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Abstract: Focusing on the multi-depot vehicle routing problem (MDVRP) for hazardous materials
transportation, this paper presents a multi-objective optimization model to minimize total
transportation energy consumption and transportation risk. A two-stage method (TSM) and hybrid
multi-objective genetic algorithm (HMOGA) are then developed to solve the model. The TSM is
used to find the set of customer points served by each depot through the global search clustering
method considering transportation energy consumption, transportation risk, and depot capacity
in the first stage, and to determine the service order of customer points to each depot by using a
multi-objective genetic algorithm with the banker method to seek dominant individuals and gather
distance to keep evolving the population distribution in the second stage, while with the HMOGA,
customer points serviced by the depot and the serviced orders are optimized simultaneously. Finally,
by experimenting on two cases with three depots and 20 customer points, the results show that both
methods can obtain a Pareto solution set, and the hybrid multi-objective genetic algorithm is able
to find better vehicle routes in the whole transportation network. Compared with distance as the
optimization objective, when energy consumption is the optimization objective, although distance is
slightly increased, the number of vehicles and energy consumption are effectively reduced.

Keywords: hazardous materials transportation; multi-depot vehicle routing problem;
multi-objective optimization; two-stage method; hybrid multi-objective genetic algorithm;
energy-saving transportation

1. Introduction

Hazardous materials can be toxic, corrosive, inflammable, and explosive, but also are necessary
for the development of industry and agriculture. How to choose one or more transportation routes
for hazardous materials with low energy consumption and low risk has become a very important
topic with practical significance to ensure personal, property, and environmental security as well as
economic sustainability.

According to statistics, the daily amount of hazardous materials being transported in China
exceeds 1 million tons, and the total amount per year exceeds 400 million tons [1]. These large
quantities of hazardous materials form a dangerous flowing source on the roads. If an accident occurs,
it could cause damage to nearby people and the surrounding environment. Alp et al. [2] studied the
effects of meteorologic conditions and wind direction probabilities on the consequences of accidents,
and proposed a three-integral mathematical evaluation model for calculating individual and social
risks. Leonelli et al. [3] proposed a new personal and social risk assessment model, introducing risk

Sustainability 2018, 10, 3519; doi:10.3390/su10103519 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://www.mdpi.com/2071-1050/10/10/3519?type=check_update&version=1
http://dx.doi.org/10.3390/su10103519
http://www.mdpi.com/journal/sustainability


Sustainability 2018, 10, 3519 2 of 21

factors such as transportation mode, hazardous materials category, meteorologic conditions, wind
direction probability, and seasonal attributes, and considered the impact of population distribution,
which greatly improved the accuracy of risk assessment for hazardous materials transportation. Based
on a statistical analysis of accidents, Fabiano et al. [4] discussed risk factors from the aspects of
road characteristics, weather conditions, and traffic conditions, and proposed a risk assessment
model for the hazardous materials transportation process at accident sites. Based on the route
segment–specific (location-specific) accident rate, Chakrabarti et al. [5] estimated route segment
total risk to measure the average number of persons likely to be exposed to all possible consequence
scenarios by computing and comparing the loss of containment and spillage probabilities for different
route segments. Taking the length and quality of roads, the population density in different segments of
the roads, types of hazardous materials, and types of vehicles into consideration, Faghih-Roohi et al. [6]
proposed a dynamic value-at-risk model. Mohammadi et al. [7] designed a reliable hazardous
materials transportation network based on four factors: distance from the incident source, number
of people exposed to the risk, number of hazardous materials shipments passing that segment, and
the characteristics of the road type. With the rapid development of Geographic Information System
(GIS) technology, it has also been applied to risk assessment for hazardous materials transportation
(Bubbico et al. [8], Sahnoon et al. [9], Chen et al. [10]). Visual map display and data analysis functions
provide convenience and improve accuracy for risk assessment during the transportation of hazardous
materials. It can be seen that scholars have made many contributions to the problem of transporting
hazardous materials. The risk of transporting hazardous materials is related to many uncertain factors,
and it is difficult to measure accurately, but it is still a factor that must be considered.

In addition to risk, energy consumption is also an important factor to consider in reducing the
transportation costs of enterprises, reducing carbon emissions, and achieving sustainable development
of hazardous materials transportation. There are many factors that affect transportation energy
consumption, but they can be roughly classified into categories such as vehicle construction,
transportation environment, and driver strategies. Factors influencing fuel consumption have been
studied by Bigazzi et al. [11], Demir et al. [12], and Suzuki [13]. Trucks have to overcome various
obstacles while transporting hazardous materials, such as speed, road gradient, and payload. These
are key factors that affect energy consumption. Bektaş and Laporte [14] analyzed the relationship
between vehicle load, speed, and total cost, and proposed that minimizing the cumulative load alone
does not necessarily lead to energy minimization, particularly when there are time window restrictions.
Demir et al. [15] derived an optimum driving speed and showed that reductions in emissions could
be achieved by varying speed over a network. It should be noted that the optimum driving speed
varies to a certain degree between geographic areas due to speed limits and traffic density. Given
the fact that the shortest distance may not be the optimal solution for the purpose of lowering fuel
consumption, Xiao et al. [16] developed route schedules with lower fuel costs by better managing
the trade-off between the total distance and the priority of serving customers with larger demands.
Suzuki [17] indicated that significant savings in fuel consumption may be realized by delivering heavy
items in the early segments of a tour and lighter items in the later segments. In fact, transportation
costs are more related to energy consumption than distance. Therefore, for hazardous materials
transportation, considering the factors that affect energy consumption, it is more practical to find one
or more low-energy vehicle routes as the optimization objective.

The transportation route is a key factor to guarantee that hazardous materials are transported
safely and economically, which many experts and scholars have been studying. Batta et al. classified
transportation risk into road risk and node risk [18]. Karkazis et al. [19] formulated the routing problem
of transporting hazardous materials as an optimization problem, with the objective of minimizing
transportation risk and costs. Meng et al. [20] used the dynamic programming method to solve the
transportation route optimization problem. Liu et al. [21] applied a multilevel fuzzy comprehensive
evaluation method to optimizing hazardous materials transportation routing. Das et al. [22]
explored the routing problem in a transportation network with the capacity limit, and developed a
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multi-objective algorithm to find nondominated solutions. Pradhananga et al. [23] chose minimum
transportation time and risk as the optimization objective to search for Pareto optimal solutions.
Given the unscientific nature of simply evaluating the total risk of a fleet as a whole without
considering individual vehicle risk, Wang et al. [24] developed a two-stage exact algorithm based
on the ε-constraint method to solve the proposed problem. Alrukaibi et al. [25] designed a risk/cost
algorithm using available data from Kuwait. For their study, incident probability, incident consequence,
and risk assessment were used as the algorithm’s main criteria to identify available alternative routes.
Mohammadi et al. [7] proposed a mathematical model for designing a reliable hazardous materials
transportation network on the basis of hub location topology under uncertainties; to cope with the
uncertainties, they provided a solution framework based on an integration of the chance-constrained
programming approach. Obviously, these studies on the routing problem of hazardous materials
transportation have been relatively sufficient, and have gone through a study process from a single
objective to multi-objective optimization and from certain to uncertain environments. However,
energy consumption is not considered in the model, and to solve the model, most studies turned the
multi-objective model into a single objective, and finally got an optimal solution instead of the Pareto
optimal solution set.

All of the above studies on the vehicle routing problem (VRP) for hazardous materials
transportation assumed that there was only one depot. However, there may, in fact, be more than one
vehicle depot in a city, and it is of more practical significance to study the VRP with multiple depots
for hazardous materials transportation. At present, only a few studies have focused on the multi-depot
vehicle routing problem (MDVRP) for hazardous materials transportation. Zhao et al. [26] considered
the return trips between collection centers and recycling centers, and developed a multi-objective
model with minimization of cost and risk. This optimization problem with two objectives was then
transformed into a single objective problem. Du et al. [27] developed a fuzzy bilevel programming
model in which the upper-level formulation allocated customers to depots and the lower level
determined the optimal routing for each depot. However, the study only considered transportation risk
minimization as the optimization objective. In fact, for hazardous materials transportation, in addition
to risk, energy consumption is also a major factor that must be considered. This is mainly due to the fact
that energy consumption is a key factor in reducing the transportation costs of enterprises, reducing
carbon emissions, and achieving sustainable development. To this end, this study aims to find the
optimal vehicle routings for the MDVRP considering both transportation risk and energy consumption.

Many heuristic methods have been developed in the context of the VRP, including the tabu search
algorithm [28], the genetic algorithm [29], the ant colony algorithm [30], and so on. Compared to the
VRP, the MDVRP is more complicated, because it needs to consider which customer point should be
serviced by which depot, in addition to considering the vehicle routing for each depot. It is necessary
to coordinate the delivery tasks among multiple depots. Gillett and Johnson presented a clustering
procedure and a sweep heuristic for each depot [31]. Salhi and Sari proposed a multilevel heuristic
method [32]. Giosa et al. [33] summarized and proposed a number of heuristics for the two-stage
approach to solving the MDVRP. In order to solve the emergency vehicle routing problem with multiple
depots, Qin et al. [34] divided it into two steps, and used the nearest assignment and average distance
method to transform the MDVRP into multiple VRPs with a single depot in the first step, and then
adopted a genetic algorithm to solve the VRPs with a single depot in the second step. Ho et al. [35]
developed two hybrid genetic algorithms. The major difference between the two algorithms is that
the initial solutions were generated randomly in the first algorithm, and the initialization procedure
was incorporated into the Clarke and Wright savings method and the nearest neighbor heuristic in
another algorithm. In summary, the methodologies for MDVRP can be categorized into one-stage and
two-stage solving methods.

To sum up, a number of studies have explored the traditional VRP with only one depot. These
studies move from single objective optimization to multi-objective optimization and from single
solution to a nondominated solution set. However, only a few studies have focused on the MDVRP
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for hazardous materials transportation, and all of them consider a single objective or do not consider
transportation energy consumption, due to the complexity of the problem. Furthermore, these studies
rarely consider all depots and customer points to find the optimal Pareto solution set to reduce both
transportation risk and energy consumption. The existing research has mainly adopted the two-stage
method, which cannot make multiple depots coordinate transportation and dynamically solve the
problem. In addition, the existing research only considers one objective or converts multiple objectives
into one to solve the problem, and they rarely use multi-objective algorithms to seek an optimal Pareto
solution set. Different from the current studies on the MDVRP for hazardous materials transportation,
this study aims to obtain the Pareto optimal solution set of noncomparable transportation risk and
energy consumption. Finally, a two-stage algorithm (TSM) and a one-stage hybrid multi-objective
genetic algorithm (HMOGA) are designed, and the solution optimality between these two algorithms
is compared and analyzed.

The rest of this paper is organized as follows: Section 2 describes the MDVRP for hazardous
materials transportation, Section 3 establishes an optimization model to minimize transportation
risk and energy consumption, Section 4 presents a TSM and HMOGA to solve the proposed model,
Section 5 gives numerical examples to analyze the effectiveness of the above two algorithms, and
Section 6 gives conclusions.

2. Problem Description

As the name implies, the VRP for hazardous materials transportation with one depot is a problem
of vehicle scheduling for a specific depot. All customer points are served by a specific depot. However,
in reality, it is very common that multiple depots coordinate the transportation and distribution
of hazardous materials. The MDVRP for hazardous materials transportation can be defined as
the following:

(1) There exist several hazardous materials depots, and each depot has enough vehicles to transport
the hazardous materials.

(2) Multiple customer points exist and will be assigned to different depots.
(3) Each vehicle will service the corresponding customer points and can service several customer

points, while each customer point can be serviced only one time by one vehicle.
(4) After the delivery task is finished, all transportation vehicles will return to their hazardous

materials depot.

Figure 1 is a sketch of the MDVRP for hazardous materials transportation. It can be seen that with
three depots, named a, b, and c, there are 15 customer points, and each customer point can be serviced
by only one depot. According to the MDVRP, multiple depots can cooperate with the transportation
environment according to customer needs to achieve the global optimal objective.

In the MDVRP, because of the strongly corrosive, highly toxic, explosive, and flammable
characteristics of hazardous materials, transportation risk is an optimization objective that must
be considered. For enterprises, minimizing transportation costs is paramount. However, low risk
means high cost to some extent. Therefore, the MDVRP for hazardous materials transportation should
be solved according to the idea of multi-objective optimization, and it is very important to find the
Pareto solution set. In many reports in the literature, transportation cost is usually measured by
distance and time. However, the shortest transportation distance or time in practice does not mean that
transportation cost is the lowest. Compared to distance or time, transportation energy consumption is
of great significance to reducing business operating costs, lowering carbon emissions, and achieving
sustainable development. Therefore, this paper sets two optimization objectives to minimize risk and
energy consumption for hazardous materials transportation.
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Figure 1. Multi-depot vehicle routing problem. 
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3. Mathematical Model

3.1. Energy Consumption Evaluation

Rolling resistance, air resistance, and ramp resistance are the main external forces that affect the
energy consumption of truck transportation. According to the research in [36], the following formula
for calculating power consumption to overcome resistance is used:

Pr(m, v) = cr·g·m·v (1)

Equation (1) is the power used to overcome rolling resistance during the transportation of
hazardous materials, where Pr(m, v) represents the power consumed by transport equipment with a
total weight of m to overcome rolling resistance at speed v (kW); cr represents the rolling resistance
coefficient; g represents gravitational acceleration (m/s2); m represents the total weight of the
transport equipment, including the weight of the cargo mc and the vehicle M(t); and v represents the
instantaneous speed of the transport equipment (m/s).

Pa(v) = 0.0005ca·ρa·z·v3 (2)

Equation (2) is the power consumed to overcome air resistance during transportation, where Pa(v)
is the power consumed to overcome air resistance at speed v (kW); a is the air resistance coefficient; ρa

is air density (kg/m3); and z is the windward area of the vehicle, also known as the front area (m2).

Pg(m, v, i) = m·g·v·iij (3)

Equation (3) is the power consumed by the truck from node i to node j to overcome ramp resistance
during transportation, where Pg(m, v, i) represents power consumed to overcome ramp resistance at
ramp i and transport speed v, and iij represents the slope of node i to node j.

In addition, the acceleration of trucks while transporting hazardous materials requires a large
amount of fuel. According to the literature [37], the energy consumption of trucks accelerating from 0
to v is:

Wnum(m, v) =
0.504
7200

m·v2 (4)
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The movement of the truck is a real-time change process. Considering that the data are not
easy to obtain, this paper uses the average speed v and the average slope i to calculate the average
energy consumption during transportation. Therefore, the average energy consumption of hazardous
materials transportation between 2 nodes is:

Wij(m, d, v, i) =
(

Pr + Pa + Pg
)
·
dij

v
+ nnum·dij·Wnum (5)

where dij represents the distance of transportation from node i to node j (km); v represents the average
speed during transportation (m/s); i represents the average slope; and nnum represents the average
number of accelerations per kilometer (times/km).

3.2. MDVRP Multi-Objective Model for Hazardous Materials Transportation

Hazardous materials transportation risk is usually defined as the product of the accident rate
and the potential loss during transportation. The probability of accidents occurring is often affected
by time, weather conditions, vehicle type, loading form, and road conditions, and the severity of the
consequences are related to the number of people affected, property losses, and weather conditions.
In this paper, we use the risk measurement model proposed by Erkut et al. [38] to calculate hazardous
materials transportation risk, and regard the number of people affected on both sides of the road as
the main indicator for measuring risk:

rij =
2

1000
aij·pij·dij·rd (6)

where rij is the risk of road segment (persons), aij is the accident rate, pij is the population density
(persons/km2), and rd is the impact radius of the accident (m).

The MDVRP multi-objective model for hazardous materials transportation is:

minZ1 = ∑
d∈S0

∑
k∈Vd

∑
i∈S

∑
j∈S1

rij·xd
ijk (7)

minZ2 = ∑
d∈S0

∑
k∈Vd

∑
i∈S

∑
j∈S

Wij·xd
ijk (8)

s.t.

∑
i∈S

∑
j∈S1

∑
d∈S0

xd
ijk·qj ≤ Ld

k , ∀k ∈ Vd (9)

∑
j∈S1

∑
k∈Vd

xd
ijk ≤ |Vd|, ∀i ∈ S0, ∀d ∈ S0 (10)

∑
j∈S1

xd
ijk − ∑

j∈S1

xd
jik = 0, ∀i ∈ S0, ∀d ∈ S0, ∀k ∈ Vd (11)

∑
i∈S

∑
d∈S0

∑
k∈Vd

xd
ijk = 1, ∀j ∈ S1 (12)

∑
j∈S

∑
d∈S0

∑
k∈Vd

xd
ijk = 1, ∀i ∈ S1 (13)

∑
j∈S0

xd
ijk = ∑

j∈S0

xd
jik = 0, ∀i ∈ S0, ∀d ∈ S0, ∀k ∈ Vd (14)

rijxd
ijk ≤ R, ∀i ∈ S, ∀j ∈ S, ∀d ∈ S0, ∀k ∈ Vd (15)

xd
ijk = {1, 0}, ∀i ∈ S, ∀j ∈ S, ∀d ∈ S0, ∀k ∈ Vd (16)
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In the above model, as the objective functions, Equations (7) and (8), respectively, are used to
minimize total transportation risk and energy consumption, and it is worth mentioning that the risk
of the delivery vehicle on its return to the depot from the final customer point is not calculated in
total risk, while energy is calculated in total transportation energy. In the objective function, S0 is the
depot set, here S0 = {i|i = 1, 2, · · · , m}; m is the total number of hazardous materials depots; S1 is
the customer point set, S1 = {i|i = 1, 2, · · · , n}, where n is the number of customer points; S is the
transportation network nodes set, here S = S0 ∪ S1; Vd is the vehicle set of hazardous materials depot d
and Vd = {k|k = 1, 2, · · · , K}, d ∈ S0; and xd

ijk defines the 0–1 integer variable. Equation (9) is the load
constraint, which means any vehicle of any depot should satisfy the corresponding load constraint,
namely, it cannot overload. In the equation, qj is the quantity demanded at customer point i and Ld

k is
the load capacity of vehicle k from depot d. Equation (10) means the number of vehicles in the depot
is limited, and the number of vehicles arranged to transport hazardous materials should not exceed
the number owned by the depot. Equation (11) indicates that every vehicle departing from the depot
should return to the original depot after finishing the transportation task. Equations (12) and (13)
guarantee that each customer point is serviced once and by one vehicle from a depot. Equation (14)
means the vehicles cannot depart from one depot and return to another depot. Equation (15) constrains
the maximum risk on the segment. Equation (16) denotes that if the route of vehicle k from depot d for
transporting hazardous materials contains the road segment from node i to node j, xd

ijk is equal to 1,

else xd
ijk equals 0.

4. Solving Methods

Different from single objective optimization, possible conflicts exist between multiple objectives
in the multi-objective optimization, and an improved sub-objective might cause the performance of the
other one to decrease. Multi-objective optimization generally gets a set of Pareto solutions; elements
of the set are called Pareto optimal solutions. In reality, decision-makers select one or more solutions
from a Pareto optimal solution set as the optimal solution of a multi-objective optimization problem
based on personal preference. For a multi-objective optimization problem, the typical algorithms
include niched Pareto genetic algorithm (NPGA) [39], nondominated sorting genetic algorithm-II
(NSGA-II) [40], and strong Pareto evolutionary algorithm (SPEA2) [41]. These algorithms have better
solution efficiency for particular problems. However, for a specific problem, these algorithms cannot
be used directly, but often need to be modified according to the problem properties.

This paper mainly uses genetic algorithm theory to design a method of solving MDVRP for
hazardous materials transportation. Based on biological characteristics, the genetic algorithm realizes
diversity and global search by operating the population composed of potential solutions. It focuses on
the set of individuals, which is consistent with the Pareto solution set of the multi-objective optimization
problem. Moreover, the genetic algorithm does not need many mathematical prerequisites, but
can deal with all types of objective functions and constraints, and has good performance for
combinatorial optimization.

4.1. Two-Stage Method

Solving the MDVRP for hazardous materials transportation has a certain complexity, and the
algorithm needs to solve two problems: one is to choose appropriate customer points for hazardous
materials depots, and the other is to design a reasonable distribution service order for each depot
to service the selected customer points. The method is designed in two stages: In stage one, we use
the global search cluster to convert the problem into several multi-objective optimization problems
with single depots, which decreases the solving complexity of the problem. In stage two, we design a
multi-objective genetic algorithm to solve the routing problem transformed in stage one, then we can
obtain the corresponding routing for each depot to service its customer points.
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4.1.1. Global Search Cluster

Deciding which depot services which customer points is related to the customer point itself, the
current depot, and other customer points that are serviced by the current depot. It also means that
there is an inverse relationship between the risk and energy of the customer point, the current depot,
and other customer points that are serviced by the current depot to determine whether the depot
serves the customer point. By defining intimacy in order to determine which customer points the
depot will service, customer points will be serviced by the depot with the highest intimacy.

Intimacy is defined as follows:

close(i, d) =
f (i, d)
(rt)id

, i ∈ S1, d ∈ S0 (17)

f (i, d) =

∑
j∈Sq(d)∪d

e−α(rt)ij + eβLd

∣∣Sq(d)
∣∣+ 1

, i ∈ S1, d ∈ S0, j ∈ Sq(d) (18)

(rW)ij = a·rij + b·Wij, (a + b = 1) (19)

Here, on the hypothesis that customer point j is serviced by depot d, f (i, d) is defined as the affinity
between depot d and customer point i; (rW)ij refers to dimensionless risk and energy-weighted average
on network nodes i to j, rij is the dimensionless nominal risk, and Wij is the dimensionless nominal
energy. In the above equations, a, b, α, and β are the weighting coefficients used to adjust the factor
magnitude; Ld is the current capacity of the depot; Sq(d) refers to the customer points assigned to depot
d; the initial state for Sq(d) is the depot itself; and |Sq(d)| is the assigned customer point number to
depot d. In this way, all customer points are divided into |S0| groups, where |S0| is the number of
the depot.

4.1.2. Multi-Objective Genetic Algorithm

The designed multi-objective genetic algorithm constructs a Pareto optimal solution set by the
banker method, using the gather density method to keep evolving the population distribution. The
basic process of the algorithm is shown in Figure 2, in which Pop refers to population, |Pop| is the
population size and its consistent size is N, Paretos is the Pareto optimal solution set, |Paretos| is the
number of Pareto optimal solutions in the set and its value takes 2N as the maximum, and the end
condition of the algorithm is the generation limit. Here, the evolutionary group is a population with a
fixed number of chromosomes. The chromosomes of the offspring population are composed of all the
Pareto individuals in the Pareto pool, all the individuals in the Pareto set of the current population,
and the individuals in the current population selected by the selection operator.

(1) Encoding and Decoding Chromosomes

We adopted a natural number coding method. For example, a network has one hazardous
materials depot and eight customer points. If the depot is marked 0 and the customer points are
respectively marked 1–8, the randomly generated sequence 0 3 5 1 4 2 8 7 6 becomes one of the
chromosomes. Because in the model a few vehicles are needed to service the customer points,
chromosomes obtained by this coding method also have to be decoded. The chromosomes are
decoded based on a greedy strategy, by inserting the customer points into the route according to the
order of the genes in the chromosome without violating load capacity constraint. If another customer
point is added, it will violate the load constraint, which means that we should assign another vehicle to
service this customer point. Assuming that there are eight customer points and their quantity demand,
successively, is 3 tons, 2 tons, 4 tons, 1 ton, 2 tons, 2 tons, 2 tons, and 1 ton, and vehicle load capacity is
8 tons, the chromosome 0 3 5 1 4 2 8 7 6 decodes as follows:
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Figure 2. Basic flow of the multi-objective genetic algorithm.

(2) Designing a Genetic Operator

The selection operator, crossover operator, and mutation operator play important roles in deciding
solution efficiency of the genetic algorithm. The basic flow of the selection operator is shown in Figure 1.

(1) Crossover operator: partially mapped crossover

À Randomly select a mating area in the selected two chromosomes, for example, A = 0 3 7 | 6 5 1 8
| 4 2, B = 0 1 2 | 3 4 5 6 | 7 8.

Á To chromosomes A and B, add their own mating area to the other chromosome, for instance, to
the two chromosomes in À, after operation Á to obtain A′ = 0 3 4 5 6 | 3 7 6 5 1 8 4 2, B′ = 0 6 5 1 8
| 1 2 3 4 5 6 7 8.

Â To chromosome A′ and B′ respectively, delete the genes behind the mating area that appeared in
the mating area, then get their offspring chromosomes A” = 0 3 4 5 6 7 1 8 2, B” = 0 6 5 1 8 2 3 4 7.
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(2) Mutation operator: reverse transcription method

In the chromosome two different genes are first randomly selected except the genes representing
hazardous materials depot, and then a reverse operation is performed on the selected genes.

(3) Constructing Pareto Optimal Solution Set

The banker method is not a kind of backtracking method, and constructing new Pareto optimal
solutions does not need to compare with the existing Pareto optimal solutions. Set Paretos as the Pareto
optimal solutions set and Pop as evolution group set, then adopt the banker method to construct Pareto
optimal solution set for Pop as follows:

À Initialize the Pareto optimal solutions set as Paretos.
Á Take out an individual (usually the first one) from Pop, as a banker, compare the banker with

other individuals, and delete the individual dominated by the banker.
Â After the banker is compared with all individuals in Pop, if any individual dominates the banker,

delete the banker, otherwise add the banker into Paretos.
Ã Repeat steps Á and Â until Pop becomes null.

(4) Calculating Individual Gathering Density

Evolving population distribution is an important part of the multi-objective optimization. Here,
the gathering density method is used to keep the evolving population distribution, specifically adopting
gather distance to represent the individual gather density, and the greater gather distance shows the
smaller gather density. Before calculating each individual distance, we need to order the individual
according to its objective function value. Set distance Ii as the gather distance for individual i, and I j

i
as the value of objective j for individual i. If individual i contains m objectives, the gather distance for
individual i will be calculated by Equation (20):

Ii =
m

∑
k=1

(Ik
i+1 − Ik

i−1) (20)

4.2. Hybrid Multi-Objective Genetic Algorithm

When solving the MDVRP for hazardous materials transportation, we need to consider the
customer points serviced by each depot as well as the service order. Therefore, we designed a
hybrid multi-objective genetic algorithm (HMOGA) to solve the MDVRP for hazardous materials
transportation. The algorithm adopts the same method shown in Section 4.1.2 in the aspects of Pareto
optimal solution set construction and keeping the evolving population distribution. Other specific
operations are as follows:

(1) Chromosome Coding and Decoding

The hybrid multi-objective genetic algorithm adopts a hybrid coding mode combining the
customer point and distribution service. The coding mode divides the chromosome into two parts:
part 1 is to select the customer points for each depot to service, with a length equal to the number of all
customer points and gene values are depot numbers; part 2 is to determine the service order for each
customer point, with a length also equal to the number of all customer points, while genes are customer
points. Combining part 1 with part 2 and according to the loading capacity constraint of hazardous
materials transportation vehicles, we adopt a greedy selection strategy to decode the chromosome.
For example, if there are three depots and 10 customer points, the hybrid coding chromosomes are
as follows:
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Chromosome part 1: a→c→b→c→a→b→a→b→c→b
Chromosome part 2: 3→9→2→10→1→8→6→7→5→4

(2) Genetic Operator Design

Similar to coding, genetic operators are also designed in two parts. Chromosome part 1 adopts
two-point crossover and simple mutation operators; chromosome part 2 uses partially mapped
crossover and reverse transcription operators.

(1) Crossover operator

À Two-point crossover operator: First, according to certain probability, freely choose two
individual chromosomes as the parent generation, and select two genes in part 1 of the selected
chromosomes as the intersections; second, swap the genes between the intersections of the
selected chromosomes, generating the offspring chromosomes.

Á Partially mapped crossover operator: Use the partially mapped crossover operator in Section 4.1.2
to complete the crossover operation.

(2) Mutation operator

À Simple mutation operator: With a certain probability, randomly select a chromosome, freely
choose a gene on part 1, and change the gene to its allele; if the selected gene is b, change it to a
or c.

Á Reverse transcription operator: same as reverse transcription operations in Section 4.1.2.

5. Case Studies

5.1. Cases Design

An enterprise has three hazardous materials depots and 20 customer points with hazardous
materials. The depots are designated a, b, and c, and the customer points are numbered 1–20. Each
depot uses trucks to deliver hazardous materials, and the dead weight, payload, capacity, engine
efficiency, and other vehicle parameters of the trucks are identical. Assume that each depot has enough
hazardous materials and transportation vehicles. This paper uses the affected population model in
the traditional risk model to measure the risk of each road segment. In addition to the length of the
road segment, the traditional affected population model also needs some relevant parameters such
as affected radius, accident rate, and population density. For energy consumption, a middle-level
method is used. Trucks perform delivery tasks by overcoming rolling resistance, air resistance, and
ramp resistance during the transportation of hazardous materials. To calculate rolling resistance and
ramp resistance, in addition to the total weight of the vehicle, the rolling resistance coefficient, the
ramp resistance coefficient, the road ramp, and other parameters are required. For air resistance, the air
resistance coefficient, the vehicle windward area, and the air density are required parameters. In order
to better verify the solution effect of the designed methods, we designed two cases, case 1 and case 2.

In case 1, the risk triangle fuzzy number of the first three hazardous materials depots and
20 customer points in the literature [27] are used as the source data of road segment length, population
density, accident rate, and road ramp from each depot to and between customer points. The road
segment length is obtained by subtracting the lower limit from the upper limit of the fuzzy number;
the population density around the road segment is obtained by subtracting the lower limit from the
value with maximum possibilities of the fuzzy number and multiplying by 150; the accident rate is
obtained by multiplying the value with maximum possibilities of the fuzzy number by 10−5; the road
ramp is obtained by subtracting the value with maximum possibilities from the upper limit of the
fuzzy number.
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In case 2, the road ramp is a random number between −5% and 5%, and the accident rate is a
random number between 10−6 and 5 × 10−5. The road segment length, the population density on
both sides of the road, and the number of customer points are the same as the corresponding data in
case 1. The road ramp and the accident rate are shown in Tables A1–A3 in Appendix A, where the
letters indicate the depot number and the figures indicate the number of the customer point.

The parameters related to vehicles transporting hazardous materials in the two cases are shown
in Table 1. According to the setting of the affected radius of hazardous materials in the literature [42],
the accident affected radius in both cases is 1000 m. The demand amount of each customer point in the
two cases is measured by weight (t), as shown in Table 2.

Table 1. Parameter values in case 1 and case 2 (Kirschstein et al. [37]; Ren [42]).

Symbol Value Unit Symbol Value Unit Symbol Value Unit

cr 0.01 ca 0.695 ρa 1.2 kg/m3

z 9.6 m2 nnum 2.5 times/km M 14 t
Ld

k 15 t rd 1000 m v 30 km/h

Table 2. Demand amount of each customer point in case 1 and case 2.

Customer
point qj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Demand
amount (t) 4 3 9 6 3 8 5 6 6 9 4 3 5 7 4 4 5 7 5 6

5.2. Results Analysis

The parameters for the global search clustering method in the first stage are set as a = 0.6, b = 0.4,
α = 0.9, β = 0.1. Table 3 shows the customer points serviced by each hazardous materials depot in
case 1 and case 2 by calculating the clustering algorithm proposed in the first stage. In the second
stage, the parameters of the multi–objective genetic algorithm are set as follows: population size
is 100, maximum evolution generation is 100, partially mapped crossover rate is 0.95, and reverse
transcription mutation rate is 0.2.

Table 3. Customer points for each depot in case 1 and case 2.

Depot Customer Points in Case 1 Customer Points in Case 2

a 1 4 14 17 19 20 3 9 12 14 15 20
b 2 3 6 7 8 10 13 1 2 6 7 8 17 19
c 5 9 11 12 15 16 18 4 5 10 11 13 16 18

Based on the clustering results for depots a, b, and c in case 1 and case 2, we obtain their Pareto
solution set of customer points serviced by each depot, as shown in Tables 4 and 5.

The parameters of the HMOGA are set as follows: population size is 200, maximum evolution
generation is 200, two-point crossover rate is 0.6, partially mapped crossover rate is 0.9, simple
mutation rate is 0.3, and reverse transcription mutation rate is 0.1. Tables 6 and 7 show the Pareto
optimal solution sets obtained by solving the HMOGA in case 1 and case 2, respectively.
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Table 4. Pareto solution sets for customer points serviced by each depot in case 1.

Depot No. Routes Number of
Vehicles

Risk
(Person)

Energy Consumption
(kWh)

a

1 a-1-4-19-20-a-14-17 2 1010.9 2995.1
2 a-19-20-17-a-14-4-1 2 1315.5 2761.2
3 a-14-20-17-a-4-1-19 2 1240.2 2975.5
4 a-1-4-14-a-20-17-19 2 1295.3 2921.5
5 a-4-19-20-17-a-1-14 2 1306.5 2819.3

b
1 b-3-2-7-b-10-8-13-b-6 3 71.8 1272.3
2 b-13-8-10-b-2-3-7-b-6 3 154.7 1187.6
3 b-7-13-8-b-10-6-b-3-2 3 94.6 1191.5

c

1 c-9-16-15-18-c-5-11-12 2 97.5 1507.2
2 c-5-11-12-15-18-c-9-16 2 101.3 1427.7
3 c-11-16-18-15-12-c-9-5 2 161 1336.5
4 c-11-12-15-18-16-c-5-9 2 180.9 1278.2

Table 5. Pareto solution sets for customer points serviced by each depot in case 2.

Depots No. Routes Number of
Vehicles

Risk
(Person)

Energy Consumption
(kWh)

a

1 a-15-14-12-a-9-3-a-20 3 38.525 1441.17
2 a-9-15-12-a-3-a-14-20 3 17.093 1615.854
3 a-9-15-a-3-a-14-12-a-20 4 33.669 1565.958
4 a-15-20-a-3-a-14-12-a-9 4 16.727 1625.259

b

1 b-1-17-19-b-2-6-b-8-7 3 49.623 1654.58
2 b-1-6-b-7-17-19-b-2-8 3 30.846 1699.874
3 b-2-8-7-b-1-17-19-b-6 3 50.934 1630.303
4 b-2-7-8-b-1-17-19-b-6 3 48.354 1681.225
5 b-2-8-b-6-1-b-7-17-19 3 31.385 1699.874

c

1 c-16-18-c-10-11-c-5-4-13 3 49.605 1420.315
2 c-16-18-c-4-5-c-10-13-c-11 4 19.316 1685.929
3 c-18-c-10-13-c-4-5-16-c-11 4 26.07 1565.662
4 c-4-10-c-5-16-18-c-11-13 3 31.871 1490.274
5 c-11-10-c-5-4-13-c-16-18 3 41.055 1420.315
6 c-13-4-5-c-10-11-c-18-16 3 66.188 1420.315
7 c-10-c-18-16-5-c-4-13-11 3 74.252 1398.882

Table 6. Pareto optimal solution set solved by the hybrid multi-objective genetic algorithm (HMOGA)
in case 1.

No. Routes Number of
Vehicles

Risk
(Person)

Energy
Consumption

(kWh)

Total
Number of

Vehicles

Total Risk
(Person)

Total Energy
Consumption

(kWh)

1
a-4-5-a-6-1 2 16.1 558.2

10 584.8 5722.9b-3-2-b-7-8-b-10-12-b-13-17 4 218.7 2274.7
c-16-14-c-9-18-c-15-19-20-c-11 4 350 2890

2
a-1-4-5-a-6 2 22.9 582

9 592.6 5685.4b-7-8-b-10-12-b-13-17-b-3-2 4 218.7 2274.7
c-15-19-20-c-11-16-14-c-9-18 3 351 2828.8

3
a-1-6-a-4-5 2 17 558.2

9 598.3 5575.4b-12-13-17-b-3-7-b-10-8-b-2 4 230.3 2188.4
c-11-16-14-c-9-18-c-15-19-20 3 351 2828.8

4
a-6-1-a-4-5 2 16.1 558.2

9 629.1 5385.6b-12-17-13-b-3-7-b-10-8-b-2 4 262 1998.6
c-11-16-14-c-9-18-c-15-19-20 3 351 2828.8

5
a-1-6-a-4-5 2 17 558.2

9 687.7 5360.2b-3-7-b-12-13-17-b-10-8-b-2 4 230.3 2188.4
c-11-16-9-c-14-18-c-15-19-20 3 440.5 2613.6

6
a-1-6-a-4-5 2 17 558.2

9 719.4 5170.4b-12-17-13-b-3-7-b-10-8-b-2 4 262 1998.6
c-11-16-9-c-14-18-c-15-19-20 3 440.5 2613.6



Sustainability 2018, 10, 3519 14 of 21

Table 7. Pareto optimal solution set solved by the HMOGA in case 2.

No. Routes Number of
Vehicles

Risk
(Person)

Energy
Consumption

(kWh)

Total
Number of

Vehicles

Total Risk
(Person)

Total Energy
Consumption

(kWh)

1
a-4-5-a-14-20-a-16-18-15-a-9 4 23.81 1103.72

9 89.99 2225.46b-3-b-10-11-b-6-12-1-b-7-8-2 4 45.60 497.23
c-19-17-13 1 20.59 624.51

2
a-14-20-a-16-18-15-a-9-4-5 3 30.36 1185.11

9 57.95 4315.60b-2-7-13-b-12-6-1-b-10-b-3-11 4 18.68 1344.97
c-17-8-c-19 2 8.91 1785.52

3
a-4-20-a-14-9-a-16-18-15 3 83.61 719.25

8 232.57 2019.60b-3-11-b-1-10-b-2-12-6-b-5-7-8 4 128.37 675.84
c-19-17-13 1 20.59 624.51

4
a-4-5-a-14-20-a-16-18-15-a-9 4 23.81 1103.72

9 81.04 2241.25b-1-12-6-b-2-3-b-8-7-b-10-11 4 36.64 513.02
c-19-17-13 1 20.59 624.51

5
a-9-5-4-a-16-18-15-a-3-a-14-20 4 48.27 1211.36

8 107.45 2159.43b-1-12-6-b-2-8-7-b-10-11 3 38.60 323.56
c-19-17-13 1 20.59 624.51

6
a-4-5-a-14-20-a-16-18-15-a-9 4 23.81 1103.72

10 61.54 2621.59b-6-b-10-12-b-3-11-b-2-7-8-b-1 5 17.15 893.36
c-19-17-13 1 20.59 624.51

7
a-14-9-a-16-18-15-a-4-20 3 83.61 719.25

8 196.38 2137.18b-3-11-b-1-10-b-2-6-12-b-5-7-8 4 92.19 793.42
c-19-17-13 1 20.59 624.51

8
a-16-18-15-a-9-14-a-20-4-5 3 125.71 997.51

8 225.48 2059.70b-7-8-b-3-11-b-2-12-6-b-1-10 4 79.19 437.68
c-19-17-13 1 20.59 624.51

9
a-4-5-a-14-20-a-16-18-15-a-9 4 23.81 1103.72

10 66.59 2518.64b-6-b-10-b-3-11-b-2-7-8-b-1-12 5 22.20 790.41
c-19-17-13 1 20.59 624.51

10
a-4-5-a-14-20-a-16-18-15-a-9 4 23.81 1103.72

9 72.85 2354.90b-10-b-3-11-b-2-7-8-b-1-12-6 4 28.46 626.67
c-19-17-13 1 20.59 624.51

In the “Routes” column of Tables 4–7, each letter and the figures behind it indicate the transport
route of a delivery vehicle. For example, “a-1-4-19-20-a-14-17” in Table 4 indicates the need for two
delivery vehicles. Its transportation routes are a-1-4-19-20-a and a-14-17-a. From the above tables, it
can be seen that the methods designed here can all obtain the Pareto optimal solution set, and the
solutions in the set are not comparable. Figures 3 and 4 are the Pareto optimal distribution curves by
solving the HMOGA in case 1 and case 2, respectively. It can be seen from Figures 3 and 4 that the
HMOGA can obtain the Pareto solution distributed in the whole solution space instead of focusing on
a certain area, where the first point and the last point in each figure correspond to the optimal solution
of energy consumption and risk, respectively. Decision-makers can select the appropriate routes for
hazardous materials transport vehicles according to the actual situation. If the transportation task is
currently carried out according to the fourth solution in Table 4, the decision-maker can choose the first
solution in the table to carry out the transportation task when an accident occurs between customer
points 2 and 3 and traffic is prohibited.

Figures 4 and 5 show optimal risk value and energy value, respectively, of each depot obtained by
the two methods in case 1.
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It can be seen from Figures 5 and 6 in case 1 that compared to the single objective risk and energy
consumption optimal solutions, the HMOGA model performed nearly six times and 1.1% better than
the TSM. The huge difference in Figure 5 is mainly due to the characteristics of data used in case 1.
In the optimal risk solution, depot an optimized by HMOGA only serves three customer points (1, 4,
and 6), and the accident rate and population density of the road segment between depot a and the
three customer points are relatively small. However, there are six customer points (1, 4, 14, 17, 19, 20)
serviced by depot an obtained by the TSM in case 1, and the accident rate and population density
between depot a and customer points 17 and 20 is relatively large. Therefore, the risk value of depot a
obtained by the HMOGA is much smaller than the optimal risk value obtained by the TSM.
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Figure 6. Minimum energy obtained by the two algorithms for each depot in case 1.

For optimal energy consumption, the optimization result of the HMOGA only saves 1.1%
compared with the optimization result of the TSM. This is mainly due to the strong dependence
of energy consumption on the length of the road segment. In case 1, the length and slope of the road
segment have little changes, and the slope is only uphill, so the optimization effect of the HMOGA is
not obvious.

Similarly, Figures 7 and 8 show the optimal risk value and energy value of each depot in
case 2, respectively.
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In case 2, since the slope and accident rate of the road segment are randomly generated, for
the optimal solutions of risk and energy consumption, the HMOGA has a nice optimization effect
compared with the TSM. As can be seen from Figures 7 and 8, the optimal risk and energy consumption
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values obtained by the HMOGA are reduced by 12.4% and 54.8%, respectively, compared with the
values obtained by the TSM in case 2.

As to single depots, the optimal solution obtained by the TSM may be better than the HMOGA,
but for the entire transportation network, the HMOGA can find better transportation routes than the
TSM. Accordingly, to solve the MDVRP for hazardous materials transportation, the HMOGA has
certain advantages in practical application.

For the MDVRP for hazardous materials transportation, most studies aim to reduce transportation
costs, with distance as the main optimization objective. In order to compare the optimization effect
when transportation distance and risk are used as the optimization objective, in addition to considering
transportation risk, we test case 2. Table 8 shows the optimal vehicle route obtained by taking energy
consumption and distance as the optimization objective in case 2. It can be seen from Table 8 that
for the MDVRP for hazardous materials transportation, compared with distance as the optimization
objective, when energy consumption is optimized, although total distance increases by 2.3%, total
energy consumption reduces by 47.9% and the number of vehicles decreases by one. Therefore, it is
more practical to consider the energy consumption of truck transportation in the MDVRP.

Table 8. Optimal vehicle routes obtained by using energy consumption and distance as the optimization
objectives in case 2.

Routes Number of
Vehicles

Distance
(km)

Energy
Consumption

(kWh)

Total
Number of

Vehicles

Total
Distance

(km)

Total Energy
Consumption

(kWh)

Energy
consumption as

an objective

a-4-20-a-14-9-a-16-18-15 3 166 719.3
8 442 2019.6b-3-11-b-1-10-b-2-12-6-b-5-7-8 4 210 675.8

c-19-17-13 1 66 624.5

Distance as an
objective

a-4-5-a-6-2-1 2 73 857.0
9 432 3877.1b-10-8-b-3-7-b-12-17-13 3 151 1419.6

c-19-20-15-c-16-9-c-18-14-c-11 4 208 1600.6

6. Conclusions

Hazardous materials transportation routing is one of the basic elements to assure safe
transportation. In reality, it is very common that some depots coordinate the transportation and
distribution of hazardous materials.

Designing scientific and reasonable transportation routes considering factors such as
transportation risk and energy consumption can help deliver hazardous materials to each customer
point safely, quickly, and economically. We took the MDVRP for hazardous materials transportation
as the research object, considering transportation risk and energy consumption, and established a
hazardous materials transportation routing multi-objective optimization model. In the model, the risk
of the road segment is measured by the number of people who could be affected if an accident occurred,
and energy consumption is measured by the trucks overcoming resistance during transportation.

As for solving the model, we designed a TSM and a HMOGA. In the TSM, the purpose of the first
stage is to find the set of customer points serviced by each depot through the global search clustering
method considering transportation energy consumption, transportation risk, and depot capacity, and
to determine the service order for customer points to each depot by using a multi-objective genetic
algorithm with the banker method to seek dominant individuals and gather distance to keep evolving
population distribution in the second stage. The HMOGA combines the solution method of the two
stages into one stage. In the design of the algorithm, customer points serviced by the depot and
serviced orders are optimized simultaneously. In the end, we compared the above two methods
through two cases, and the results show that the methods can obtain different Pareto solution sets. The
TSM and HMOGA have their own advantages, but the HMOGA is able to find better transportation
routes for the whole transportation network.

In addition, when the length and slope of the road segment do not change much, energy
consumption does not change much, and decision-makers can use transport risk as the main basis for
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decision-making. When the difference between the slope and length of the road segment is large, it is
important to optimize the energy consumption to find the Pareto optimal solution set for hazardous
materials transportation. The decision-maker can select the appropriate solution to perform the
transportation task in the Pareto solution according to the actual situation. Compared with distance,
when energy consumption is the optimization objective, although the distance is slightly increased,
the number of vehicles and amount of energy consumption are effectively reduced.

Due to the lack of actual data, such as accident probability and slope information of road segments,
we designed the example by simply improving the data in the existing literature. Although the
rationality of the model and algorithm is verified, a large-scale actual road network study is still
necessary for further research. In addition, we found the Pareto optimal solution set, and for each
solution in the set, it is difficult to measure which one is better. Hence, in combination with other
conditions, choosing one or more Pareto solutions as hazardous materials transportation routes is the
focus of the next phase of research.
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Appendix A

Table A1. Average slope and accident rate of road segments.

(Average Gradient,
Accident Rate) a b c 1 2 3 4

b (11, 1)
c (12, 29) (−17, 6)
1 (19, 10) (−42, 1) (−38, 47)
2 (31, 41) (−43, 1) (−44, 27) (0, 3)
3 (−35, 30) (14, 19) (29, 8) (30, 1) (−14, 37)
4 (8, 24) (32, 27) (2, 24) (1, 46) (46, 31) (36, 8)
5 (37, 18) (5, 29) (11, 12) (−12, 14) (13, 29) (−49, 48) (30, 24)
6 (42, 45) (−5, 31) (46, 44) (19, 14) (−33, 19) (−38, 8) (40, 8)
7 (12, 42) (−9, 31) (−43, 11) (3, 30) (−13, 8) (21, 46) (−36, 26)
8 (23, 38) (−20, 9) (38, 39) (11, 35) (−37, 12) (12, 35) (13, 37)
9 (−46, 9) (−3, 34) (16, 43) (−11, 42) (25, 22) (−29, 16) (−10, 21)

10 (17, 43) (0, 23) (−18, 50) (−50, 37) (46, 41) (−44, 22) (−25, 14)
11 (48, 36) (−35, 18) (−40, 50) (21, 25) (11, 26) (−33, 4) (−37, 29)
12 (−19, 26) (−18, 3) (1, 31) (−40, 11) (−48, 50) (13, 49) (36, 35)
13 (7, 16) (24, 31) (−28, 20) (12, 38) (−17, 38) (−16, 35) (−44, 38)
14 (−20, 1) (−19, 40) (−21, 14) (37, 24) (−45, 18) (−18, 8) (−7, 37)
15 (−33, 5) (33, 41) (42, 15) (−1, 23) (14, 9) (−13, 44) (7, 24)
16 (−40, 19) (46, 26) (5, 43) (25, 48) (−37, 33) (16, 42) (−20, 7)
17 (37, 8) (38, 16) (16, 2) (0, 38) (35, 25) (31, 30) (5, 19)
18 (35, 9) (23, 44) (−39, 19) (−12, 6) (37, 4) (31, 10) (−28, 42)
19 (25, 50) (−20, 37) (−1, 5) (29, 30) (10, 35) (3, 9) (−19, 2)
20 (−35, 23) (45, 48) (−12, 34) (5, 20) (22, 26) (11, 41) (−39, 26)
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Table A2. Average slope and accident rate of road segments.

(Average Gradient,
Accident Rate) 5 6 7 8 9 10 11

6 (31, 34)
7 (−37, 22) (49, 37)
8 (−22, 6) (−45, 29) (−45, 43)
9 (29, 48) (−42, 10) (−17, 32) (3, 37)

10 (40, 47) (2, 39) (42, 33) (46, 42) (10, 6)
11 (29, 28) (−7, 42) (−10, 10) (−10, 36) (29, 28) (−44, 35)
12 (25, 18) (−41, 20) (−7, 43) (−26, 31) (8, 1) (31, 15) (28, 35)
13 (12, 24) (−24, 26) (45, 7) (9, 38) (−36, 6) (16, 22) (−47, 47)
14 (−14, 19) (40, 45) (34, 6) (−25, 13) (−28, 23) (19, 12) (37, 10)
15 (36, 43) (−27, 2) (3, 38) (19, 8) (−12, 38) (31, 29) (15, 17)
16 (−27, 16) (−36, 50) (35, 16) (45, 1) (−50, 35) (3, 27) (21, 9)
17 (37, 23) (−38, 29) (20, 48) (−7, 4) (−8, 28) (19, 32) (−42, 50)
18 (−27, 14) (44, 3) (−10, 15) (39, 41) (−42, 4) (−36, 9) (5, 23)
19 (−25, 50) (−42, 27) (−24, 17) (−50, 43) (16, 22) (19, 26) (45, 50)
20 (4, 15) (−46, 10) (−50, 8) (45, 11) (36, 11) (23, 49) (−45, 5)

Table A3. Average slope and accident rate of road segments.

(Average
Gradient,

Accident Rate)
12 13 14 15 16 17 18 19

13 (−23, 32)
14 (−36, 5) (−28, 39)
15 (49, 22) (−35, 21) (−6, 30)
16 (12, 47) (−26, 11) (−42, 32) (37, 29)
17 (−21, 3) (2, 32) (28, 43) (−29, 19) (−39, 46)
18 (43, 45) (41, 31) (−33, 42) (−4, 10) (−10, 13) (−47, 35)
19 (−13, 15) (−40, 23) (48, 32) (−50, 37) (−19, 10) (−25, 30) (−25, 25)
20 (20, 12) (41, 24) (28, 37) (25, 28) (50, 31) (−31, 18) (−35, 5) (12, 38)
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