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Abstract: The sustainable energy consumption in northeast Asia has a huge impact on regional 
stability and economic growth, which gives price volatility research in the energy market both 
theoretical value and practical application. We select China’s fuel oil futures market as a research 
subject and use recurrence interval analysis to investigate the price volatility pattern in different 
thresholds. We utilize the stretched exponential function to fit the pattern of the recurrence intervals 
of price fluctuations and find that the probability density functions of the recurrence intervals in 
different thresholds do not show the scaling behavior. Then the conditional probability density 
function and detrended fluctuation analysis prove that there is short-term and long-term 
correlation. Last, we use a hazard function to introduce the recurrence intervals into the (value at 
risk) VaR calculation and establish a functional relationship between the mean recurrence interval 
and the threshold. Following this result, we also shed light on policy discussion for hedgers and 
government. 

Keywords: sustainable development; recurrence interval; probability distribution; memory effect; 
risk estimation 

 

1. Introduction 

With regard to sustainable development in northeast Asia, the utilization and depletion of 
energy is always a problem for each country [1]. With the rapid development of emerging nations 
such as China, energy will increasingly become an important factor affecting regional stability and 
economic growth. Among many energy sources, fuel oil occupies a prominent position and maintains 
a country’s economic lifeline and livelihood development [2]. However, for a long time, the fuel 
market in a country like China has mainly been built by agreement pricing, which lacks a buffer 
mechanism to maintain the endogenous stability of this system [3,4]. The long-term contract pricing 
of these agreements will make China and entire northeast Asia suffer losses in the international fuel 
price fluctuations. In 2004, China followed the example of West Texas Intermediate (WTI) and Brent 
and set up its energy futures market [5], hoping to stabilize the market price and futures expectation 
of domestic primary fuel consumers and to achieve a more balanced and sustainable development.  

Fuel oil is a downstream product of oil and China is a significant fuel oil importing country in 
the world as well as the largest consumer of fuel oil in northeast Asia considering its Gross Domestic 
Product (GDP) scale. Although China’s enormous oil demand has had a significant impact on the 
international oil market supply and demand pattern, its role in the global oil price has been negligible 
owing to lack of impactful oil futures [6]. Therefore, in case of sharp fluctuations in international oil 
prices, China needs an oil futures market to reflect the supply and demand to determine the “Chinese 
oil price” in line with China’s interests and thus ensure oil security and economic stability. Hence, 
research of the fuel oil futures market is of necessity, not only allowing regulators to efficiently judge 
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and understand the market capitalization in time and adopt reasonable and adequate control 
measures but also allowing market participants to make use of the two primary functions—price 
discovery and hedging—of fuel oil futures for decision-making. 

To sum up, the study of the fuel oil futures market has theoretical value and practical 
implications. From a macro perspective, the participants’ behaviors directly determine a resource 
allocation of the fuel oil futures and spot markets. If the market fails, then the resources mismatch 
and efficiency decline in the futures and spot markets will directly affect the normal operation of the 
macroeconomy. From a micro perspective, the normal process of the futures market directly affects 
the hedging performance of market participants. Though the fuel oil futures market also has some 
speculative behaviors, its primary function is to preserve value as a financial hedging instrument. If 
the futures market fails, it will make enterprises or investors suffer massive losses, and then the price 
volatility will have become a source of economic and financial fluctuations in China. This paper, by 
using recurrence interval analysis (RIA), will investigate the price volatility pattern of fuel oil futures 
and estimate the risk.  

The remaining sections of this paper are arranged as follows: Section 2 reviews current research. 
Section 3 briefly describes the approach and gives the basic statistics of the data set. Section 4 conducts 
empirical research, including probability distribution function, scaling properties, memory effect and 
risk estimation. Section 5 discusses implications of the study and Section 6 concludes. 

2. Literature Review 

2.1. Energy Futures Market 

For studies about energy futures market, researchers mainly focus on the price discovery 
mechanism between the prices of futures and spot [7–9]. For example, Bekiros and Disks [10] used a 
cointegration method to confirm that there may be an asymmetric GARCH (Generalized 
Autoregressive Conditional Heteroscedasticity) effect between WTI futures and spot. If asymmetric 
effects are taken into account, the lead-lag relationship between futures and spot markets will change 
over time. Chen et al. [11] investigated the impact of structural breaks on the relationship between 
WTI futures and New York Mercantile Exchange (NYMEX) crude oil spot by a cointegration test. The 
results show that the lead–lag relationship between WTI futures and NYMEX crude oil spot will 
change with time across both regimes. The situation in China was complicated. China’s earliest 
energy futures appeared in 1993 when the Shanghai Petroleum Exchange launched an oil futures 
contract, followed by several futures exchanges listing oil futures contracts. However, as a result of 
the change in national policies, the initially implemented “two-track system” of crude oil and refined 
oil price was halted and the mechanism in which price was formed automatically by market supply 
and demand no longer existed. Oil futures with only one-year life were forced to stop trading. For an 
extended period, the domestic oil futures market was kept under vacuum. Ten years later, on 25 
August 2004, another energy futures—fuel oil futures—was listed on the Shanghai Futures Exchange, 
and domestic scholars have begun to study the issues regarding the Chinese oil market. For example, 
Li et al. [12] examined the relationship between fuel oil spot, fuel oil futures, and energy stock market 
in China and pointed out that the correlations are weaker than those in U.S. market due to China’s 
oil price regulation and control policy. Ji and Fan [13] found that China’s oil markets were related to 
domestic and international commodity markets. Additionally, the impact of China’s fuel oil futures 
market on other local commodity markets was high (small) when the oil price was high (low).  

Since the early emergence of the energy futures market outside China, a lot of research has been 
done on the function of price discovery. China’s research in this area mainly focuses on the impact of 
price discovery on the domestic and international futures markets. Also, the current study on oil 
futures still put different oil markets or related petroleum and related industries together. In the 
context of financialization in the international oil market, the capital market plays an increasingly 
important role in the oil futures market with an increasingly significant influence on the oil futures 
market, especially on the price discovery function of the oil futures market. Hence, the research in 
this area should be strengthened. 
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2.2. Recurrence Interval Analysis 

Recurrence interval is a measurement to estimate extreme events—events that do not occur 
frequently but do so with a high magnitude. In the natural environment, extreme events include 
earthquakes, tsunamis, hurricanes, floods, etc, while in the social environment extreme events 
include violent conflicts, acts of terrorism, industrial accidents, financial and commodity market 
crashes, etc. In the long run, extreme events are presumed to be spontaneous. In other words, they 
are mutually uncorrelated. However, studies have shown that the occurrence of extreme events is 
not independent, but instead, they congregate together, occurring in relatively short periods of time 
[14–16]. Therefore, recurrence interval can be applied to estimate the magnitude of price volatility of 
China’s fuel oil futures here.  

Recurrence interval analysis (RIA) is a time series method for volatility forecast with high-
frequency data, which is widely used in many areas [17–19] including stock and exchange rate 
markets [20–24]. RIA is frequently applied to risk analysis, assuming that the probability of future 
volatility is constant and independent of the volatility of the past. Also, the problem of insufficient 
data can also be solved by finding the scaling behavior of different scale events [25]. At present, the 
recurrence interval between volatility in the energy market has been widely studied [26–29]. For 
example, Xie et al. [30] used RIA to investigate four NYMEX energy futures and showed that the 
long-term correlations have resulted in clusters of recurrence intervals. Suo et al. [31] compared the 
CSI 300 spot and futures market with RIA and found that futures market has a lower (higher) risk 
than that in the spot market during volatile (regular) periods. However, to the best of our knowledge, 
there are insufficient studies on price volatility of China’s fuel oil futures by RIA with current high-
frequency data. 

Therefore, our research has made the following contributions. First, we investigate the price 
volatility of China’s fuel oil futures from a new perspective by using RIA. So far, this is one of the few 
articles on China’s fuel oil futures with RIA. Second, different from previous research using the daily 
data of China fuel oil futures, we use one-minute high-frequency data that can reveal more price 
information, providing a new perspective for the study of China’s energy derivatives market in the 
view of high-frequency trading. Third, we focused on the price volatility of fuel oil futures instead of 
the relationship between fuel oil futures market and other markets. 

3. Materials and Methods 

We here select fuel oil futures as research subject which was listed on Shanghai Futures 
Exchange, and Table 1 shows the contract specifications. The data here is obtained from Tongdaxin 
Database and the sample period covers from 1 January 2015 to 30 December 2016. We have collected 
70,635 price observations after removing the days without trading. The return of time series is 
measured by the logarithmic difference of the price:  (ݐ)ݎ = ln ݐ)݌ + (ݐ∆ − ln(1) ,(ݐ)݌ 

where ∆ݐ = 1 due to the data being 1-min frequent and (ݐ)݌ is the closing price of the ݐth time. By 
taking logarithm difference, the data magnitude is reduced for subsequent calculations. The logarithmic 
returns of fuel oil futures are shown in Figure 1 and, the statistics is summarized in Table 2. 

Table 1. Contract specifications of the fuel oil futures. 

Trade Category Fuel Oil
Trade unit 50 ton 

Price quotation unit yuan per ton 
Tick size 1 yuan per ton 

Limit up/down ±6% of settlement price on the previous trading day 
Contract Months Monthly (excluding the spring festival) 

Trading hours 9:00 am–11:30 am, 1:30 pm–3:00 pm 
Last trading day The last trading day of the month before the delivery month 
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Delivery day Five consecutive business days after the last trading day 
Delivery grade 180CST fuel oil or other fuel oil of better quality than this standard 

Delivery location The locations designated by exchange 
Margin requirement 8% of the contract value 
Settlement method physical settlement 
Transaction code FU 

Exchange Shanghai Futures Exchange 

 
Figure 1. Logarithmic returns of fuel oil futures. 

From Figure 1, we can see that the fluctuations in the different periods have different 
magnitudes. For example, a massive volatility like A has a much larger scale than that of a small 
fluctuation like B. Furthermore, volatilities with similar level tend to cluster with each other. It can 
be seen in Figure 1 that a large fluctuation tends to follow significant volatility while a small one 
tends to follow a small one, which indicates the long-term memory effect [32,33]. Also, the X-axis in 
Figure 1 is from 5 January 2015 to 30 December 2016, hence the more significant fluctuations are 
approximately concentrated in the second half of 2015 and the first half of 2016. Such fluctuation 
periods may be related to the events occurring in the international oil market during that period, like 
Russia bombing Syria, four oil-producing nations reaching cut consensus, the lifting of Iran’s oil ban, 
the Canadian wildfires leading to disruption of oil sands, Nigeria cutting off supply, and the British 
Brexit vote (see a–f in Figure 1, respectively). We can also find that a volatile period when large 
volatilities cluster is accompanied with short and dense recurrence intervals. In contrast, the 
recurrence intervals during the less volatile period are long, few and far between. In Figure 2, we 
magnify two sections in Figure 1 to represent the period of large and small volatilities, respectively, 
to present these characteristics. Figure 2a shows the volatility from June 2015 to October 2015, and 
Figure 2b shows the fluctuations from June 2016 to October 2016. We can see that for a given (ݐ)ݎ, 
assuming 0.02, the properties of recurrence are in accordance with our discussion above. 

r(
t)
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(a) (b)

Figure 2. Logarithmic returns of fuel oil futures in different periods. (a) Large volatilities; (b) small 
volatilities. 

In Table 2, the statistics of the logarithmic returns are not normally distributed but the skewness 
is near symmetrical, and the kurtosis is leptokurtic, which is also consistent with the findings in most 
studies on the probability distribution of returns in stock and futures markets [34–37]. Therefore, by 
using RIA, we hope to promote the risk estimation in the energy futures market by describing the 
volatility of the fuel oil futures and estimating the time intervals between fluctuations, e.g., what is 
the probability of the next significant volatility after a larger one? 

Table 2. Statistics of the logarithmic returns of fuel oil futures. 

Average Maximum Minimum Standard Deviations Skewness Kurtosis Nobs
5.2675× 10−6 0.0677 −0.0783 0.0028 0.0850 131.7101 70634 

Considering the recurrence interval ߬ at the threshold ݍ, the mathematical expression of recurrence 
interval could be derived as follows: ߬(ݐ) = minሼݐ − :ᇱݐ (ݐ)ܴ < ,ݍ ݐ > ,ᇱݐ ݍ < 0ሽ. (2) 

Most studies [38–41] have pointed that stretched exponential distribution can better fit the 
recurrence intervals of fluctuations: 

௤ܲ(߬) =  eି(ఉఛതఛ)ം. (3)̅߬ߙ

Equation (3) means that ௤ܲ(߬) is the probability distribution of recurrence interval ߬ at the 
threshold ݍ , where ߬̅  is the average recurrence interval and will change when threshold ݍ  is 
different, and ߛ ,ߚ ,ߙ are the parameters. 

4. Results 

4.1. Probability Density Function 

Before applying RIA, we need to normalize the time series (ݐ)ݎ  by dividing the standard 
deviation as follows: ܴ(ݐ) = ଶ(ݐ)ݎܧሾ(ݐ)ݎ −  ሿଵ/ଶ, (4)(ݐ)ݎଶܧ

where ሾ(ݐ)ݎܧଶ − ሿଵ/ଶ(ݐ)ݎଶܧ  is the standard deviation of (ݐ)ݎ. For a threshold ݍ , we can get the 
coresponding set of recurrence interval ߬, then calculate the occurance probability of each ߬. In this 
paper, the threshold ݍ is set to a negative value (ݍ < 0) because a slump tends to attract more interest 
to the market participants than a surge. In Figure 3, we draw the empirical (color symbols) and 
theoritical values (color curves) of the probability distribution function (PDF) ௤ܲ(߬) of recurrence 
intervals between returns at different threshold ݍ. In addition, Table 3 shows the parameters for 
theoritical PDFs of each threshold ݍ. 
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We can see from Figure 3 that when |ݍ| rises, in the whole period, for the same probablility, 
larger volatilities tend to have larger interval, while for the same interval, larger volatilities will occur 
more likely than small volatilities, which also means that for large volatilities the time interval 
between two consecutive events has a higher probability to increase than decline. Combining the 
observation from Table 3 and Figure 3, it is found that all the curves are in similar shape which leads 
us to investigate the scaling behavior between these PDFs. 

Table 3. Estimates of the coefficients of stretched exponential functions. ࢗ ࢻ ࢼ  ࢽ
−1.0 2.004 × 10−3 7.994 × 10−3 0.415 
−1.2 1.841 × 10−3 7.343 × 10−3 0.390 
−1.4 1.718 × 10−3 6.851 × 10−3 0.362 
−1.6 1.583 × 10−3 6.316 × 10−3 0.339 
−1.8 1.469 × 10−3 5.858 × 10−3 0.318 

 
Figure 3. Empirical and theoretical probability distribution of recurrence intervals with different 
thresholds of fuel oil futures. 

With this question, after observing the behavior of PDFs in Figure 3 and how they may depend 
on the threshold ݍ, we can see that for different ݍ, the corresponding PDF is not the same and cannot 
be described by a single distribution as for irrelevant data. To understand the ݍ dependence, the 
method in Yamasaki et al. [42] is introduced: 

௤݂(߬/߬̅) = ௤ܲ(߬)߬̅, (5) 

where ௤ܲ(߬)߬̅ is scaled PDF and ߬/߬̅ is scaled recurrence interval. With an increasing threshold |ݍ|, ߬̅ will change in the same direction, i.e., (݀߬̅)/(݀|ݍ|) > 0, indicating that as the volatility increases, 
the average length of recurrence interval increases, too. If there exists scaling behavior, ௤݂(߬/߬̅) will 
be independent of the threshold ݍ. Namely, the discrepancy between PDFs of recurrence invervals 
at different threshold ݍ can be eliminated by calculating ௤ܲ(߬)߬̅. Additionally, the scaling behavior 
can be demonstrated if ௤݂(߬/߬̅)  converges to a single curve ݂(߬/߬̅) , which is given by: ௤݂(ݔ) ,(ݔ)݂= ݍ = 1.0, 1.2, 1.4, 1.6, 1.8. Figure 4 displays the scatter diagram with x-ray as ߬/߬̅ and y-ray as ௤ܲ(߬)߬̅. We can see clearly that ௤ܲ(߬)߬̅ do not converge into one curve when threshold ݍ is different. 
This suggests that the scaling behavior does not exist here, that is, when data is insufficient, we are 
unable to derive the behavior of large fluctuations from the behavior of small ones.  
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Figure 4. Scaled probability distributions of recurrence intervals with different thresholds of fuel oil 
futures. 

4.2. Memory Effect 

In this part, we want to know if there exists a memory effect between recurrence intervals. Short-
term memory refers the correlation between two consecutive recurrence intervals, and long-term 
memory means current volatility was affected by fluctuations not only in the recent past but also 
from a long time ago, which would cause volatility clusters. 

4.2.1. Short-Term Correlation 

For recurrence intervals, the short-term correlation will affect the length of one interval after 
another interval. In this part, we will calculate the conditional probability density function 	 ௤ܲ(߬|߬଴) 
to study the short-term correlation within the recurrence intervals [42]. ௤ܲ(߬|߬଴)  refers to the 
probability of a recurrence interval ߬ to occur immediately following the last recurrence interval ߬଴. 
When short-term correlation does not exist, ௤ܲ(߬|߬଴) will be independent of	߬଴. However, a certain 
value ߬଴ may result in insufficient data, to avoid that, we have selected a range for ߬଴ to calculate ௤ܲ(߬|߬଴) rather than a fixed value ߬଴.  

Each threshold q corresponds to a series of recurrence intervals and the set of all the recurrence 
intervals at threshold q is ܶ . We then divide ܶ  into four subsets without overlapping, ܶ =ଵܶ ⋃ ଶܶ ⋃ ଷܶ ⋃ ସܶ , where ௠ܶ ⋂ ௡ܶ = ߶,݉ ≠ ݊ . In this dividing procedure, the whole recurrence 
intervals in ܶ are sorted in an ascending order and then ܶ is turned into subsets with the same size. 
Hence, the 1/4 smallest recurrence intervals are selected to the first subset ଵܶ and largest quarter goes 
to the last subset ସܶ. Therefore, the conditional probability density function is derived as 	 ௤ܲ(߬| ௠ܶ) =௤ܲ(߬|߬଴ ∈ ௠ܶ) , and if short-term correlation does not exist, it could be found that ௤ܲ(߬| ௠ܶ) =௤ܲ(߬| ௡ܶ),݉ ≠ ݊. 

Figure 5 shows that ௤ܲ(߬|߬଴)߬̅ is the function of ߬/߬̅ for ߬଴. Filled symbols indicate ߬଴ ∈ ଵܶ and 
open symbols mean ߬଴ ∈ ସܶ. It is obvious that ௤ܲ(߬| ଵܶ) from the smallest subset ଵܶ does not equal 
to ௤ܲ(߬| ସܶ) from the largest subset ସܶ: ௤ܲ(߬| ଵܶ) ≠ ௤ܲ(߬| ସܶ). On the left side of Figure 5, ௤ܲ(߬|߬଴ ∈ ଵܶ) 
is bigger than ௤ܲ(߬|߬଴ ∈ ସܶ)  for small ߬/߬̅ , while on the right side, ௤ܲ(߬|߬଴ ∈ ଵܶ)  is smaller than ௤ܲ(߬|߬଴ ∈ ସܶ) when ߬/߬̅ increases. This suggests that short ߬ is more likely to follow short ߬଴, and 
long ߬ tends to follow long ߬଴, indicating that short-term correlations do exist in the recurrence 
intervals, i.e., the probability of a short (long) interval existing after a small (long) one is higher than 
the probability of a short (long) interval after a long (short) one for the volatility with a certain 
magnitude. 

P q (τ
) τ

 ̅
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Figure 5. Conditional probability density functions 	 ௤ܲ(߬|߬଴) with ߬଴ ∈ ଵܶ (filled symbols) and ߬଴ ∈ସܶ (open symbols) for fuel oil futures 

4.2.2. Long-Term Correlation  

The volatility clusters in Figure 1 indicate that long-term correlation exists in the time series. To 
verify this we employ detrended fluctuation analysis (DFA) method, and the results are shown in 
Figure 6. DFA was invented by Peng [43] for determining the statistical self-affinity of a signal. In 
addition, DFA has become one robust method for analyzing time series that appear to be long-
memory processes [44–46]. DFA will compute the root-mean-square deviation (ݏ)ܨ from the trend, 
where ݏ is the length of time windows. After repeatedly calculating the (ݏ)ܨ for a range of different ݏ, a log–log figure of (ݏ)ܨ against ݏ is constructed in accord to the form ݏ~(ݏ)ܨு. H is the Hurst 
exponent to determine whether there is long-term correlation in the time series. H greater than 0.5 
suggests that long-term correlations do exist in the time series while H equals to 0.5 means the time 
sequence is un-correlated. The results are depicted in Figure 6 and the parameters are in Table 4. As 
can be seen, each line has a Hurst exponent more than 0.5, which indicates the long-term correlation 
within the recurrence intervals. This is consistent with previous studies on the recurrence interval 
and demonstrates the existence of a long-term memory on the recurrence interval in fuel oil futures 
[47,48], indicating that the fuel oil futures market in China is an inefficient market and the market 
shows strong trend behavior. This means that in one cycle, the former price volatility and historical 
information will affect the price fluctuations in the future. 

 
Figure 6. Detrended fluctuation function (ݏ)ܨ of the recurrence intervals. 

P q (τ
│
τ 0 ) 

τ ̅
F(
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Table 4. Estimates of exponent H. ࢗ Exponent H
−1.0 0.71526 
−1.2 0.70263 
−1.4 0.68133 
−1.6 0.68407 
−1.8 0.69137 

4.3. Risk Estimation 

For a specific ݍ, we want to know the probability of an interval after another interval. The hazard 
probability function ௤ܹ(∆ݐ|ݐ) is used here to estimate risk of RIA. Assuming that the last big fluctuations 
greater than |ݍ| have passed t units of time, then what is the chance that the next large fluctuations 
greater than |ݍ| will happen within ∆ݐ units of time? Based on this, the hazard probability can be 
written as: 

௤ܹ(∆ݐ|ݐ) = ׬ ௉೜(ఛ)೟శ∆౪೟ ௗఛ׬ ௉೜(ఛ)ಮ೟ ௗఛ . (6) 

Equation (6) calculates the theoretical value of hazard probability. As we know, each ݍ has a 
corresponding stretched exponential function ௤ܲ(߬) and the value of parameters can be found in 
Table 3. Furthermore, in order to compare the theoretical and empirical values of ௤ܹ(∆ݐ|ݐ), we shall 
rewrite ௤ܹ(∆ݐ|ݐ) as: 

௤ܹ(∆ݐ|ݐ) = ௖௢௨௡௧൫௧ழఛ೜ஸ௧ା∆௧൯௖௢௨௡௧൫ఛ೜வ௧൯ . (7) 

For each threshold ݐ݊ݑ݋ܿ“ ,ݍ൫߬௤ >  ݐ ൯” counts the number of recurrence intervals greater thanݐ
units of time and “ܿݐ݊ݑ݋൫ݐ < ߬௤ ≤ ݐ + ݐ and ݐ ൯” is the number of recurrence intervals betweenݐ∆ +  ݐ∆
units of time. 

The calculation results of Equations (6) and (7) are shown in Figure 7, represented by color 
symbols and curves, respectively. In Figure 7, it can be observed that when ݐ is relatively small, the 
curve is above the scatter symbols, which means that the theoretical value will overestimate the risk 
in the short term, while with the increase of ݐ the difference between the theoretical and empirical 
value will gradually decrease. In addition, ௤ܹ(∆ݐ =  increases, indicating that ݐ decreases when (ݐ|1
the longer the time interval between the two volatilities, the less likely the next fluctuation will 
happen instantly, which confirms that long-term correlations and clustering behavior exist within the 
recurrence intervals between volatilities. Additionally, we can calculate the recurrence probability of 
an extreme event for each threshold ݍ.  

 

 

Figure 7. Theoretical (curves) and empirical (color symbols) value of ௤ܹ(∆ݐ =  :x-rays are t (unit) (ݐ|1
1 min), y-rays are values of ௤ܹ(∆t = 1|t) for ݍ = −1.0, ݍ = −1.2, ݍ = −1.4, ݍ = −1.6, ݍ = −1.8 from 
left to right, top to bottom). 
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We here utilize value at risk (VaR) to estimate the risk. To construct a functional relationship 
between recurrence interval and VaR, we first define the loss probability at volatility level ׬ :ݍ ܲ(ܴ)௤ିஶ ܴ݀ = ܲ∗, (8) 

where ܲ∗ defines the loss probability, ܴ(ݐ) is the normalized time series given by Equation (4) and ܲ(ܴ) is the PDF of ܴ(ݐ). For a given threshold ݍ, the mean recurrence interval is the average value 
of total intervals: ߬௤̅ = ଵே೜ ∑ ߬௤,௜ఛ೜௜ୀଵ , where ߬௤ is the recurrence interval and ௤ܰ is the number of ߬௤. 

Hence we can derive that ∑ ߬௤,௜ఛ೜௜ୀଵ  is approximately equal to the total number of returns and ௤ܰ + 1 
is the number of returns below threshold ݍ. Then we can construct a relationship between mean 
recurrence interval and VaR: 1/߬̅௤ = ׬ ܲ(ܴ)ܴ݀ =௤ିஶ ௡௨௠௕௘௥ ௢௙ ோ(௧) ୠୣ୪୭୵ ௤௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ோ(௧) , (9) 

where 1/߬௤̅ is the function of threshold ݍ as shown in Figure 8. The loss probability in the Y-axis 
corresponds to the fluctuation degree in X-axis, for example, if the market participants hope to control 
the risk level of loss at two percent, the fluctuation degree—i.e., the threshold—ݍ meets 1/߬௤̅ 	= 2% 
is what they should be aware of. We can also see from Figure 8 that the mean recurrence interval 
increases with an increasing |ݍ|, suggesting that the larger the fluctuation, the greater the interval.  

 
Figure 8. The reciprocal of mean recurrence interval 1/߬௤̅  as a function of absolute threshold ݍ  
ݍ) = −16:−1). 

5. Discussion 

From the above analysis, it can be seen that there is long-term memory, abnormality, and 
autocorrelation in the recurrence intervals of China’s fuel oil futures market, which shows that this 
market is mostly a complicated nonlinear system. Therefore, efficient market hypothesis adopting 
“linear and normal” as the hypothetical premise can no longer efficiently describe and analyze the 
price volatility of the futures markets [49–51]. This conclusion makes it necessary to alter the linear 
traditional research paradigm in the futures research when analyzing the energy futures market and 
introduce nonlinear theory and methods. It also has significant theoretical and practical significance 
by changing from the linear analysis, equilibrium analysis, and static analysis to nonlinear analysis, 
evolutionary analysis, and dynamics analysis. Also, long-term memory indicates that the impact of 
price volatility of the energy futures market does not disappear immediately. Instead, it can have 
long-term effects. Therefore, based on sufficient historical information and within a specific long-
term memory length, it is possible to measure and predict the price volatility of the energy futures 
market. 

Probability density function analysis shows that the occurrence probability of significant and 
minor fluctuations and the degree of risk are different. When new information appears, some market 
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participants do not respond to the information in time but try to verify the authenticity of the 
information and identify the impact of the information by analyzing the relevant information. For 
example, when a new policy is promulgated, the participants cannot understand the purpose of the 
policymaker in a short period and accordingly decide after some trend is identified after a period. 
Such information understanding lag means that the information cannot be digested immediately by 
the participants; on the contrary, it will have some degree of cumulative effect. Participants may react 
suddenly when some new information arrives continually, or when policymakers’ intentions are 
apparent, which will result in sudden and drastic market volatility, resulting in a flock effect and 
herd behavior. 

At present, China’s fuel oil futures market has been established for more than a decade. As a big 
consuming country, it is necessary to establish an oil pricing mechanism with an international 
influence to better predict the price and risk. Specifically, the authority can improve the futures 
market laws and regulations, increase the futures trading volume, continuously develop new 
varieties of futures, and strengthen the domestic oil market. Furthermore, China’s oil futures market 
should be integrated into the international oil market, accelerating the pace of oil price adjustment, 
to reflect the real-time domestic oil price. 

6. Conclusions 

The paper utilized RIA to investigate the properties of recurrence intervals of price fluctuations 
for different thresholds and to understand the behaviors of large volatilities of fuel oil futures in 
China with the mass data collected at one-minute high-frequency. 

First, we used the stretched exponential function to fit the probability density distribution of 
recurrence intervals at different thresholds and found that the PDFs do not have scaling behavior at 
different thresholds. Subsequently, the conditional PDF and DFA respectively confirmed that there 
is a short-term and long-term relationship between the recurrence intervals, which indicates that the 
intervals are not only affected by the near-term, but also by the long-term effect. Finally, RIA was 
used to evaluate the risk for fuel oil futures, which provides a relatively accurate risk estimation and 
constructs a relationship between loss possibility and volatility scale.  

For those hedgers who want to achieve sustainable development, attention should be paid in 
the short term to significant price fluctuations in the energy futures market, and in the long run, they 
should make judgments based on specific market conditions to more effectively prevent and mitigate 
the risk of price volatility. Also, because the energy futures market in China is relatively short and 
not yet mature compared to Western countries, we can consider cultivating domestic institutional 
investors and lowering transaction costs. At the same time, we could speed up the opening up of the 
market to attract foreign institutional investors and mitigate the risks caused by the fluctuations 
through the connection with the international energy market. The government should improve 
energy futures market construction and promote risk control to enhance the global influence of 
China’s energy futures market. Through strengthening the pricing power of energy pricing, China 
could contribute to the sustainable development in China and northeast Asia in the future. 
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