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Abstract: This paper proposes an equilibrium bus boarding model to investigate optimal pricing and
service for peak-period bus commuting inefficiency of boarding queuing congestion. Commuters
are assumed to choose their optimal time-of-use decision from home or the workplace to the bus.
We found that: (1) when the earliest commuter boards the bus as soon as the bus arrives at the
bus station, the dynamic boarding queuing congestion toll that eliminates the boarding queuing
congestion creates social optimal equilibrium and the optimal bus departure interval during the peak
period; (2) the optimal bus departure interval during the peak period is the time that the preceding
bus riders spend on boarding, which means the relationship between service frequency and ridership
does not conform to the square root principle: the optimal bus frequency is proportional to the square
root of the number of commuters.

Keywords: peak period; bus commuting inefficiency; boarding queuing congestion; equilibrium bus
boarding model; optimal pricing and service

1. Introduction

Bus transit commuting is a mode of sustainable travel that effectively suppresses traffic congestion.
However, the peak-period bus commuting inefficiency of boarding queuing congestion is a problem
to be solved. During the peak period, the commuter is usually not willing to depart early, but also
does not want to depart too late and miss the bus. Therefore, when the commuter has to board the
bus, in determining their departure time, the commuter faces a tradeoff between time spent in the
boarding queue and the cost of early boarding delay. For the boarding commuter that departs later,
they risk a higher boarding queuing time cost and lower early boarding delay cost, and vice versa.
Therefore, an efficient peak-period bus boarding process occurs when the boarding time and the early
boarding delay cost are the same, which would eliminate boarding queuing congestion by changing
the commuter’s departure time choice with optimal pricing and service. To this end, based on real
traffic phenomena, we propose an equilibrium bus boarding model to investigate the peak-period bus
commuting inefficiency of boarding queuing congestion. By studying its equilibrium mechanisms,
we obtain optimal pricing and service to eliminate congestion and improve bus boarding efficiency
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during the peak period. Among our findings, two stand out. When the earliest commuter boards the
bus as soon as the bus arrives at the bus station, the dynamic boarding queuing congestion toll that
eliminates the boarding queuing congestion indicates the social optimal equilibrium and the optimal
bus departure interval during the peak period. Secondly, the optimal bus departure interval during the
peak period is the time that the preceding bus riders spend on boarding, which means the relationship
between service frequency and ridership does not conform to the square root principle.

The main contributions of this paper are: (1) an equilibrium bus boarding model during
the peak-period commuting is proposed; (2) the equilibrium mechanisms of the peak-period bus
commuting inefficiency of boarding queuing congestion are investigated and clarified, and optimal
pricing and service are obtained to eliminate congestion; and (3) the optimal bus departure intervals
during the peak period are obtained, which do not conform to the square root principle.

The remainder of this paper is organized as follows. Section 2 provides a brief review of some
relevant research. Section 3 proposes the equilibrium bus boarding model during peak periods.
Section 4 investigates optimal pricing and service for the peak-period bus commuting inefficiency of
boarding queuing congestion with the new model using the analytical analysis. Section 5 completes
the numerical analysis. Finally, Section 6 concludes the paper.

2. Literature Review

In deciding when to use a congestible facility, an individual normally faces a tradeoff, such as the
tradeoff between using the facility at a convenient time when congestion is relatively high and using
the facility at a less convenient time with relatively high schedule delay costs when the facility is less
congested. Recent theoretical work on the economics of congestible facilities has been increasingly
concerned with this tradeoff. In 1969, Vickrey [1] deduced the first dynamic model of vehicle congestion
during the morning rush hour, the classical bottleneck model, which used the commuter’s departure
time as the endogenous variable, and at equilibrium, the commuter could not unilaterally reduce
their travel cost by altering their departure time. With identical individuals, this means that the costs
are constant at all times that commuters are departing. Since then, many scholars performed related
investigations contributing to the development of Vickrey’s highway bottleneck model, in which
commuters face a tradeoff between the schedule delay cost of arriving at work at a time other than the
most preferred time, and the cost of time spent queuing behind a highway bottleneck [2–12]. Some
scholars investigated other congestible facilities and traffic congestion situations [13–16].

To the best of our knowledge, only limited attention has been paid to optimal pricing and
service for the peak period of bus commuting inefficiency during boarding queuing congestion.
The basic model of optimal pricing and service in urban mass transit is Mohring’s bus line model [17].
In Mohring’s model, passenger arrivals at an origin stop are assumed to be uniform over the peak
period and considering bus size as given, Mohring analyzed the socially optimal service frequency
for a given number of passengers and proposed the square root principle for the determination of
optimal bus service frequency. Using this principle, the optimal bus frequency is proportional to
the square root of the number of commuters. This classical model was useful for transit service
planning in a static sense. Jansson [18] extended the square root principle to a model in which service
frequency is simultaneously optimized with bus size. Sumi et al. [19] presented a stochastic model for
optimizing commuter departure time and route choices in a mass transit system. They assumed that
departure time is mainly dependent on the system’s operational features and the travelers’ appointed
time of arrival at the destination. Alfa and Chen [20] examined a public transportation system
with multiple origins and destinations and proposed an algorithm for calculating the peak-hour
departure time of commuters, where commuters rode on the first coming bus in a random order.
Tian et al. [21] assumed that the commuters had full information about the transit system timetable
from everyday learning and therefore the queuing time at the station was zero for simplicity. They
developed an equilibrium model for peak-period commuting for a mass transit line and analyzed the
equilibrium properties of the morning peak-period commuting pattern on a many-to-one transit system



Sustainability 2018, 10, 3497 3 of 14

with in-vehicle crowding and schedule delay costs in a monocentric city. The model offered useful
information for optimal transit service planning and operations. Kraus and Yoshida [22] provided
economic analyses about the commuters’ time-of-use decision, the optimal pricing, and the service in
urban mass transit. In their model, a group of identical commuters was considered, each having the
same desired arrival time at work. The model was closely related to the bottleneck model, with queuing
time at a transit stop treated analogously to queuing time at a bottleneck, and the difference arose in
the intermittent nature of mass transit capacity provision. In addition, they assumed that a commuter
who was scheduled to arrive earlier had the relative priority of boarding, and under the optimal
pattern of arrivals, which could be decentralized with an appropriate run-dependent fare, no queuing
actually occurred (passengers were assumed to know the schedule, so queuing could be avoided).
Kraus [23,24] analyzed the second-best policy problem that occurs when auto travel was priced below
its marginal cost and introduced a substitute mass transit model by combining the model of a rail
line based on Kraus and Yoshida [22] with the classic bottleneck model. Kraus [23] established that
the second-best level was higher, but only as a local result that did not necessarily represent the
best optimum. Kraus [24] extended this to a global result applied to discretely underpriced auto
travel and obtained much stronger results in a richer model, which could be directly applied to road
pricing. The fact that Kraus’ results [24] are global permits Kraus’ results [24] can be used to the
road pricing which is not possible with the local results of Kraus [23]. Ruiz et al. [25] proposed a
bus frequency optimization methodology to improve harmonization between service level and social
equity in public transport. Al Kheder et al. [26] investigated the optimal number of buses for Kuwait
Public Transport Company and developed an integer linear programing model for the general problem.
Wang et al. [27] investigated how to design limited stop service operation strategies from the combined
bus operator’s and users’ perspective. Stockholm, Sweden introduced congestion pricing in 2006,
and Börjesson et al. [28] used these data to model how the optimal pricing, frequency, bus size, and
number of bus lanes for a corridor depend on the presence of congestion pricing for cars.

Some scholars have studied the bus boarding process and its influencing factors. Sun et al. [29]
presented the first use of smart card data to study bus passenger boarding behavior and its impact on
bus dwell time. Tirachini and Hensher [30] investigated the effects of four alternative payment methods:
on-board payment with (1) cash, (2) a magnetic strip, (3) a contactless card, and (4) off-board payment
(on the station). Other factors, such as the number and width of doors, the existence of steps to board,
the type of bus, and the number of seats and space for standees [31–36], also influence the dynamics of
bus boarding. D’Souza et al. [37] investigated effects of low-floor bus interior configuration and
passenger crowding on boarding and disembarking efficiency and safety. Wu et al. [38] modeled bus
bunching and holding control with vehicle overtaking and distributed passenger boarding behavior.
Ji et al. [39] provided a simulation model based on the social force paradigm and incorporated five
different forces that drive individual agents’ boarding and alighting.

A more specific description of the methodologies related to optimal pricing and service for the
peak-period bus commuting inefficiency of boarding queuing congestion is provided by Table 1.

Table 1. Methodology related to optimal pricing and service for the peak-period bus commuting
inefficiency of boarding queuing congestion.

Selected Reference Methodology Characteristics

Vickrey [1] First bottleneck model
Equilibrium queuing patterns at a single
bottleneck on freeways to a work place during
the morning peak period

Arnott et al. [3] The extended bottleneck model Queue delay at the bottleneck can be eliminated
by time-varying pricing

Mohring [17]
The bus line model: the basic
model of optimal pricing and
service in urban mass transit

The square root principle: the optimal bus
frequency is proportional to the square root of the
number of commuters
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Table 1. Cont.

Selected Reference Methodology Characteristics

Jansson [18] A model extended the square root
principle

Service frequency was simultaneously optimized
with bus size

Tian et al. [21]
An equilibrium model of
peak-period commuting for a
mass transit line

Queuing time at station is zero for simplicity and
the general properties of the equilibrium
departure time distribution of commuters

Kraus and Yoshida [22]

The rail line model: queuing time
at a transit stop is treated
analogously to queuing time at a
bottleneck

Economic analyses of the commuters’ time-of-use
decision, the optimal pricing, and the service in
urban mass transit and under the optimal
pattern of arrivals decentralized with an
appropriate run-dependent fare, no queuing
actually occurs

Sun et al. [29] The first use of smart card data Bus passenger boarding behavior and its
impact on bus dwell time

This paper

The equilibrium bus boarding
model: queuing time at the bus
station is treated analogously to
queuing time at a bottleneck

Dynamic boarding queuing congestion toll can
indicate the social optimal equilibrium and the
optimal bus departure interval during the peak
period, which does not conform to the square
root principle

It is clear that recent theoretical work on the economics of congestible facilities, the bus boarding
process, and its influencing factors is increasing; however, only few studies have focused on optimal
pricing and service for the peak-period bus commuting inefficiency of boarding queuing congestion.

3. Peak Period Equilibrium Bus Boarding Model

3.1. Problem Description

This paper aimed to investigate optimal pricing and service for peak-period bus commuting
inefficiency during boarding queuing congestion. According to our research purpose and for simplicity
without loss of generality, we take a single bus whose departure time is given during the peak period
as an example and analyse the equilibrium of the single bus commuters’ boarding queuing congestion
during the peak period. Thus, we investigated the following traffic situation: during the peak period,
N identical commuters’ boarding process of a single bus considering boarding queuing congestion.

Commuters were assumed to make their optimal time-of-use decision and choose their departure
time, and their departing, arrival, and boarding were assumed to be continuous. Furthermore, we
assumed the bus supply is sufficient and therefore the commuter arrives at the bus station no earlier
than the bus that they can board arrives. When the commuter arrives at the bus station, they queue
for boarding the bus that can be boarded at once and do not need to wait for the bus. The commuter
departing earliest boards the bus when they arrive at the bus station; the leave time of the bus is given.
The bus leaves at the leave time regardless of whether or not the bus is fully loaded. This is also the
time when the last boarding commuter boards the bus. The commuter departing earlier arrives at
the bus station and boards the bus earlier, meaning the boarding queuing at the bus station is first-in,
first-out (FIFO) queuing.

3.2. Symbols

The symbols and their meanings and description used in this paper are represented in Table 2.

Table 2. The symbols and their meanings/description.

Symbol Meaning/Description

N Number of the identical commuters of the bus

t ∈ [ta, tb] Commuter’s departure time
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Table 2. Cont.

Symbol Meaning/Description

tb The last boarding commuter’s departure time

ta The earliest boarding commuter’s departure time

T f Travel time of the commuter from the origin to the bus station, which is
assumed to be the same for all commuters

t∗r The time when the bus arrives at the bus station

t∗l The time when the bus leaves from the bus station

Tw
b (ta) = ta + T f − t∗r

The time that the arrival bus waits for the earliest boarding commuter at
the bus station

sb Boarding capacity of the bus

T(t) Boarding queuing time of the commuter departing at time t at the bus
station

To(t) Boarding time of the commuter departing at time t

I
Time that elapses from the boarding time of the commuter to the time
that the commuter chooses the seat or the standing position in the bus,
which is ignored

T(t) = To(t)− (t + T f ) Boarding queuing time of the commuter departing at time t

ED(t) = t∗l − To(t) Early boarding delay of the commuter departing at time t

C(t) Travel cost of the commuter departing at time t

α Unit travel time cost

β Unit early boarding delay cost

p0 The static fare

C Equilibrium travel cost

sc Commuter departure rate

D(t) Boarding queuing length at different time

TT Total boarding queuing time of all commuters on the bus

SDC Total early boarding delay cost of all commuters on the bus

TC Total equilibrium travel cost of all commuters on the bus

τ(t) Dynamic boarding queuing congestion toll

Tτ
Total dynamic boarding queuing congestion toll for all commuters on
the bus

p(t) Dynamic fare

the subscript m Morning peak-period bus commuting

min Minute

Nj−1, Nj
Number of commuters on the preceding bus j− 1 and the following bus
j, respectively

sj−1
b , sj

b
Boarding capacity of the preceding bus j− 1 and the following bus j,
respectively

tj−1
d , tj

d
Departure time of the preceding bus j− 1 and the following bus j at the
last bus station, respectively

T j−1
b , T j

b
The time the preceding bus j− 1 and the following bus j spend on
arriving at the bus station from the last bus station, respectively

ta
j The earliest boarding commuter’s departure time of the following bus j

tb
(j−1) The last boarding commuter’s departure time of the preceding bus j− 1

∆tj
d Bus departure interval, ∆tj

d = tj
d − tj−1

d

t∗jr The time the following bus j arrives at the bus station

t∗(j−1)l The time the preceding bus j− 1 leaves the bus station
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3.3. The Model

We define the boarding queuing time as follows: as the commuter arrive at the bus station no
earlier than the bus that they can board arrives, the boarding queuing time is the time that elapses
from the time the commuter arrives at the bus station to the time they board the bus.

Late arrival is prohibited and the origin is the commuter’s home (for the morning peak-period
commuter) or workplace (for the evening peak-period commuter), and the destination is the bus. Thus,
the timeline of the boarding commuter departing at time t during the peak-period bus commuting is
shown in Figure 1.
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Figure 1. The timeline of the boarding commuter departing at time t during the peak-period
bus commuting.

According to the definition, for the commuter departing at time t, the boarding queuing time is
T(t) = To(t)− (t + T f ) and the early boarding delay is ED(t) = t∗l − To(t). Thus, the equilibrium bus
boarding model is proposed as follows:

C(t) = α[T(t) + T f ] + β[t∗l − To(t)] + p0 (1)

where C(t) is the travel cost of the commuter departing at time t, α is the unit travel time cost, and β is
the unit early boarding delay cost. According to Small [40], we set α > β, and p0 is the static fare.
All boarding commuters choose their departing time to travel, and at equilibrium, they could not
unilaterally alter their departing time to reduce their travel cost, which means their travel costs are
identical and are constant at all times that commuters are departing, so that ∂C(t)/∂t = 0, t ∈ [ta, tb].

4. Analysis

4.1. No-Toll Equilibrium Analysis

In this section, we perform a no-toll equilibrium analysis. The commuter departing earliest
does not encounter bus boarding queuing congestion and boards the bus earliest; the commuter
departing latest encounters the longest bus boarding queuing and boards the bus when the bus leaves.
The bus door runs at full capacity during [ta + T f , t∗l ], so we have:

C(ta) = αT f + β[t∗l − ta − T f ] + p0 (2)

C(tb) = α[t∗l − tb] + p0 (3)

t∗l − ta − T f =
N
sb

(4)

t∗r ≤ ta + T f = To(ta), tb + T f ≤ t∗l = To(tb) (5)

Combining at equilibrium, ∂C(t)/∂t = 0, t ∈ [ta, tb], we have:

ta = t∗l −
N
sb
− T f (6)

tb = t∗l −
βN
αsb
− T f (7)
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C = β
N
sb

+ αT f + p0, ta ≤ t ≤ tb (8)

where C is the equilibrium travel cost. Let sc be the commuter’s departure rate, and for all boarding
commuters N, t ∈ [ta, tb]. Therefore:

(tb − ta)sc = N (9)

Combining Equations (6), (7), and (9), we have:

sc =
αsb

α− β
(10)

The boarding queuing time of the commuter departing at time t is:

T(t) =
β

α− β
(t− ta), ta ≤ t ≤ tb (11)

and the boarding queuing length at a different time is:

D(t) =

{
(sc − sb)(t− ta) = βsb

α−β (t− ta) = sbT(t), ta + T f ≤ t + T f ≤ tb + T f

βN
α − sb(t− tb), tb + T f ≤ t + T f ≤ t∗l

(12)

Therefore, we obtained the boarding queuing diagram (Figure 2a) and the boarding no-toll
equilibrium diagram (Figure 2b). Figure 2a depicts the boarding queuing diagram and Figure 2b depicts
the boarding no-toll equilibrium diagram where for the horizontal axes, t + T f ∈ [ta + T f , tb + T f ]

represents the time when the commuter arrives at the bus station and To(t) ∈ [ta + T f , t∗l ] represents
the time when the commuter boards the bus. Note that according to Kraus [23], after tb + T f , there are
only commuters boarding the bus, but no commuter arrives at the bus station, so it is infeasible that a
commuter switches their departure time to t∗l − T f and arrives at the bus station at t∗l to reduce travel
cost. In Figure 2a, the vertical axis represents the boarding queue length at different times, and curve
AB shows the boarding queuing length firstly increasing linearly with the ratio sc − sb from zero at
ta + T f to the maximum at tb + T f . Curve BC shows the boarding queuing length then reduces with
the ratio −sb from the maximum at tb + T f to zero at t∗l . In Figure 2b, the vertical axis represents the
cumulative arriving and boarding commuters at different times. More specifically, curve ABC shows
the cumulative arriving commuters of the bus, which increases linearly with the ratio sc from zero at
ta + T f to the maximum at tb + T f and then remains unchanged. Curve AC shows the cumulative
boarding commuters of the bus, which increase linearly with the ratio sb from zero at ta + T f to the
maximum at t∗l . Figure 2 shows that at t∗l , the cumulative boarding commuters of the bus, is equal to
the cumulative arriving commuters of the bus, and the boarding queuing length of the bus is zero.
Therefore, the no-toll equilibrium was obtained. By combining Figure 2b, it was easy to obtain the
total boarding queuing time of all commuters of the bus as:

TT = area(ABCA) =
βN2

2αsb
(13)

The total early boarding delay cost of all commuters of the bus is:

SDC = βarea(ACDA) =
βN2

2sb
(14)

The total equilibrium travel cost of all commuters of the bus is:

TC = NαT f + αTT + SDC + Np0 = NαT f +
βN2

sb
+ Np0 = NC (15)
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4.2. Social Optimal Equilibrium Analysis

In this section, we outline our social optimal equilibrium analysis. Under the optimal pattern of
departing and arrival, which can be decentralized with an appropriate dynamic boarding queuing
congestion toll, no boarding queuing congestion actually occurs (the commuters are assumed to
know the schedule, so the boarding queuing congestion can be avoided) [3,5,22]. Suppose the transit
authority collects the dynamic boarding queuing congestion toll τ(t) to eliminate the deadweight
loss of the boarding queuing congestion during the peak period. At this time, the commuters change
their departure time decision to eliminate boarding queuing congestion, which means with τ(t),
T(t) = 0. Based on the above analysis, we present the following proposition on the social optimal
equilibrium and optimal bus departure interval during the peak period:

Proposition 1. When the earliest commuter boards the bus as soon as the bus arrives at the bus station,
the dynamic boarding queuing congestion toll, which eliminates the boarding queuing congestion, indicates the
social optimal equilibrium and the optimal bus departure interval during the peak period.

Proof. The dynamic boarding queuing congestion toll τ(t) eliminates the boarding queuing congestion,
which means with τ(t):

T(t) = To(t)− (t + T f ) = 0, ta ≤ t ≤ tb (16)

and To(t) = t + T f means the commuter boards the bus as soon as they arrive at the bus station.
Therefore:

t∗r ≤ To(ta) = ta + T f (17)

t∗l = To(tb) = tb + T f (18)

and therefore,

To(tb)− To(ta) =
N
sb

= tb + T f − ta − T f =
N
sc

(19)

sc = sb (20)

which means the commuter’s arrival rate is equal to the boarding capacity of the bus door. With τ(t),
T(t) = 0, t∗r ≤ To(ta) = ta + T f , t∗l = To(tb) = tb + T f and sc = sb. However, when t∗r < To(ta) = ta + T f

and Tw
b (ta) = ta + T f − t∗r > 0, there is deadweight loss of the bus waiting for the commuter,
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so only when t∗r = To(ta) = ta + T f do we have the social optimal equilibrium. Combining
t∗l = To(tb) = tb + T f and the commuters’ departing time is assumed to be continuous, so the optimal
bus departure interval during the peak period is obtained, which is the one that ensures the following
bus arrives at the bus station as soon as the preceding bus leaves the bus station. Specifically, with the
assumption that the time that every bus spends on arriving at the bus station from the last bus station
is the same, the optimal bus departure interval during the peak period is the time that the preceding
bus riders spend on boarding, and when the number of boarding commuters and boarding capacity of
every bus are the same, which are N and sb, respectively, the optimal bus departure interval during the
peak period is N/sb, which means the relationship between service frequency and ridership does not
conform to the square root principle. For the derivation process, please see Appendix A. �

Proposition 1 shows that in order to obtain social optimal equilibrium during the peak period, the
transit authority should impose a dynamic boarding queuing congestion toll τ(t) on the commuter
and ensure t∗r = To(ta) = ta + T f , and then obtain the optimal bus departure interval during the
peak period. With τ(t) and T(t) = 0, which is demonstrated in the no-toll equilibrium diagrams
in Figure 2b, curve ABC reduces to curve AC, so curve AC represents both the cumulative arriving
commuters and the cumulative boarding commuters. At this time, the slope sc = sb, T(t) = 0, and
TT = area(ABCA) = 0. Since the dynamic boarding queuing congestion toll does not change the
commuter’s boarding time, the total early boarding delay cost of all commuters of the bus is still

SDC = βarea(ACDA) = βN2

2sb
.

The dynamic boarding queuing congestion toll τ(t) eliminates the boarding queuing time, T(t) = 0,
so we have:

C = β
N
sb

+ αT f + p0 = αT f + β(t∗l − t− T f ) + p0 + τ(t) (21)

τ(t) = β
N
sb
− β(t∗l − t− T f ), ta ≤ t ≤ tb (22)

With τ(t) and To(t) = t + T f , and combining To(ta) = ta + T f and t∗l = To(tb) = tb + T f ,
we have the total dynamic boarding queuing congestion toll of all commuters of the bus:

Tτ =
∫ t∗l

ta+T f
sbτ(To(t))dTo(t) =

βN2

2sb
= αTT (23)

Equation (23) means the total dynamic toll of eliminating the deadweight loss of the boarding
queuing congestion is equal to the deadweight loss. Equation (21) means the dynamic toll does not
increase the commuter’s travel cost; therefore, the transit authority can convert the deadweight loss of
boarding queuing congestion into government toll revenue that can be used to improve the commuter’s
boarding efficiency, obtain the social optimal equilibrium during the peak period, and adjust the bus
departure intervals to the optimal bus departure interval during the peak period.

Based on the above analysis and in order to improve the peak-period bus commuting
inefficiency of boarding queuing congestion, a dynamic boarding queuing congestion toll τ(t)
should be imposed on commuters, which makes the commuter’s arrival rate sc equal to the bus
door boarding capacity sb. Therefore, the bus boarding queuing congestion is eliminated. In order to
collect the dynamic boarding queuing congestion toll more conveniently, the transit authority can
convert the static fare into a dynamic fare that includes the dynamic boarding queuing congestion toll,
which can be collected by the automated fare collection system. The dynamic fare can be set as follows:

p(t) = p0 + τ(t) = p0 + β
N
sb
− β(t∗l − t− T f ), ta ≤ t ≤ tb (24)

How to implement the dynamic fare scheme requires further investigation.
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5. Numerical Analysis

In this section, we outline our numerical analysis to verify the analytical analysis of the
equilibrium bus boarding model for the peak-period bus commuting inefficiency of boarding
queuing congestion. We take the numerical analysis of the morning peak-period bus commuting
as an example. The following parameters values were used: α = 0.25 ($/min), β = 0.125 ($/min),
sb = 20 (person/min), t∗lm = 7 : 00, T f

m = 15 (min), and p0 = 0.75 ($), where the subscript m represents
the morning peak-period bus commuting. In the numerical analysis, we use N = 120 (person) and
N = 80 (person) as examples.

Figure 3a depicts the boarding queuing time and Figure 3b shows the boarding queuing length
at different times for all bus commuters. The commuter departing earliest does not encounter a
boarding queue and therefore their boarding queuing time and boarding queuing length are zero.
The later the commuter departs, the longer the boarding queuing time and boarding queuing length.
For the commuter that departs latest, they encounter the longest boarding queuing time and boarding
queuing length. After tb

m + T f
m, there are only commuters boarding the bus, but no commuter

arrives at the bus station, therefore the boarding queuing length reduces linearly with the ratio
sb = 20 (person/min from the maximum at tb

m + T f
m to zero at t∗lm = 07 : 00. At this time, all commuters

have boarded the bus, so the no-toll equilibrium for all commuters of the bus is obtained.
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Figure 3. The boarding queuing time diagram and the boarding queuing length diagram. (a) The
boarding queuing time diagram; (b) The boarding queuing length diagram.

Figure 4 shows the no-toll equilibrium for the case where N = 120 (person) is depicted by the
solid line and the case where N = 80 (person) is depicted by the dotted line. For the case where
N = 120 (person), the number of cumulative arriving commuters is shown by curve A1B1C1 and
the number of cumulative boarding commuters is represented by curve A1C1. At t∗lm = 07 : 00 a.m.,
the number of cumulative arriving commuters is equal to the number of cumulative boarding
commuters and all commuters have boarded the bus. Therefore, the no-toll equilibrium is obtained.
Furthermore, TT = area(A1B1C1 A1) = 180 (min), and SDC = βarea(A1C1D1 A1) = 45 ($). With the
dynamic toll τ(t), the boarding queuing congestion is eliminated, which is shown by curve A1B1C1

reducing to curve A1C1. According to Proposition 1, the optimal bus departure interval during the
peak period is N/sb = 6 (min). A similar analysis is conducted for the case where N = 80 (person)
and the optimal bus departure interval during the peak period is N/sb = 4 (min). Figure 4 is consistent
with Proposition 1, our other analytical analysis results, and Figures 2 and 3.



Sustainability 2018, 10, 3497 11 of 14

Sustainability 2018, 10, x FOR PEER REVIEW  11 of 15 

Figure 4 shows the no-toll equilibrium for the case where 120 (person)N = is depicted by the 
solid line and the case where 80 (person)N = is depicted by the dotted line. For the case where 

120 (person)N = , the number of cumulative arriving commuters is shown by curve 1 1 1CA B and the 
number of cumulative boarding commuters is represented by curve 1 1CA . At 07 : 00lmt ∗ = a.m., the 
number of cumulative arriving commuters is equal to the number of cumulative boarding 
commuters and all commuters have boarded the bus. Therefore, the no-toll equilibrium is obtained. 
Furthermore, 1 1 11( ) 180 (min)TT area CA B A= = , and 1 1 11( ) 45 ($)SDC area CA D Aβ= = . With the 
dynamic toll ( )tτ , the boarding queuing congestion is eliminated, which is shown by curve 1 1 1CA B
reducing to curve 1 1CA . According to Proposition 1, the optimal bus departure interval during the 
peak period is 6 (min)bN s = . A similar analysis is conducted for the case where 80 (person)N =
and the optimal bus departure interval during the peak period is 4 (min)bN s = . Figure 4 is 
consistent with Proposition 1, our other analytical analysis results, and Figures 2 and 3. 

 

Figure 4. The no-toll equilibrium diagram. 

Figure 5a shows the dynamic boarding queuing congestion toll and Figure 5b depicts the 
corresponding dynamic fare for the commuter departing at different times. With the dynamic 
boarding queuing congestion toll ( )tτ , the commuter changes their departing time ( )o ft tT T= − . 
Therefore, the bus boarding queuing congestion is eliminated, and at this time ( )a ao ft tT T= + , 

( )b bo f
lt t tT T∗ = = + , and c bs s= . Figure 5 shows the commuter departing earliest does not pay the 

dynamic toll and their dynamic fare is equal to the static fare. The later the commuter departs, the 
higher the dynamic toll and the higher the dynamic fare. When the commuter depart latest, they pay 
the highest dynamic toll and dynamic fare, which is consistent with Equations (22) and (24). 

06:53 06:54 06:55 06:56 06:57 06:58 06:59 07:00
0

20

40

60

80

100

120

 

 

 N = 80

 C2

 B2

 A2
D1/D2

 Tm
f  = 15 (min)

 N = 120

 B1
C1

 A1

 C
um

ul
at

iv
e 

ar
riv

in
g 

an
d 

bo
ar

di
ng

 c
om

m
ut

er
s 

(p
er

so
n)

 

 tm+Tm
f /To(tm) (o'clock)

Figure 4. The no-toll equilibrium diagram.

Figure 5a shows the dynamic boarding queuing congestion toll and Figure 5b depicts the
corresponding dynamic fare for the commuter departing at different times. With the dynamic boarding
queuing congestion toll τ(t), the commuter changes their departing time t = To(t)− T f . Therefore, the
bus boarding queuing congestion is eliminated, and at this time To(ta) = ta +T f , t∗l = To(tb) = tb +T f ,
and sc = sb. Figure 5 shows the commuter departing earliest does not pay the dynamic toll and their
dynamic fare is equal to the static fare. The later the commuter departs, the higher the dynamic toll
and the higher the dynamic fare. When the commuter depart latest, they pay the highest dynamic toll
and dynamic fare, which is consistent with Equations (22) and (24).
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Figure 5. The dynamic boarding queuing congestion toll and the corresponding dynamic fare of
the commuter departing at different time. (a) The dynamic boarding queuing congestion toll at
different time; (b) The corresponding dynamic fare of the commuter departing at different time.

We clearly observed that the numerical results confirm our analytical results, which means the
numerical analysis verifies the analytical analysis.
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6. Conclusions

Bus transit commuting is a mode of sustainable transport and effectively suppresses traffic
congestion. However, the peak-period bus commuting inefficiency of boarding queuing congestion is
a problem to be solved. Recent theoretical work on the economics of congestible facilities, and the bus
boarding process and its influencing factors, has been increasing, but few studies have investigated
optimal pricing and service for the peak-period bus commuting inefficiency of boarding queuing
congestion. To this end, based on real traffic phenomena, we proposed the equilibrium bus boarding
model to investigate it. By studying the equilibrium mechanisms of the peak-period bus commuting
inefficiency of boarding queuing congestion, we obtained optimal pricing and service to eliminate the
congestion and improve bus boarding efficiency during peak periods. The numerical analysis verified
the analytical analysis. There are important managerial implications of the study. For example, the
transit authority could eliminate the deadweight loss of the boarding queuing congestion during the
peak period using optimal pricing and service, and the deadweight loss of boarding queuing congestion
could be converted into the government toll revenue to improve the commuter’s boarding efficiency,
obtain social optimal equilibrium during the peak period, and adjust the bus departure interval to the
optimal interval during the peak period, which is an important sign of improving management.

Looking at our findings, two stand out. Firstly, when the earliest commuter boards the bus as soon
as the bus arrives at the bus station, the dynamic boarding queuing congestion toll that eliminates the
boarding queuing congestion indicates the social optimal equilibrium and the optimal bus departure
interval during the peak period. Secondly, the optimal bus departure interval during the peak period is
the time that the preceding bus riders spend boarding, which means the relationship between service
frequency and ridership does not conform to the square root principle.

The following aspects are our study limitations and issues for further study. (1) In this paper,
to simplify the analysis and focus on the investigation, we made some assumptions that caused the
model to differ from real traffic. Relaxing some assumptions, such as incorporating the commuter’s
heterogeneity, the elastic demand, and individual behaviors or characteristics (such as elderly versus
young commuters and normal versus disabled commuters) will be our future research direction.
(2) Our investigation was qualitative and was not verified empirically by real traffic data, so therefore
it is necessary to calibrate our findings based on real traffic data in the future. (3) The bus commuting
inefficiency of boarding queuing congestion during the peak period should be examined for simple
networks such as corridor networks consisting of a bus transit line and a parallel highway.
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Appendix A. Derivation of the Optimal Bus Departure Interval during the Peak Period

Let Nj−1 and Nj be the number of the boarding commuter of the preceding bus j− 1 and the

following bus j, respectively; sj−1
b and sj

b be the boarding capacity of the preceding bus j − 1 and

the following bus j, respectively; tj−1
d and tj

d be the departure time of the preceding bus j− 1 and

the following bus j at the last bus station, respectively; and T j−1
b and T j

b be the time the preceding
bus j − 1 and the following bus j spend on arriving at the bus station from the last bus station,
respectively. With the dynamic toll τ(t), in the social optimal equilibrium, t∗r = To(ta) = ta + T f ,
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t∗l = To(tb) = tb + T f , and the commuters’ departing time is assumed to be continuous, which means
ta

j = tb
(j−1), and therefore we have:

tj
d + T j

b = t∗jr = ta
j + T f = tb

(j−1) + T f = t∗(j−1)l = tj−1
d + T j−1

b + Nj−1/sj−1
b , j = 1, 2, 3... (A1)

which means when the bus departure interval ∆tj
d = tj

d − tj−1
d is the optimal bus departure interval

during the peak period, it ensures the following bus j arrives at the bus station at time t∗jr as soon as
the preceding bus j− 1 leaves the bus station at time t∗(j−1)l , t∗jr = t∗(j−1)l , j = 1, 2, 3.... Combining the
assumption that the time that every bus spends on arriving at the bus station from the last bus station
is the same, namely T j−1

b = T j
b, j = 1, 2, 3.... So,

∆tj
d = tj

d − tj−1
d = Nj−1/sj−1

b , j = 1, 2, 3... (A2)

which means the optimal bus departure interval during the peak period is the time that the
preceding bus riders spend on boarding. Furthermore, when the number of boarding commuters
and the boarding capacity of every bus are assumed to be same, N = Nj = Nj−1, j = 1, 2, 3...,

and sb = sj−1
b = sj

b, j = 1, 2, 3... respectively, we have:

∆tj
d = tj

d − tj−1
d = Nj−1/sj−1

b = N/sb, j = 1, 2, 3... (A3)

This completes the derivation.
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