
and (ii) the carbon intensity of their energy systems, rather than trade or industry share of GDP. For 
example, over 2002–2013, exports made up less than 30% of the PRC’s GDP on average, and industry 
made up a relatively small share of GDP in India (about one-quarter). Moreover, according to data 
from [1], of the top 10 economic sectors in terms of average yearly carbon flows over 1990–2008 for 
PRC, only four sectors are classified as energy-intensive, and those four sectors account for less than 
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Figure 1. The yearly average (over 1990–2013) ratio of consumption-based carbon emissions to
territory-based carbon emissions is plotted against the yearly average GDP per capita (in natural
log form) for 20 Asian countries/economies. Emissions data are updated from Reference [1]. GDP per
capita data from World Bank World Development Indicators. Equation and corresponding R-squared
for a polynomial trend line, as well as the World Bank three-letter code for each data point, are shown.

Figure 1 displays the mean consumption-to-territory emissions ratio plotted against the mean
GDP per capita (in log form). The relationship displays a U-shape: Some of the poorest countries
(Bangladesh, Cambodia, Kyrgyz Republic, and Nepal) and the wealthy cities (Hong Kong, China;
and Singapore) have among the largest ratios; whereas, the countries with ratios near one tend to
be middle-income.

The consumption-based and territory-based emissions series can be used to create another new
variable, viz., the difference between territory-based and consumption-based emissions, or the net
emissions flow; when that net emissions flow is calculated for each country, the importance to world
carbon emissions flows of admitting the People’s Republic of China (PRC) into the World Trade
Organization (WTO) (the PRC became a member of the WTO on 11 December 2001) becomes evident.

Indeed, since 2005, the PRC has been responsible for over half of global net carbon emissions
transfers [22]. Further, the PRC and three other countries—Russia, India, and Kazakhstan— have been
responsible for 50–80% of yearly net carbon outflows over 1990–2013, as displayed in Figure 2.
The importance of the PRC and India (which surpassed Russia as the second largest source of net
emissions flows) for global carbon transfers reflects a combination of (i) the scale of their economies
and (ii) the carbon intensity of their energy systems, rather than trade or industry share of GDP.
For example, over 2002–2013, exports made up less than 30% of the PRC’s GDP on average, and
industry made up a relatively small share of GDP in India (about one-quarter). Moreover, according to
data from [1], of the top 10 economic sectors in terms of average yearly carbon flows over 1990–2008
for PRC, only four sectors are classified as energy-intensive, and those four sectors account for less
than 40% of the PRC’s average yearly net carbon flows.
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Energy systems in Asia tend to be carbon intensive. Indeed, of the 20 countries/economies
considered here, fossil fuels average over 80% of energy consumption for eight of them, and for only
three (Cambodia, Nepal, and Sri Lanka) do fossil fuels account for less than half of energy consumed.
Manufacturing dominates exports in the region and accounts for less than 60% of exports for only
four countries (Indonesia, Kazakhstan, Kyrgyz Republic, and Mongolia). Also, the region tends to
specialize in exporting that manufacturing to high-income countries. Of the 15 countries considered
here that are not high-income themselves, merchandise exports to high-income countries account for
less than 55% of all merchandise exports for only Mongolia and Nepal (a majority of whose exports
stay in South Asia).
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Figure 2. The share of net global carbon emissions flows for four countries. Data are updated from [1].

2.2. Model

We start with a Kaya-type identity [26], but divide by population; hence territory-based carbon
emissions per capita (CO2

T/N) would be:

COT
2 /N ≡ GDP

N
× E

GDP
× CO2

E
(1)

In other words, CO2
T/N equals the product sum of GDP per capita, energy intensity of GDP, and

the carbon intensity of energy. Next, we approximate the carbon intensity of energy with the share
of energy from fossil fuels (for which data are easier to assemble), shEff, and assume that from now
on the nomenclature CO2 refers to per capita emissions. Also, to avoid regressing an identity and
following [27], we replace the energy intensity of GDP with industry energy intensity, IndGDP

intsty, and
take logs; thus, we have:

lnCOT
2 = ln(GDP/N) + ln

(
IndGDP

intsty

)
+ ln

(
shE f f

)
(2)
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Consumption-based emissions are territory-based emissions plus the emissions embodied in
imports (COI

2) minus the emissions embodied in exports (COX
2):

COc
2 ≡ COT

2 + COI
2 − COX

2 = COT
2

(
1 +

COI
2

COT
2
−

COX
2

COT
2

)
(3)

where
COI

2
COT

2
=

Import
GDP

×
COI

2
Import

× GDP
COT

2
(4)

In other words, the left-hand-side of Equation (4) equals the import share of GDP times the carbon
intensity of imports (COI

intsty) divided by the carbon intensity of GDP (COGDP
intsty). Since the same is true

for COX
2

COT
2

, Equation (3) becomes:

COc
2 = COT

2

(
1 +

Import
GDP

×
COI

intsty

COGDP
intsty

− export
GDP

×
COX

intsty

COGDP
intsty

)
(5)

Since none of the Asian countries have previously priced or currently price carbon, we assume
that the ratio of the carbon intensity of exports to the carbon intensity of GDP is unity (i.e., carbon
is not a motivation for trade). Similarly, for the same reason (i.e., carbon is not a motivation for any
country to export) and for lack of data availability, we assume that the ratio of the carbon intensity
of imports to the carbon intensity of GDP is unity, too. Further, when we take logs and substitute for
territory-based emissions, we get:

lnCOc
2 = ln(GDP/N) + ln

(
IndGDP

intsty

)
+ ln

(
shE f f

)
+ ln

(
1 +

Import
GDP

− export
GDP

)
(6)

2.3. Additional Data Considered

Other variables, besides carbon emissions, that are included and sourced from the World Bank’s
World Development Indicators are: Real GDP per capita (adjusted for PPP and in 2011 international
USD); population (to convert emissions to per capita); fossil fuel energy consumption as a share of
total energy consumption; industry value added as a share of GDP (to derive industry output); and
exports of goods and services and imports of goods and services, both as a percent of GDP (For Taipei,
China, the data comes from the International Energy Agency and, for exports and imports, from its
national statistical bureau, eng.stat.gov.tw (accessed on 22 May 2017)). Additionally, industry energy
consumption—used to calculate industry energy intensity—is sourced from the International Energy
Agency. Ultimately, a highly balanced panel of 20 cross-sections and spanning 1990–2013 is created.
Summary statistics are displayed in Table 1.

Table 1. Summary statistics. 20 countries, 1990–2013.

Variables Observations Mean Std. Dev. Min Max

GDP pc 477 $13,001 14,869 $1011 $77,721
Log territory-based CO2 pc 480 0.63 1.46 −3.39 2.95

Log consumption-based CO2 pc 480 0.85 1.43 −2.81 3.61
Exports share 472 52.1% 49.0 5.9% 230%
Imports share 472 54.3% 44.2 6.9% 227%

Total fossil fuel share 471 69.0% 24.2 5.1% 99.4%
Industry energy intensity 465 889.5 2837.3 2.0 24,708.1

For the macro-level variables we consider, cross-sectional correlation/dependence is expected
because of, for example, regional and macroeconomic linkages that manifest themselves through
(i) common global shocks; (ii) institutional memberships like Asia Pacific Economic Cooperation
(APEC), Association of South-East Asian Nations (ASEAN), and WTO; or (iii) local spillover effects
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between countries or regions. The variables analyzed are also highly trending, stock-based variables,
and thus, may be nonstationary—in other words, their mean, variance, and/or covariance with other
variables changes over time. Hence, we expect the data to exhibit both cross-sectional correlation
and nonstationarity.

The Pesaran [28] cross-sectional dependence (CD) test (This test is implemented via the STATA
command xtcd, which was developed by Markus Eberhardt), which employs the correlation coefficients
between the time-series for each panel member, rejected the null hypothesis of cross-sectional
independence for each variable considered. Furthermore, the absolute value mean correlation
coefficients ranged from 0.4–0.9 (Table 2). The Pesaran [29] panel unit root test for heterogeneous panels
allows for cross-sectional dependence to be caused by a single (unobserved) common factor (This test is
implemented via the STATA command pescadf, which was developed by Piotr Lewandowski). Lags of
the dependent variable are used to control for serial correlation. The test models include individual
constants and time trends. The results of that test—shown in Table 3—suggest that (at least most of)
the variables are nonstationary in levels.

Table 2. Cross-sectional dependence: Averaged absolute value correlation coefficients and Pesaran [28]
CD test. 20 countries, 1990–2013, mostly balanced.

Variables CD-Test Abs Corr. Coeff.

GDP pc 60.9 * 0.91
Log territory-based CO2 pc 23.7 * 0.62

Log consumption-based CO2 pc 24.4 * 0.57
Exports share 16.4 * 0.52
Imports share 12.3 * 0.44

Total fossil fuel share 10.8 * 0.65
Industry energy intensity 5.1 * 0.53

* p-value < 0.001. Null hypothesis is cross-sectional independence.

Table 3. Pesaran [29] CIPS panel unit root test results. 20 countries, 1990–2013, mostly balanced.

Constant w/o Trend Constant w/Trend

Number of Lags

0 1 2 3 0 1 2 3

Log GDP pc 0.004 0.000 0.000 0.312 0. 924 0.129 0.006 0.998
Log territory-based CO2 pc 0.178 0.209 0.169 0.340 0.888 0.830 0.920 0.661
Log consumption-based CO2 pc 0.004 0.130 0.557 0.536 0.011 0.393 0.883 0.970
Log Exports share 0.241 0.949 0.982 0.999 0.010 0.946 0.798 0.998
Log Imports share 0.090 0.741 0.887 0.877 0.658 0.996 1.000 0.999
Log Total fossil fuel share 0.291 0.328 0.298 0.778 0.927 0.591 0.453 0.852
Log Industry energy intensity 0.336 0.695 0.802 0.995 0.370 0.811 0.593 0.888

Notes: p-values shown. Null hypothesis is the series is I(1).

2.4. Methods

When the errors of panel regressions are cross-sectionally correlated, standard estimation methods
can produce inconsistent parameter estimates and incorrect inferences [30]. Also, when ordinary least
squares (OLS) regressions are performed on time-series (or on time-series cross-sectional) variables that
are not stationary, then measures like R-squared and t-statistics are unreliable, and there is a serious risk
of the estimated relationships being spurious [31,32]. Lastly, we think it is likely that the relationships
will not be the same for each country—i.e., there should be a substantial degree of heterogeneity.

Given that the data exhibit both cross-sectional correlation and nonstationarity, and likely
heterogeneity, we employ a heterogeneous panel estimator that addresses both nonstationarity
and cross-sectional dependence, i.e., the Pesaran [33] common correlated effects mean group
estimator (CCE-MG) (This estimator is implemented via the STATA command suite xtmg, which was
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developed by Markus Eberhardt). The CCE-MG estimator accounts for the presence of unobserved
common factors by including in the regression cross-sectional averages of the dependent and
independent variables, and it is robust to nonstationarity, cointegration, breaks, and serial correlation.
Also, as a mean group estimator, CCE-MG first estimates cross-sectional specific regressions and then
averages those estimated cross-sectional coefficients to arrive at panel coefficients (standard errors
are constructed nonparametrically as described in Reference [34]). Lastly, as diagnostics, we run on
the regression residuals and report the results of the Pesaran CD test to determine cross-sectional
dependence and the Pesaran CIPS panel unit root test to confirm stationarity.

The purpose of Equations (1)–(6) was to justify the terms to be considered in the regression models
and to generate a priori beliefs regarding the signs/significance of the coefficients (we do not want to
run a regression on an identity). Hence for the purpose of the regressions, we simplify the last term in
parentheses in Equation (6) to be the natural log of import’s share of GDP minus the natural log of
export’s share of GDP. Then, the equation to be estimated is:

lnCOc,T
2 it = αi + β1

i ln(GDP/N)it + β2
i ln
(

IndGDP
intsty

)
it
+ β3

i ln
(

shE f f

)
it
+ β4

i ln
(

Import
GDP

)
it

−β5
i ln
(

export
GDP

)
it
+ Zit + εit

(7)

where subscripts it denote the ith cross-section and tth time period, α is a cross-sectional specific
constant, the βs are cross-sectional specific coefficients to be estimated, Z represents the cross-sectional
average terms, and ε is the error term. Those cross-sectional average terms are displayed in Equation
(8) below:

Zit = ρ1
i lnCO

c,T
2 t + ρ2

i ln(GDP/N)t + ρ3
i ln
(

IndGDP
intsty

)
t
+ ρ4

i ln
(

shE f f

)
t
+ ρ5

i ln
(

Import
GDP

)
t
− ρ6

i ln
(

export
GDP

)
t

(8)

Like time dummies, the cross-sectional average terms can account for so-called strong-form
cross-sectional dependence, i.e., temporary, global shocks. For example, the cross-sectional average
time series of GDP will dip/level, corresponding to events like the Asian financial crisis and the Great
Recession. But cross-sectional dependence also is caused by so-called spillover effects or weak-form
dependence (e.g., international trade), which is much more accurately modeled by cross-sectional
averages than merely time dummies/trends.

While, from Equation (2), we do not expect trade shares to impact territory-based carbon emissions,
we estimate Equation (7) for both territory-based and consumption-based aggregations of carbon
emissions. We do this to test for trade’s effect since some previous territory-based carbon analyses
have found such an effect (e.g., References [3,18]). Again, we expect that exports should lower
consumption-based emissions; whereas, imports should increase them.

3. Results and Discussion

Table 4 reports the regression results for both territory-based and consumption-based aggregations
of emissions. The elasticities for income (GDP per capita) are significant, positive, and highly similar
for both territory-based and consumption-based emissions. Likewise for the fossil fuel share of energy,
both elasticities are significant, positive, and highly similar. While the mean coefficient is higher for
territory-based emissions than for consumption-based, the estimated elasticities are not significantly
different at the 95% level (consider the two sets of confidence intervals that are shown in brackets).
The elasticity for industrial energy intensity is significant and positive (as expected) for territory-based
emissions, but is insignificant for consumption-based emissions. Perhaps this insignificant result for
consumption-based emissions reflects that trade among Asian countries is not focused on particularly
energy intensive goods.
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Table 4. Trade and carbon emissions. Pesaran [33] CCE-MG estimator.

Dependent Variables

Independent Variables Territory-Based CO2 pc Consumption-Based CO2 pc

GDP pc 0.64 ***
[0.35 0.93]

0.67 ***
[0.34 0.99]

Fossil fuels share 1.41 ***
[0.62 2.21]

1.04 ***
[0.27 1.81]

Industry energy intensity 0.13 *
[0.02 0.25]

−0.004
[−0.13 0.13]

Exports share 0.02
[−0.11 0.14]

−0.37 ***
[−0.54 −0.21]

Imports share 0.02
[−0.05 0.09]

0.28 **
[0.08 0.48]

CD (p) −1.0 (0.31) −0.6 (0.52)
Order of integration I(0) I(0)

Notes: Statistical significance level of 5%, 1% and 0.1% denoted by *, **, and ***, respectively. 95% confidence
intervals in brackets. CD is the test statistic from the Pesaran [28] CD test; the corresponding p-value is in parentheses.
The null hypothesis of the test is cross-sectional independence. Order of integration of the residuals is determined
from the Pesaran [29] CIPS test: I(0) = stationary. Null hypothesis is I(1). Both regressions have 460 observations.

Importantly, exports and imports share are insignificant for territory-based emissions and
significant and offsetting—exports having a negative elasticity, with imports having a positive
one—for consumption-based emissions. Again, this was our expected result and is in concert with
the findings of References [19,22,23]. While the consumption-based emissions coefficient for exports
is larger (in absolute terms) than the same coefficient for imports, the corresponding 95% confidence
intervals overlap, and the p-value—for the test on whether their difference (−0.09) was statistically
significant—was 0.48.

This insignificant result here for territory-based emissions runs counter, however, to much of the
previous trade-carbon emissions literature that has often determined a trade effect despite relying
only on territory-based emissions accounting (e.g., Reference [3]). One explanation for the different
results for trade variables when territory-based carbon emissions were the dependent variable is
the inclusion of the fossil fuel share of energy among the independent variables. Lastly, the CD test
statistic (and corresponding high p-values) demonstrate that including cross-sectional averages of the
regressors has addressed cross-sectional dependence, since for neither of the regressions can the null
hypothesis of cross-sectional independence be rejected.

Because of the importance of the PRC in trade-based carbon flows (e.g., Figure 2), the regressions
were run excluding this country. The results were not materially different (results not shown, but
available from the author). Also, the time dimension of the panel was split into two segments at
2002—approximately the year of the PRC’s admission into the WTO, and a pooled version of the
CCE estimator was used. Those results did not suggest that a different model was valid/necessary
over the two regimes—1990–2001 versus 2002–2013 (again, results not shown, but available from the
author). A pooled CCE estimator was applied to the full (1990–2013) panel, too. There were some
differences between those pooled results and the mean group ones (displayed in Table 4). Of course,
the fact that the mean group estimations do differ some from the pooled ones (both when the PRC is
included/excluded from the panel) is often interpreted as demonstrating the importance of accounting
for heterogeneity.

A common line of inquiry in environmental economics/social science is whether pollution varies
nonlinearly with GDP per capita (indeed, there is often overlap between the environment-trade
literature and the environment-pollution/environmental Kuznets curve literature). Such nonlinearities
are often investigated by estimating emissions as a quadratic (or higher) function of GDP per capita
(e.g., Reference [3]). However, it is incorrect to make a nonlinear transformation of a nonstationary
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(and potentially cointegrated) variable, like GDP per capita, in ordinary least squares [35]. Furthermore,
this polynomial model has been criticized for lacking flexibility (e.g., Reference [36]).

One alternative to the GDP polynomial that takes advantage of the heterogeneous nature of
the elasticity estimations (i.e., elasticities are estimated for each cross-section) is to plot individual
country-specific GDP per capita elasticity estimates against the individual country average GDP per
capita for the whole sample period (as in Reference [27]). Those plots are displayed in Figure 3a,b
(Figure 3a (top) for territory-based emissions and Figure 3b (bottom) for consumption-based emissions).

The figures appear to lend credence to the idea that the income elasticity of carbon emissions
increases and then falls as income rises since inverted-U polynomial trend lines can be fitted
with reasonable accompanying R-squareds. However, focusing on Figure 3a (territory-based
emissions), if we assume that Hong Kong, China and Singapore are outliers—because of, for example,
their city-state status or because their estimated (negative) elasticities were not statistically
significant—the fitted trend line becomes monotonic (albeit with a smaller R-squared). Furthermore,
on closer inspection of Figure 3b (consumption-based emissions), the relationship may be better
described as a saturation one, i.e., the income elasticity of carbon emissions stops increasing at high
levels of income (rather than becoming negative) since the only negative elasticity observations
are associated with the lowest income levels. Indeed, a third-order polynomial—in which the
income elasticity never dips below the x-axis—fits similarly well as the second-order one (judging by
R-squared).

Comparing the individual elasticity estimates (e.g., Figure 3a vs. Figure 3b), most countries have
similar estimates for territory-based emissions and consumption-based emissions. However, this is
not the case for Hong Kong, China and Singapore. For those two city-states, their income elasticities
are negative for territory-based emissions but positive for consumption-based emissions, therefore,
providing an example of how one can develop a completely different picture of the income-emissions
relationship depending on how those emissions are calculated.
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Figure 3. Individual cross-section income elasticity estimates are plotted against the cross-sectional
average GDP per capita (in natural logarithms) for the sample period. Territory-based carbon emissions
is the dependent variable for (a) (top); consumption-based carbon emissions is the dependent variable
for (b) (bottom). Second-order polynomial trend line, equation, and R-squared also shown.

4. Conclusions and Implications

This paper exploited a recently developed consumption-based carbon emissions database
(by Reference [1]) from which emissions calculations are made based on the domestic use of fossil fuels
plus the embodied emissions from imports minus exports to test directly for the importance of trade in
national emissions. Comparing territory-based emissions data to the consumption-based emissions
data revealed that most countries are net importers of carbon emissions—their consumption-based
emissions are higher than their territory-based emissions. While low and high income countries tend to
have the largest ratios of consumption-based emissions to territory-based emissions (e.g., see Figure 1),
the several middle-income countries in our Asian panel have ratios greater than one as well.

This study focused on 20 Asian countries/economies—a group that includes many of the world’s
most rapidly growing economies, and that together accounts for over half of the world’s population
and nearly half of all territory-based carbon emissions (in 2013). Asian countries/economies are an
important focus group for carbon emissions and trade because both (i) the energy systems in Asia
tend to be carbon intensive, and (ii) the region tends to specialize in exporting its manufacturing to
high-income countries. Indeed, the PRC and India are the two largest sources of net (i.e., adjusted
for trade) carbon emission flows, and the PRC is responsible for over half of such global net carbon
emissions transfers.

The econometric estimations showed that: (i) trade flows (imports and exports) mattered for
consumption-based emissions but not for territory-based emissions; and (ii) exports and imports
offset each other in that exports lower consumption-based emissions, whereas imports increase them.
Those results were both credible/easily justified (e.g., Equations (2)–(6)), and in concert with the
three previous analyses that compared trade-carbon models using those two different aggregations of
emissions as dependent variables and considered imports and exports (separately) as independent
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variables ([19,22,23]). In sum, for territory-based emissions, fossil fuel consumption (but not trade)
matters; and for consumption-based emissions, trade patterns (exports, imports) matter, and trading
partners’ fossil fuel consumption matter [22] (In contrast to Reference [22] analyzing a global dataset,
this analysis focusing on Asia did not find that fossil fuel content of a country’s energy mix was
significantly more important for territory-based emissions than for consumption-based emissions.
Perhaps this failure reflects the previously discussed relative fossil fuel intensity of all Asian countries’
energy systems). Therefore, for modelers wanting to investigate further trade’s role in carbon emissions,
it is important both (i) to consider consumption-based emissions and (ii) to consider imports and
exports separately.

Given that (i) global carbon emissions are what matter for mitigating climate change;
(ii) international trade likely produces more benefits than costs; and (iii) the results that exports’
share of GDP had a negative coefficient, while imports’ share had a positive one, countries should
have both an interest and a responsibility to help lower the carbon intensity of energy in countries
that are particularly important for global carbon transfers—the PRC and India. In other words,
consumption-based emissions accounting may be helpful in assessing responsibility for climate
change, but territory-based emissions accounting signals where mitigation efforts need to be focused.
Yet, consumption-based regulation is much less common than production-based regulation, i.e., there is
a desire to tax the direct polluters (the so-called polluter pays principle) rather than the final consumers
of such goods/services. So, there is a need for more research on the feasibility/desirability of
consumption-based regulation (I owe this suggestion/point to a discussant of this paper).
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