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Abstract: In modern sustainable agriculture, green manuring is increasingly emphasized for a
reasonable land use management. However, the expansion of green manure is affected by a range
of factors, such as soil geophysical properties and human intervention. This paper proposes an
approach of spatial modelling to understand the mechanisms that influence green manure expansion
and map the future distribution of green manure intercropped in the orchards in the Pinggu District,
Beijing, China. We firstly classified the orchards into five grades according to a land productivity
evaluation, and then considered two strategies for implementing green manure. Two scenarios
were designed to represent the strategies: prioritizing low-productivity orchards to promote green
manure intercropping (scenario 1) and prioritizing high-productivity orchards to promote green
manure intercropping (scenario 2). The spatial expansion of green manure for 2020 was simulated
at a resolution of a 100 × 100 m grid in the CLUE-S (the Conversion of Land Use and its Effects at
the Small Region Extent) model. The two strategies led to quite different spatial patterns of green
manure, although they were applied to the same areas. As a result, the spatial pattern of green
manuring of scenario 1 was more concentrated than that of scenario 2. To summarize, the modelled
outcomes identified the driving factors that affect green manure expansion at a grid scale, whereas
the implementing strategies directly determined the spatial arrangements of green manuring at a
regional scale. Therefore, we argue that the assessment of the driving factors and the prediction of
the future distribution of green manuring are crucial for informing an extensive use of green manure.

Keywords: orchard green manure; spatial expansion; land productivity evaluation; implementing
strategies; CLUE-S model

1. Introduction

China has a 3000-year standing history of using green manure to enrich soil nutrients, improve
soil structure, and increase fruit yields. During the period from the 1960s to 1980s, which was after
the rapid expansion of green manure crops, the cultivation and utilization of green manure peaked,
reaching a planting area of nearly 13 million ha. However, the planting area decreased to approximately
2 million ha following the late 1980s because of the increased use of chemical fertilizers, which are
considered highly effective and saving labor. However, recently, large attention has been given to
this traditional organic manure because the excessive use of chemical fertilizers in previous years
has resulted in serious soil deterioration and eutrophication (after a heavy application of mineral
N fertilizers). Since 2008, green manure has been in a phase of restoration and recovery in China,
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with the purposes of reducing the soil degradation caused by the long-term application of chemical
fertilizers and of ameliorating the ecological environment in the field, thus establishing a sustainable
cropping system.

In China, there will be a trend to integrate green manure in agricultural system as an alternative
strategy for lowering chemical fertilizer usage and restoring a deteriorated field environment. Current
research focuses on improving soil physical and biochemical properties [1–14], contaminated soil
rehabilitation [15–22], improving crop yield [13,23–26], development of sustainable agricultural
system [27–32] at the micro scale. However, developing green manure at a regional scale is especially
affected by both human interventions and the natural soil properties. Limited information regarding
the spatial potential of promotion of green manure is available; thus, it is somewhat difficult to
understand the mechanisms that influence green manure promotion and the prospects for the future
development of green manure at a macroscale.

There are two distinct modes of applying green manure in China: the rotation of green manure
with cereal crops and the intercropping of green manure in orchards. We only focused on the latter
method in this paper. In terms of intercropping, with the hypothesis that green manure can increase
the N-supplying ability of the soil, activate soil phosphorus, and maintain soil organic matter content,
green manure should be a priority in orchards with low fertility to enhance the soil characteristics.
However, should green manure be a priority in highly productive orchards to further increase fruit
yields? The aim of this study was to determine the spatial expansion of green manure to identify future
development trends under two implementing strategies.

The CLUE-S model has been widely used for simulating regional changes of land-use
cover [33–40]. CLUE-S is an empirical analysis-based model that considers the influences of geophysical
and socioeconomic driving factors on land-use category changes [41–49]. The main purpose of the
transformation of the land-use type and the spatial allocation in the CLUE-S model was to provide
a reference for predicting green manure intercropping. Similar to land use type classification, five
productivity-incorporated types of intercropping or non-intercropping green manure systems were
introduced to determine the spatial shifts among orchards intercropped with green manure and
without green manure.

Based on the foregoing, we evaluated the land productivity of orchards in the Pinggu District in
Beijing, China and classified the productivity into four grades. Then, based on the assessment results,
we overlaid the current spatial distribution of green manure onto the spatial evaluation results and
applied the CLUE-S model to simulate the transformations among the five types related to green
manure planting. Two scenarios representing implementing strategies were considered in this paper:
the priority of promoting green manure intercropping in low productivity orchards (scenario 1),
and the priority of promoting green manure intercropping in high productivity orchards (scenario 2).
The following objectives were addressed in this study: (i) to understand the effects of geophysical
factors (i.e., land productivity evaluation results) on the spatial expansion of green manure; (ii) to
simulate the future spatial patterns of green manure in the intercropping system under different
implementing strategies using the CLUE-S model; and (iii) to reveal the effects of selected driving
variables on the spatial pattern of green manure expansion.

2. Materials and Methods

2.1. Study Area

The Pinggu District (40◦01′44′ ′–40◦22′39′ ′N, 116◦55′20′ ′–117◦24′09′ ′E) is in the northeastern part
of Beijing, China, and the terrain of the study area slopes from northeast to southeast. The elevations
of the orchard patches are between 19 m and 951 m (Figure 1). The average annual rainfall is 542 mm.
Mountainous terrain is dominant in the district. The warm temperate zone along the mountains
stretches hundreds of miles, resulting in a sunny area with temperature fluctuations between day
and night, which are quite suitable for fruit growth. Pinggu contains 16 towns and covers an area of
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948.35 km2, and orchards occupy almost 30% of this total area. The spatial distribution of orchards
is shown in Figure 1. Fruit sales and crop production are major components of the local economy.
In 2011, the local government began promoting green manure (Orychophragmus violaceus) intercropping
in orchards, which currently cover a total area of 22,103 ha. The regions where green manure was
promoted were mainly located in Dahuashan, Wangxinzhuang, and Xiongerzhai, which had a total
combined orchard area of 1433 ha in 2011 (Figure 1).
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2.2. Data and Processing

(1) The land-use map of the study area in 2011 was obtained from the Bureau of Land Resources
in Beijing and was used to extract the spatial locations of the orchards in the study area; (2) the
spatial distribution of orchards with intercropped green manure was obtained from the Beijing Soil
and Fertilizer Station; (3) the data used for evaluating orchard productivity, including the active soil
depth, soil texture, elevation, slope, aspect, available phosphorus content, available potassium content,
organic matter content, guarantee of irrigation, and drainage capability, were obtained from the Beijing
Digital Soil System; (4) the geophysical driving factors used in the CLUE-S model (i.e., the distributions
of the nearest road, railway, river, lake, main town, and rural resident site) were obtained from the
Beijing Digital Soil System. The shape index and connectivity of orchard patches were computed using
the equations provided in Section 2.3.2; (5) socioeconomic factors, such as orchard areas, fruit yield,
and agricultural practitioners, were obtained from the Statistical Yearbooks of the Pinggu District,
Beijing (2012). All data were converted to the same projection with an equal grid size of 100 × 100 m.

2.3. Methods

2.3.1. Land Productivity Evaluation

Land productivity represents the comprehensive production capacity of orchards and is
determined by the soil characteristics, natural conditions, and current management level. Assessment
criteria usually proposed by experts and the Analytic Hierarchy Process(AHP)-based spatial
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multicriteria decision analysis (S-MCDA) method [50,51] were usually introduced to determine the
criteria scores and weights [52–57].

In this paper, the assessment criteria and corresponding weights in land productivity evaluation
are referred to the Rules for Cultivated Land Productivity Assessment in Beijing, China (DB11/T 1083-2014),
published by Beijing Municipal Administration of Quality and Technology Supervision [58].

The evaluation process included four basic steps: dividing the evaluation units, building an
evaluation indicators system, calculating the integrated orchard productivity index, and grading the
productivity according to the evaluation scores.

(1) Evaluation units

In this paper, the graph overlay method was adopted to divide the evaluation units, which referred
to the superposition of the land-use map and the corresponding soil map to obtain separate patches as
evaluation units. The soil properties, landform, soil nutrient attributes, and soil management should
be consistent in one assessment unit. Both qualitative and quantitative analyses were employed to
analyze the land productivity in each evaluation unit. These data were uniformed with different scale.
All data was processed by renowned experts, and the evaluation results were examined by a senior
professional staff. Actually, we obtained the required data from the Beijing Digital Soil System directly.

(2) Indicators system

Four criteria levels, namely, the soil profile, site condition, soil nutrients, and soil management
levels, were selected to assess orchard production, and 10 indicators were included (Table 1).
The weights of all evaluation indicators are referred to the Rules for Cultivated Land Productivity
Assessment in Beijing, China (DB11/T 1083-2014) [58].

(3) Calculation of the integrated orchard productivity index (IPI)

The additive method was used to compute the IPI of each unit using the following equation:

IPI =
10

∑
i=1

(Fi × Ci) (1)

where IPI is the integrated index, Fi is the score of the evaluation factor of i, and Ci is the weight of the
evaluation factor of i.

(4) Grades classification

The productivity was graded according to the distribution of the IPI via the frequency curve
method. The grades classification can be observed in Table 2.
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Table 1. Indicators system for land productivity evaluation and quantification standards for each indicator.

Criteria Level Index Level Unit
Classification Standards of Indicators

Weight (%)
100 80 70 60 40 30 20 10 -

Soil profile

Active soil depth cm ≥100 100–80 80–60 60–30 <30 a 15.1

Soil texture Medium loam or
heavy loam Light loam Sandy loam Clay

or sand Gravelly soil b 22.8

Site condition

Elevation m <100 100–200 200–300 300–400 ≥400 8.3

Slope ◦ <3 c 3–5 5–8 8–15 15–25 ≥25 d 4.3

Aspect ◦ 135–225 90–135 or
225–270

45–90 or
270–315

315–360 or
0–45 6.7

Soil nutrients

Available
phosphorus content mg kg−1 ≥40 40–30 30–20 20–10 <10 3.2

Available
potassium content mg kg−1 ≥180 180–120 120–100 100–80 <80 3.8

Organic
matter content g kg−1 ≥30 30–20 20–15 15–10 <10 10.2

Soil management
Guarantee

of irrigation Fully satisfied Basically
satisfied

Generally
satisfied

Without
irrigation 21.3

Drainage capability High Medium Low 4.3

Note: a,b,d: if the active soil was <30 cm deep, the soil texture was gravelly, or the slope was >25◦, the score for the evaluation unit was assigned as 10. c When the slope of the unit was <3◦,
the score of the aspect was assigned as 100.
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Table 2. The grades of the IPI.

IPI Grades

≥84 highest
75–84 higher
65–75 medium
53–65 lower
<53 lowest

2.3.2. Simulation of the Spatial Distribution of Green Manures Based on the CLUE-S Model

The CLUE-S model is a grid-based model, which features the transformation of all types related
to green manure intercropping and spatial allocation with two distinct modules: non-spatial and
spatial modules.

(1) Classification of the types of the base year

Similar to the land-use classification type of the CLUE-S model, the following five types related to
green manure planting were classified: orchards intercropped with green manure (M1), lower orchard
productivity without intercropping with green manure (M2) (note: the lowest class only accounted
for 0.52% of the total orchards and consequently could not meet the requirement that the number of
each category should be greater than 1% to allow the CLUE-S model to run smoothly. Thus, the lowest
and lower classes were merged to meet this requirement), medium orchard productivity without
intercropping with green manure (M3), higher orchard productivity without intercropping with green
manure (M4), and the highest orchard productivity without intercropping with green manure (M5).
In the future, it will be possible to shift the M2, M3, M4, and M5 systems to M1 because the demand for
green manure application is increasing. The specific transformation is obtained from the characteristics
under different scenarios.

(2) Non-spatial module

This module was used to calculate the demands of the five modes in two scenarios in 2020.
The assumption was that we would promote the same areas of green manure under the two scenarios.

Scenario 1: Based on the local agriculture development program, the local government aims to
promote the incorporation of green manure in orchards at the rate of 1500 ha per year. In this case,
the total area of M1 orchards would increase by 1500 ha each year. According to the characteristics of
the orchards, priority is given to orchards with relatively low productivity (M2); thus, the total area of
M2 orchards will decrease by 1500 ha each year. When the demand of M2 decreases to 0, the demand
of M3 begins to decrease. When the demand of M3 decreases to 0, the demand of M4 decreases, and so
forth. However, the demands in the non-spatial module cannot be assigned as 0 according to the
requirement of the CLUE-S model; thus, we used 1 ha instead of 0 to guarantee that the model could
run smoothly.

Scenario 2: The total area of the M1 orchards increases by 1500 ha per year. Priority is given to the
orchards with very high productivity (M5), which would decrease by 1500 ha each year. When the
areas of M5 decrease to 0, we can decrease the demand of M4, and so forth. We also used 1 ha instead
of 0 to guarantee that the model would run smoothly.

(3) Spatial module

The spatial module can receive all types of demands from the non-spatial module and can control
the spatial locations of the five types by using the regression coefficient of the driving factors and the
probability distribution over the parameters. The selection of driving factors is shown in Table 3.
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Table 3. Selection of driving factors.

Classification of Driving Factors Driving Factors Unit

Location condition

Distance to the nearest road (X1) m
Distance to the nearest railway (X2) m

Distance to the nearest river (X3) m
Distance to the nearest lake (X4) m

Land use condition
Distance to the nearest main town (X5) m

Distance to the nearest rural resident site (X6) m

Spatial characteristics of patches Shape index (X7) -
Connectivity of orchard patches (X8) -

Socioeconomic condition
Orchard areas (X9) ha

Fruit yield (X10) t
Agricultural practitioners (X11) person

Specifically, X1, X2, X3, and X4 were used to describe the transport accessibility. X5 and X6

represented the distance to the main town (farms’ market inside) and the far and near conditions for
orchard management by agricultural practitioners. All the distances (X1 to X6) could be calculated
via the Euclidean distance by using ArcGIS 10.1. Furthermore, the orchards with regular shape and
high connectivity were prioritized. X7 was measured using the fractal dimension index (FRAC) from
landscape ecology, which is shown in Equation (2) [59]. X8 was gauged by Equation (3) [60]. X9, X10,
and X11 were the key socioeconomic variables impacting the green manure promotion.

FRAC =
2 log(p/4)

log(a)
(2)

where p and a are the perimeter and area of the patch, measured in m and m2, respectively. The range
of the index varies from 1 to 2 (without units). Higher values correspond to more complicated shapes.

Q =


20 a ≥ 5.23 hm2

20 + 80× a− 5.23
20.94− 5.23

5.23 hm2 < a ≤ 20.94 hm2

100 a > 20.94 hm2

(3)

where Q is the connectivity of the patch and ranges from 20 to 100 (without units) and a is the area of
the patch measured in m2. Higher values indicate a higher degree of connectivity among the patches.

The regression coefficients and the probabilities of the transformation of the spatial allocation
features were defined using the following logit model:

ln(
Pi

1− Pi
) = β0 + β1X1,i + β2X2,i + . . . + βnXn,i (4)

where Pi is the probability of the grid i containing a particular mode, and Xn,i is the driving variable.
The coefficient (β) is estimated using logit regression, in which the actual spatial distribution of a
certain mode acts as the dependent variable, with the value of i ranging from 1 to 5 for M1 to M5.

The conversion settings are composed of two parameters, the conversion elasticity (ELAS) and the
transition matrix. The first parameter, ranging from 0 (easy conversion) to 1 (irreversible conversion),
was determined via expert knowledge. In this paper, the ELAS values were 1, 0.8, 0.6, 0.4, and 1, 0.4, 0.6,
0.8 for scenarios 1 and 2, respectively. The second parameter has values of 0 (irreversible transition) or
1 (easy conversion) and indicates what conversions are possible for each mode. In this study, M1 could
not be converted to other types. The conversion matrix can be observed in Table 4.
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Table 4. Conversion matrix for the five types of the two scenarios.

M1 M2 M3 M4 M5

M1 1 0 0 0 0
M2 1 1 1 1 1
M3 1 1 1 1 1
M4 1 1 1 1 1
M5 1 1 1 1 1

Note: In the matrix, 0 indicates an easy conversion and 1 indicates an irreversible conversion. The lines inside the
matrix indicate conversion-out, and the columns indicate switching-in.

The transformation between different modes will determine what changes occur. For each grid
cell i, the total probability (TPROPi,u) was estimated for each mode by using the following equation:

TPROPi,u = Pi,u + ELASu + ITERu (5)

where TPROPi,u is the suitability of grid i for type u, ELASu is the conversion parameter for type u,
and ITERu is an iteration variable that is specific to mode u and indicates the relative competitive
strength of mode u.

3. Results

3.1. Land Productivity Evaluation Results

By overlaying the land-use map and the corresponding soil map, 5239 evaluation units were
assigned. The scores of all evaluation units for the assessment indicators can be seen in Figure 2.

Patches with high scores of active soil depth still had high rankings of slope and drainage
capability. The same situation occurred in the indicators of available potassium content and available
phosphorus content. Also, no orchard patches had an active soil depth thinner than 30 cm. Also, sandy
loam and light loam occupied large percentages, and there was no gravelly soil texture. In addition,
the topography sloped from northeast to southeast. The aspect of the assessment units was mainly
between 135 to 225 degrees, so most of the units achieved a score of 100 for this indicator. No units
were detected with a slope higher than 25 degrees in the study area. For the soil nutrients properties,
a very small percentage of patches had an organic matter content lower than 10 g kg−1. Many of
the units had an organic matter content of 10–15 g kg−1 or 15–20 g kg−1. Regarding the guarantee
of irrigation, most of the units were second-grade, namely, “basically satisfied”. Patches without
irrigations were not found.

The final IPIs were estimated using Equation (1), and the land productivity was originally divided
into the following categories: lowest, lower, medium, higher, and highest. Since the lowest and lower
classes were merged to meet this requirement (reasons could be found in Section 2.3.2), the land
productivity was graded into four categories: lower, medium, higher, and highest classes. The spatially
explicit results are shown in Figure 3. The four grades accounted for 10.48%, 37.62%, 45.71%, and 6.19%,
respectively, of the entire orchard study area.
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3.2. Spatial Distribution of All Categories of 2011

The spatial distribution of all categories was obtained by overlaying the spatial distribution of
green manure intercropping in orchards in 2011 (shown in Figure 1) with Figure 3. The spatial
distributions of all types can be found in Figure 4. M1 was mainly located in Dahuashan,
Wangxinzhuang, and Xiongerzhai, which had a total combined orchard area of 1393 ha in 2011.
M2 was scattered in the townships of Dahuashan, Zhenluoying, Huangsongyu, and Nandulehe.
In addition, M3 was mainly located in the northern and central townships in the study region, i.e.,
southern Dahuashan, central Zhenluoying, and the middle of Wangxinzhuang. M4 was located in
southern Yukou, eastern Liujiadian, central and southern Nandulehe, and western Jinhaihu, and M5
was distributed sporadically in the orchards of all the townships, but with very small percentages.
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Figure 4. The spatial distributions of five productivity-incorporated types of intercropping or
non-intercropping green manure in 2011. Orchards intercropped with green manure (M1); lower
orchard productivity without intercropping with green manure (M2); medium orchard productivity
without intercropping with green manure (M3); higher orchard productivity without intercropping
with green manure (M4); highest orchard productivity without intercropping with green manure (M5).

3.3. Regression Analysis of Categories Changes

A logistic regression model was used to explore the relationship between the classified categories
and the related driving forces. To estimate the coefficients (β’s) of the logit model, a logistic regression
procedure was used with the actual land-use pattern as a dependent variable. A statistical package, i.e.,
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the SPSS, was used to regress land use upon its explanatory factors. A stepwise regression procedure
was used to select the relevant factors from a larger set of location characteristics.

Figure 5 shows the maps of the driving forces in the study region. Table 5 presents these driving
forces and their coefficients for the logistic regression. The results showed that different categories had
different driving forces that contributed to their locations. The logit regression results were further
examined by using receiver operating characteristic (ROC) indices. We could see that the shape index
(X7) had the highest regression coefficient in Table 5. The orchards with regular shape were prioritized
for promoting green manure.
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Table 5. Logit regression results for the different types in the study area.

Driving
Factors

M1 M2 M3 M4 M5

ß Exp(ß) ß Exp(ß) ß Exp(ß) ß Exp(ß) ß Exp(ß)

Constant 8.5464 5148.1876 −2.2717 0.1031 1.6665 5.2936 −3.9650 0.0190 −9.5359 0.0001
X1 −0.0373 0.9634 −0.0426 0.9583 0.0387 1.0395 −0.0170 0.9831
X2 −0.0520 0.9493 0.0085 1.0085 0.0063 1.0063 0.0017 1.0017 0.0098 1.0098
X3 0.0357 1.0363 0.0030 1.0030 −0.0088 0.9912 −0.0112 0.9889 −0.0241 0.9762
X4 −0.0327 0.9678 −0.0156 0.9845 0.0081 1.0081 0.0017 1.0017 0.0220 1.0222
X5 −0.0195 0.9807 0.0528 1.0542 −1.9093 0.1482 0.0089 1.0089 −0.0155 0.9846
X6 0.0699 1.0724 −0.8731 0.4177 0.0977 1.1026 −0.0291 0.9713
X7 −4.8340 0.0080 −0.0095 0.9905 −0.0055 0.9945 3.1032 22.2691 4.0341 56.4900
X8 0.0127 1.0128 −0.0426 0.9583 0.0049 1.0049 −0.2468 0.7813 0.5924 1.8083
X9 0.0104 1.0105 0.0085 1.0085 −0.0012 0.9988 0.0020 1.0020
X10 0.0040 1.0040 0.0030 1.0030 0.0387 1.0395 −0.0025 0.9975 −0.0051 0.9949
X11 −0.0003 0.9997 −0.0156 0.9845 0.0063 1.0063 0.0061 1.0061 0.0108 1.0109

ROC 0.850 0.848 0.863 0.897 0.896

3.4. Quantitative Analysis of the Five Types under the Two Scenarios

The demands for all types were calculated according to the situational characteristics presented
in Section 2.3.2 and are shown in Table 6. Also, we compared the simulated numbers with the
requirements and the relative error between them (Table 7), which was very small and suggested that
the CLUE-S model could correctly conform to the demands.

Table 6. Requirements of the five types of the different scenarios in 2020 (ha).

Years
Scenario 1 Scenario 2

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

2011 1393 2167 8749 8622 1172 1393 2167 8749 8622 1172
2012 2893 667 8749 8622 1172 2893 2167 8749 8293 1
2013 4393 1 7915 8622 1172 4393 2167 8749 6793 1
2014 5893 1 6415 8622 1172 5893 2167 8749 5293 1
2015 7393 1 4915 8622 1172 7393 2167 8749 3793 1
2016 8893 1 3415 8622 1172 8893 2167 8749 2293 1
2017 10,393 1 1915 8622 1172 10,393 2167 8749 793 1
2018 11,893 1 415 8622 1172 11,893 2167 8041 1 1
2019 13,393 1 1 7536 1172 13,393 2167 6541 1 1
2020 14,893 1 1 6036 1172 14,893 2167 5041 1 1

Table 7. The precision of the simulation and validation results of the CLUE-S model.

Types
Demand (ha) Simulated Results (ha) Relative Error (%)

Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 1 Scenario 2

M1 14,893 14,893 14,888 14,889 −0.03 −0.03
M2 1 2167 1 2176 0 0.42
M3 1 5041 1 5036 0 −0.10
M4 6036 1 6030 1 −0.10 0
M5 1172 1 1183 1 0.94 0

3.5. Spatial Expansion of Green Manure Intercropping in 2020

The simulated spatial locations of all types via CLUE-S under the two scenarios for 2020 are
shown in Figure 6.

In Figure 6a, the spatial distribution of M2 and M3 decreased rapidly and disappeared; thus, the
M2 and M3 orchards were all converted to M1 orchards, and only three modes, i.e., M1, M4, and M5,
remained. M1 primarily appeared in Zhenluoying and in the northern regions of Dahuashan and
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Huangsongyu. M1 were mainly located in the middle of the study region, e.g., south of Dahuashan,
west of Xiongerzhai, in southern Liujiadian, west of Wangxinzhuang, in the center of Shandongzhuang,
and south and in the middle of Nandulehe. M1 also occurred in very scattered patches in the southern
regions of the study area, i.e., Xiagezhuang, Machangying, and Donggaocun.

In Figure 6b, the M4 and M5 disappeared in the simulation, which meant that these types of
orchards were shifted to M1 and that only three modes, i.e., M1, M2, and M3, remained. The promotion
of green manure in orchards mainly occurred in the middle of the study area, such as in southern
Dahuashan, western Xiongerzhai, eastern Liujiadian, northern Yukou, western Wangxinzhuang,
the middle of Shandongzhuang, central Nandulehe, and western Jinhaihu. M1 covered a smaller area
in the northern regions of Dahuashan and Zhenluoying. In addition, the M1 orchards appeared in
some very scattered patches in the southern regions of the study area, i.e., Daxingzhuang, Pinggu,
Xiagezhuang, Donggaocun, and Mafang.
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3.6. The Accuracy of the Simulation of the CLUE-S Model

The CLUE-S model was originally applied in the field of simulating land-use changes and has
rarely been used in other research areas. In this study, the CLUE-S model was introduced to simulate
the spatial distribution of orchards with green manure according to different land-use type conversions
and spatial allocations. Two key aspects must be considered to verify the accuracy of the CLUE-S
model, i.e., the ROC coefficient and the Kappa index. The ROC coefficient is used to test the effectiveness
of the logistic regression. A ROC greater than 0.7 suggests a strong ability to illustrate the correlation
between the modes and the driving variables [61]. In this study, the respective ROCs for M1 through
M5 were 0.850, 0.848, 0.863, 0.897, and 0.896, thus all greater than 0.7, which suggests that the selected
driving factors explained well the spatial changes of the five types. The other index, which is used
to evaluate the feasibility of the model for simulating the whole modes, is the Kappa index [62],
which should be at least 0.85. The simulated map of 2013 was compared with the actual map via
ENVI 4.8, and the Kappa index was 0.90, which indicated it could capture the future trend of green
manure in developing orchards. The high Kappa index potentially resulted from the very short time
interval (3 years only), the very small changes in the driving variables, and the conversion setting from
2011 to 2013. A long-term simulation should be tested in future research.
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4. Discussion

4.1. Land Productivity Evaluation

In this paper, land productivity evaluation was incorporated in the simulation of the spatial
location of green manure. The categories classification of the base year regarding intercropping
green manure or non-intercropping, largely depends on the orchard productivity assessment results.
Elevation, soil properties, and social-economic factors (i.e., guarantee of irrigation and drainage
capability) can affect the productivity results. We referred to the Rules for Cultivated Land Productivity
Assessment in Beijing, China (DB11/T 1083-2014) [58] to determine the assessment criteria and weights.
Soil profile, site condition, soil nutrients, and soil management factors were included in the indicators
system. However, the dynamics of land productivity evaluation were not considered because of
the unavailability of data. Since the incorporation of green manure in the orchard can improve soil
productivity [38], the soil quality should be monitored and kept updated annually, thus providing a
guidance for annual green manure management [63].

4.2. Mechanisms of Spatial Changes of Green Manure under Different Scenarios

Different spatially explicit results were processed under two scenarios. In general, the outcomes
showed the driving factors that affect green manure expansion at the grid scale, whereas the implementing
strategies directly determined the spatial arrangement of green manuring at a regional scale.

In Figure 6, under scenario 1, the promotion of green manure was prioritized for relatively
lower- and medium-productivity orchards. The spatial distribution of M1 in scenario 1 was more
concentrated than in scenario 2. Some townships, such as Pinggu and Mafang, did not include any
M1. Approximately 30% of the orchards for which green manure application was promoted had high
productivity. These orchards were located in north of Zhenluoying and Dahuashan and south of
Xiongerzhai and Xiagezhuang because continuous orchard patches and socioeconomic factors with
high values occurred in this area. Because the orchards with lower (M2), medium (M3), and higher
productivity (M4) already meet the demands for promoting green manure in 2020, the orchards with
highest productivity should not be introduced to green manure. As shown in Table 7, green manure
was introduced to only 11 ha of orchards with the highest productivity, which resulted in a small
relative error (only 0.94%).

For scenario 2, green manure development was preferred in the highest- and relatively
higher-productivity orchards. In addition, approximately 42% of the orchards with medium land
productivity, primarily located in south of Dahuashan, Wangxinzhuang, Shandongzhuang, and
Nandulehe and in the central region of Jinhaihu, were chosen for green manure planting. The result
was due to the flat terrain, higher soil attributes, and convenient traffic conditions. Because the
orchards with the highest (M5) and higher (M4) productivity and some of the orchards with medium
productivity (M3) already met the demands for promoting green manure in 2020, green manure should
not be promoted for orchards with the lowest productivity. As shown in Table 7, only the 9 ha orchards
with very low fertility introduced green manure. This result was caused by the error of the model,
with a relative error of only 0.42%.

4.3. Implications for Orchard Green Manure Management

Due to the deterioration of soil and environment, the traditional organic green manure has gained
great attention again. Green food without overuse of chemical fertilizers or heavy metals is required.
Promoting green manure is thought to be one effective way to relieve the current usage of high amounts
of chemicals. To establish a sustainable intercropping system, a stable and suitable application of green
manure is urgently required. For green manure which is in the phase of recovery and development,
it is a key point to grasp the future spatial potential to promote this crop. The methods showed in
this study can guide in mapping the potential of promoting green manure in space and in visually
establishing a future trend for developing green manure in orchards.
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As shown in Figure 6, the spatial distribution of M1 in scenario 1 was more concentrated
than in scenario 2. This means that if people prioritize the lower-productivity orchard to develop
green manure intercropping (scenario 1), they can focus on a concentrated area and conduct the
green manuring intensively. This strategy can lead to a decreased labor time and a decreased labor
cost. Alternatively, if people prioritize orchard with higher productivity to promote green manure
intercropping (scenario 2), green manure can be extended to most of the study area. This strategy
enables more farmers and villages to benefit from the expansion of green manure. The different
strategies should be balanced according to their characteristics.

In addition, socioeconomic factors can have an effect on green manure planting. Future research is
needed to incorporate policy into the simulation because the promotion of green manure is somewhat
affected by policy makers. As shown in this study, the shape index of orchard patches dominated
among the selected driving factors. Regular shaped patches were prioritized for promoting green
manure. The contributions of the driving factors should be tested further in order to analyze the spatial
pattern under different scenarios [64].

5. Conclusions

To scientifically and accurately simulate the spatial distribution of green manure interplanted in
orchards, the evaluation of orchard productivity and the CLUE-S model were incorporated in this
study. Similar to the land-use type classification, five types of land productivity for planting green
manure were classified, which acted as source data for running the simulation. Two scenarios were
proposed to describe two promotion strategies. The good ROC and Kappa indices revealed the strong
ability of the model to map the spatially explicit distribution of the research object. Because of the
different scenario characteristics, the transformation of M1 occurred distinctively in space. The spatial
location of M1 in scenario 1 was more concentrated than in scenario 2.

In conclusion, the simulated outcomes could achieve our goals and revealed that selected
driving variables have an effect on green manure expansion at a grid scale, whereas the different
implementing strategies directly determine the spatial arrangement of green manuring at a regional
scale. The evaluation of ecological indicators and the simulation of future spatial patterns of green
manuring are essential for informing an extensive use and management of green manure.

In future research, a range of scenarios should be developed to determine the optimal scenarios,
and a sustainable planning for the recovery of green manure is urgently needed [65]. In addition,
the dynamics of land productivity evaluation should be included in a long-time simulation. Apart from
intercropping green manure, it should also be determined how to capture the trend of the rotating
green manure in space. Research that combines the simulation model and an ecological model may
provide a more integrated view for promoting green manure in China and guide the formulation of a
sound policy for developing green manure.
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