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Abstract: The present study investigated geopolymerization in alkali-activated fly ash under elevated
pressure conditions. The fly ash was activated using either sodium hydroxide or a combination of
sodium silicate solution and sodium hydroxide, and was cured at 120 ◦C at a pressure of 0.22 MPa
for the first 24 h. The pressure-induced evolution of the binder gel in the alkali-activated fly ash
was investigated by employing synchrotron X-ray diffraction and solid-state 29Si and 27Al MAS
NMR spectroscopy. The results showed that the reactivity of the raw fly ash and the growth of
the zeolite crystals were significantly enhanced in the samples activated with sodium hydroxide.
In contrast, the effects of the elevated pressure conditions were found to be less apparent in the
samples activated with the sodium silicate solution. These results may have important implications
for the binder design of geopolymers, since the crystallization of geopolymers relates highly to its
long-term properties and functionality.
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1. Introduction

Geopolymers are a cementitious material belonging to a group of alkali-activated binders, which can
be synthesized by alkaline activation of aluminosilicate-rich precursors [1,2]. Coupled with the global CO2

emissions associated with the production of Portland cement, this binder system is viewed as a potential
sustainable cement [3–5]. Geopolymers are known to exhibit excellent durability performance [6,7],
providing a potential application to various fields in place of ordinary Portland cement [8].

Fully-reacted geopolymeric gels are totally amorphous [9]. However, they may present a
nanostructural analogue to zeolite, possibly due to the similarities between the chemical compositions
of both materials [10,11]. The nanostructure of geopolymers consists of alkali-aluminosilicate gel,
often abbreviated as N-A-S-H (where N denotes sodium, which is the most commonly employed alkali),
where both Si and Al are in tetrahedral coordination [2]. A recent study conducted by Brant et al. [12]
revealed that Q4(4Al), Q4(3Al), Q4(2Al), and Q4(1Al) Si units are predominantly present in sodium
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aluminosilicate gels, which are charge-balanced by three to four coordinated Na+ ions and H2O
molecules, or six coordinated Al atoms. This study also identified that the presence of Al3+ in sites
with lower symmetry provided charge-balancing capacity [12].

The durability and other physicochemical properties of geopolymers are attributed to the
nanostructure of the aluminosilicate gel. Binders derived from alkali-activated fly ash present excellent
resistance against a number of chemical degradation phenomena, which are known to be devastating
in the case of Portland cement [13–15]. The aluminosilicate gel formed in geopolymers possesses
negatively-charged surfaces and a high specific surface area, which are ideal for the adsorption of
cationic pollutants such as heavy metals (Pb2+) [16,17] and radionuclides (Cs+, Sr2+) [8,18,19].

The nucleation of zeolites with the ageing of geopolymers can lead to reduced mechanical strength
and durability, as observed by Silva and Crenstil [20]. Thus, it is crucial to assess the factors that lead
to the transformation of amorphous geopolymeric gel into crystalline zeolites to ensure the long term
properties of geopolymers. The effect of elevated pressure during the manufacture of geopolymers
and enhanced zeolite yield has been extensively investigated in previous studies. The strength of fly
ash-based geopolymers varies according to the curing conditions and precursor/activator composition.
While the strength of those cured at an elevated temperature and ambient pressure can be as high as
40 MPa at 28 days [21,22], and have the potential to develop further at later ages [23], the geopolymer
specimens, in which a significant amount of aluminosilicate gel is transformed into crystalline zeolite
at an elevated pressure, show limited strength (i.e., as low as 2 MPa at 28 days [24]). While the strength
decline in geopolymers via crystallization is a generally acknowledged deterioration phenomenon of
geopolymers, its nanostructural characterization remains limited.

Zeolite formation in alkali-activated materials can be affected by a number of factors, i.e., the Ca
content in the precursors can lead to precipitation of Ca-chabazite [24]. Faujasite and sodalite are
the two zeolite crystals commonly observed in fly ash-based binders, in which inert minerals such
as quartz and mullite can be consumed as reactants for zeolite formation in the presence of elevated
pressure [16]. Hydrothermal treatment is a conventional method for artificially synthesizing zeolites
from silica and alumina source materials [25]. Under suitable pressure and humidity conditions,
pure phase zeolites can be synthesized with high yield. Curing geopolymers under elevated pressure
conditions at an early age can be a robust way to study the factors controlling this transformation,
and to predict their long-term properties. Hence, geopolymers were cured under elevated pressure
conditions in this study to explore the effects of different activating solutions.

2. Experimental Procedure

2.1. Materials

The chemical composition of the fly ash (supplied by Hadong thermal power plant in South Korea)
used in this study is shown in Table 1. The alkali-activated fly ash paste samples were synthesized
using 9 M NaOH and a sodium silicate solution (SiO2 = 29 wt%, Na2O = 10 wt%, H2O = 61 wt%).
Two series of samples were prepared to investigate the effect of the activators as follows: H-series
activated with NaOH only, and S-series activated with the sodium silicate solution with a SiO2/Na2O
of 1.0. The Na2O dosage of both series was 7.5 g per 100 g of fly ash. The H2O/fly ash was fixed at
0.338 in both series to isolate the effect of water content. Note that all the tested samples were produced
from the same batch of fly ash.

Table 1. Chemical composition of fly ash obtained using XRF.

(wt%) SiO2 Al2O3 Fe2O3 CaO MgO P2O5 TiO2 K2O SO3 LOI

57.0 21.0 10.0 4.8 1.3 1.5 1.5 1.4 1.0 2.7
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2.2. Sample Preparation

The solids and liquids were mechanically stirred for five minutes at room temperature. The fresh
samples were poured into vial molds (25 mm diameter and 50 mm height). The molds were placed
into a chamber, and the samples were cured at 120 ◦C at a pressure of 0.22 MPa for the first 24 h.
The reference samples were cured at 120 ◦C at atmospheric pressure. The samples were cured at
room temperature after the first 24 h of curing. Note that a pressure of 0.22 MPa was reached at this
temperature, which was deemed effective in terms of the crystallization in the geopolymer [24,26].
The experimental parameters including mixture proportion and curing conditions employed in this
study were adapted from the relevant literature [8,16]. This level of pressure is known to onset the
crystallization of geopolymer gels [24,26], and can be experienced in repository conditions.

2.3. Experimental Methods

The pressure-induced geopolymerization in alkali-activated fly ash was explored using
synchrotron X-ray diffraction (XRD) and solid-state magic angle-spinning nuclear magnetic resonance
(MAS NMR) spectroscopy at 24 h, 7and 28 days. The samples were ground and passed through a sieve
of 64 µm for analysis. The synchrotron XRD was conducted at beamline 5 A at the Pohang Accelerator
Laboratory, South Korea. The conditions for the data collection were: an angular range of 2–20◦, a scan
rate of 0.01◦/s and a wavelength of 0.69265 Å. The conditions for the solid-state 27Al and 29Si MAS
NMR spectra collected using 600 MHz solid-state NMR (14.1 T, unityINOVA, Agilent Technologies:
Santa Clara 95050, CA, USA) at the KBSI Western Seoul Center were as follows:

- 29Si MAS NMR spectra: data acquisition at a transmitter frequency of 119.14 MHz, a pulse length
of 30◦ (2.2 µs), a spinning rate of 10 kHz, and a relaxation delay of 22 s, using a 5 mm HX-CPMAS
probe and a 5 mm zirconia rotor. The chemical shifts were referenced to TMS (0 ppm).

- 27Al MAS NMR spectra: data acquisition at a transmitter frequency of 156.32 MHz, a pulse length
of 30◦ (1.8 µs), a spinning rate of 22 kHz, and a relaxation delay of 2 s, using a 2.5 mm HX-CPMAS
probe and a 2.5 mm low Al zirconia rotor. The chemical shifts were referenced to aqueous AlCl3
(0 ppm).

3. Results

3.1. NaOH-Activated Samples

The synchrotron XRD patterns of the H-series samples are shown in Figure 1. The raw fly ash
showed peaks due to the presence of crystalline phases of quarts (SiO2, PDF# 01-089-8936), mullite
(Al4.95Si1.05O9.52, PDF# 01-079-1450) and hematite (Fe2O3, PDF# 01-073-0603). The formation of sodalite
(Na8Al6Si6O24, PDF# 01-071-5356) was observed in the XRD pattern of the H-series sample without
pressure (Figure 1a). The presence of sodalite is often observed as a reaction product of NaOH-activated
fly ash and provides an analogous description of N-A-S-H in this system [27]. The presence of other
zeolite minerals of zeolite A (Na12(AlSiO4)12, PDF# 01-071-0370), zeolite Na-P1 (Na6Al6Si10O32, PDF#
01-074-1787) and Na-chabazite (Na39.8Al70.4Si41.2O207.9, PDF# 00-047-0356) was observed in the XRD
pattern of the H-series sample with pressure (Figure 1b).

The 27Al MAS NMR spectra of the H-series samples are shown in Figure 2a. The asymmetry in
the obtained spectra was caused by the resonance of the quadrupolar nuclei, hence, the line width
of the spectra was largely affected by the quadrupole moment of the nucleus, and the size of the
molecule [28]. Although this technique was able to resolve the local environment of Al species,
accurate descriptions of quadrupolar coupling effects in these materials are currently unavailable in
the literature. The spectrum of the raw fly ash showed resonance centered at 52 and 1 ppm due to the
presence of tetrahedral and octahedral Al sites, respectively, where the tetrahedral site corresponds to
the Al in the tetrahedral aluminosilicate glass network [21] and the octahedral site of the mullite and
mullite-like glass [14,29]. Upon alkaline activation, the spectra of the H-series samples both with and
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without pressure showed a significant reduction in the intensity of the resonance in the octahedral
site, indicating the consumption of the glassy phase. The resonance at 58 ppm was observed in these
samples, which is due to the presence of tetrahedral Al in the N-A-S-H gel [21], showing a shift from
54 ppm from the resonance of the raw fly ash. The spectrum of the sample with pressure, however,
showed much narrower width at this resonance, indicating that the tetrahedral Al environment
constructed herein was more clearly defined and less amorphous (i.e., crystallization). In addition,
the intensity at the octahedral site was found to be lower in the sample where pressure was applied
during the curing process, which implies that the reactivity was relatively higher in this sample.
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Figure 1. Synchrotron XRD patterns of H-series samples (a) without pressure and (b) with pressure.
Q—quartz, M—mullite, H—hematite, A—zeolite A, P—zeolite Na-P1, C—chabazite, and S—sodalite.

The 29Si MAS NMR spectra of the H-series samples are shown in Figure 2b. The Si environment
in both the raw and alkali-activated fly ash consists of an aluminosilicate framework, resonating
at −87, −92, −96, −103, and −108 ppm due to the presence of Q4(4Al), Q4(3Al), Q4(2Al), Q4(1Al),
and Q4(0Al), respectively [21,30,31]. The resonance of Q4(0Al) due to the Si-O-Si linkage in the
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crystalline (i.e., quartz) or glassy phase [32,33] was relatively lower in the sample with pressure.
This implies that the reactivity of the fly ash vastly improved in elevated pressure conditions.
The sample without pressure mostly displayed the highest intensity at the Q4(4Al) site and an increased
resonance at the Q4(3Al) site at 28 days. In contrast, the sample with pressure showed the highest
intensity at the Q4(2Al) and Q4(1Al) sites throughout all ages, implying that the elevated pressure was
effective for the formation of Si-rich reaction products even at an early age. The resonance at these
two sites was much narrower due to the higher degree of crystallization in the sample with pressure.
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3.2. Sodium Silicate-Series Samples

The synchrotron XRD patterns of the S-series samples are shown in Figure 3. The XRD patterns of
the samples with and without pressure showed the peaks corresponding to the presence of crystalline
phases contained in the raw fly ash, i.e., quartz, mullite and hematite. The absence of peaks attributed
to zeolite minerals indicates that the growth of zeolite crystals (or zeolite with a sufficient degree
of crystallinity) was significantly hindered by the dissolved silica, even with the elevated pressure.
The effect of pressure on the reactivity of the fly ash was seen to be much less in comparison with
the H-series; the intensity of the octahedral site in the 27Al MAS NMR spectrum of the sample with
pressure was only slightly reduced (Figure 4a); and the resonance at the Q4(0Al) in the 29Si MAS NMR
spectra was similar to that of the sample without pressure.
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4. Discussion

Previous studies reported that NaOH-activated metakaolin and slag generally show a higher
tendency of crystallization over time in comparison with those activated with sodium silicate [34,35].
A similar result was observed in this study, in which the H-series samples exhibited a higher extent of
crystallization in elevated pressure conditions. An ageing phenomenon of geopolymers is generally
accepted to accompany crystallization [36] in a similar manner to that of hydrated calcium aluminate
cement, in which hydrates (mainly calcium aluminate octa- and deca-hydrate) lose structural water,
increasing the pore volume [37]. The difference between the ageing phenomena of the two binder
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systems is the presence of water; neither geopolymer gels nor zeolite crystals contain as much water as
calcium aluminate cement hydrates, hence the ageing effect of geopolymers is not associated with the
release of structural water from the binder gel, but instead is related to the density of the tetrahedral
per unit volume which is significantly reduced by crystallization from amorphous gel into zeolite [36].
Such phenomena were validated in the case of the alkali-activated metakaolin, which experienced a
significant loss in compressive strength after 28 days of ageing at 95 ◦C [36]. Moreover, the strength
loss was approximately in an inverse relationship with the content of zeolite P [36].

To date, only a few studies have looked at the ageing effect of alkali-activated fly ash (i.e., [36,38]).
For instance, fly ash activated with sodium silicate solutions with varying compositions (7% SiO2 and
7–15% Na2O by the mass of fly ash) showed a higher content of faujasite in a system with lower Na2O,
and a higher content of zeolite P in a system with higher Na2O [36]. Considering that zeolite A [39]
and faujasite [40] succeed to zeolite P, the presence of these zeolite crystals in the H-series sample
with elevated pressure may correlate to its likely durability performance. Specifically, employing
NaOH as an activator for fly ash could be plausible for use as a structural element where long-term
durability is mandatory, and where mechanical properties are of less concern (i.e., molecular sieve [41]
or radioactive waste immobilization [24,26]). On the other hand, the zeolite phases formed in these
samples may not be considered to have followed a general phenomenon, since the synthesis of zeolites
is significantly influenced by temperature [42]. In particular, the formation of zeolite Na-P1 or sodalite
is reportedly preferred at the temperature applied in this study (120 ◦C) [43].

5. Conclusions

The present study explored pressure-induced geopolymerization in alkali-activated fly ash using
synchrotron XRD and solid-state MAS NMR spectroscopy. Two series of samples were prepared, one
activated with NaOH (H-series) and another one activated with a sodium silicate solution (S-series).
An elevated pressure was applied during the initial curing stage at an elevated temperature for 24 h.
The synchrotron XRD results showed that significant growth of zeolites (zeolite A, zeolite Na-P1,
chabazite, sodalite) in the H-series samples was induced by pressure, while the S-series samples
remained amorphous in identical conditions. The NMR spectra of the samples suggest that the
reactivity of the fly ash, or geopolymerization in the H-series samples was enhanced by pressure to a
greater extent than that of the S-series samples.

The obtained results showed that the elevated pressure was effective in enhancing the reactivity
of the fly ash and growth of the zeolite crystals in the H-series samples. The geopolymer gel in the
sample with pressure was relatively rich in Si. In contrast, the effects of elevated pressure were much
less clear in the S-series samples, showing that the dissolved silica that was supplied by the activator
inhibited the crystallization of the binder gel. The crystallization of the binder gel can be viewed in
two different aspects. First, the ageing of geopolymer gels tends to induce microstructural changes
that may affect their mechanical properties [44], while zeolite formation plays an important role as an
ion adsorbent [24,26].

Further research is necessary to reveal the crystallization of fly ash-based geopolymers and
their mechanical properties. The crystallization of this binder system was found to be less likely in
comparison with that of metakaolin. The results obtained in this study suggest that alkali-activated
fly ash can undergo significant crystallization when activated with NaOH under elevated pressure.
In addition, the phase transformation of zeolite formed in this binder system may be an important
topic of future studies, since it is highly related to the ion sorption kinetics and capacity. The influence
of zeolite crystallization on the mechanical properties of these materials could be an important factor,
which should be explored in forthcoming studies.
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