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Abstract: Approximating the complex nonlinear relationships that dominate the exchange of carbon
dioxide fluxes between the biosphere and atmosphere is fundamentally important for addressing the
issue of climate change. The progress of machine learning techniques has offered a number of useful
tools for the scientific community aiming to gain new insights into the temporal and spatial variation
of different carbon fluxes in terrestrial ecosystems. In this study, adaptive neuro-fuzzy inference
system (ANFIS) and generalized regression neural network (GRNN) models were developed to
predict the daily carbon fluxes in three boreal forest ecosystems based on eddy covariance (EC)
measurements. Moreover, a comparison was made between the modeled values derived from these
models and those of traditional artificial neural network (ANN) and support vector machine (SVM)
models. These models were also compared with multiple linear regression (MLR). Several statistical
indicators, including coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), bias error
(Bias) and root mean square error (RMSE) were utilized to evaluate the performance of the applied
models. The results showed that the developed machine learning models were able to account for
the most variance in the carbon fluxes at both daily and hourly time scales in the three stands and
they consistently and substantially outperformed the MLR model for both daily and hourly carbon
flux estimates. It was demonstrated that the ANFIS and ANN models provided similar estimates in
the testing period with an approximate value of R2 = 0.93, NSE = 0.91, Bias = 0.11 g C m−2 day−1

and RMSE = 1.04 g C m−2 day−1 for daily gross primary productivity, 0.94, 0.82, 0.24 g C m−2 day−1

and 0.72 g C m−2 day−1 for daily ecosystem respiration, and 0.79, 0.75, 0.14 g C m−2 day−1 and
0.89 g C m−2 day−1 for daily net ecosystem exchange, and slightly outperformed the GRNN and
SVM models. In practical terms, however, the newly developed models (ANFIS and GRNN) are more
robust and flexible, and have less parameters needed for selection and optimization in comparison
with traditional ANN and SVM models. Consequently, they can be used as valuable tools to estimate
forest carbon fluxes and fill the missing carbon flux data during the long-term EC measurements.

Keywords: carbon fluxes; boreal forests; machine learning; eddy covariance; adaptive neuro-fuzzy
inference system; generalized regression neural network

1. Introduction

Forest ecosystems play a critical role in sequestering atmospheric carbon dioxide [1,2].
The magnitude of carbon sequestration in different forest stands at various timescales ranging from
hour to inter-annual is seriously influenced by global environmental change, such as climate, land use,
CO2 enrichment, nitrogen deposition and biotic invasions. In addition, the substantial impacts of
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climate extreme events (e.g., droughts, precipitation, wind storms, heat waves, frosts and fires) on
the terrestrial carbon cycle have been revealed by a few recent studies [3,4]. These effects may
alter the growth patterns of pine species and biodiversity as well as the structure and functioning
of forest ecosystems [5,6], which will lead to a major impediment in our understanding of the
underlying mechanisms causing the ongoing seasonal variation in carbon fluxes, mainly including
gross primary production (GPP), ecosystem respiration (R) and net ecosystem exchange (NEE).
Therefore, quantification of the carbon exchanges between the forest ecosystems and the atmosphere is
challenging for current modeling techniques, due to the complex interactions and feedbacks involved
in biological, physical and chemical processes across various spatial and temporal scales.

Mechanism-based land surface models have been extensively used for estimating the terrestrial
carbon fluxes from site to regional scales. However, the modeling ability of land surface models is
limited because of lacking the flexibility and robustness to capture the nonlinear characteristics.
Moreover, to a large extent, the fixed parameters within the models pose a challenge for the
interpolation and extrapolation of the well-established models, maybe owing to the inherent variability
of model parameters at various temporal and spatial scales. Therefore, considering the constantly
varying statistical features in natural ecosystems, mechanism-free models were strongly recommended
by Schindler and Hilborn [7] and Ye et al. [8], as a useful paradigm to handle the nonlinear interactions
of non-equilibrium dynamical and complex ecological systems. Inspired by this as well as the recent
availability of a great deal of data obtained by the eddy covariance (EC) technique from three different
flux towers, we here used the mechanism-free machine learning techniques to simulate and predict
the carbon fluxes of terrestrial forest ecosystems.

Over the past two decades, machine learning techniques have been growingly utilized to deal
with the different issues involved in carbon flux estimates [9–13], such as filling the missing data of
carbon fluxes and climatic driving factors based on the flux tower measurements [14,15], reducing
the predictive errors of carbon fluxes from the land surface models [16,17] and upscaling the carbon
fluxes of terrestrial ecosystems from site to regional scale on the basis of multi-source remote sensing
data [18,19]. In particular, several lines of evidence have demonstrated that machine learning
techniques, mainly including two traditional artificial neural network (ANN) and support vector
machine (SVM) methods, have sufficiently strong ability to elucidate the nonlinear relationship
between ecosystem-based carbon fluxes and environment variables based on EC measurements [13,20].
For example, Melesse and Hanley [21] utilized the ANN approach to estimate the carbon flux in three
different ecosystems (grassland, cropland and forest) using the air temperature, soil temperature and
several energy fluxes as input data and found that ANN could be successfully applied in simulating
the ecosystem-based carbon fluxes. Dou et al. [22] used the ANN method to map different carbon and
water fluxes in three Douglas-fir Stands in the Pacific Northwest based on long-term measurements and
found that the use of ANN could be effective to determine the responses of three different carbon fluxes
(GPP, R and NEE), evapotranspiration and water use efficiency to nitrogen fertilization. Evrendilek [23]
compared the three different data-driven methods, including multiple linear regression, ANN and
SVM, to estimate the influences of both atmospheric and hydrological drivers on monthly NEE using
three years of measurements at a peatland site in northwestern Turkey and obtained satisfactory
predictive accuracy.

On the other hand, in recent years, another two advanced machine learning modeling
techniques, namely adaptive neuro-fuzzy inference system (ANFIS) and generalized regression
neural network (GRNN), have been successfully applied in other fields, such as estimation of
reference evapotranspiration [24,25], evaporation prediction [26,27], stream-flow forecasting [28,29],
and groundwater level prediction [30,31]. These two methods have been widely acknowledged,
to a large extent, due to their capability and efficiency in solving complicated nonlinear problems
with only a few variables. Moreover, ANFIS method is designed through integrating fuzzy inference
rules into adaptive neural networks with the intention of extracting useful knowledge involved in
the trained networks in the form of fuzzy logic expression [32] and thus can conquer the weakness of
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knowledge interpretation for neural networks. Unlike both ANN and SVM approaches, GRNN method
has the advantage of quick speed of learning, because it does not need a large number of iterations
to determine optimal inner algorithms or parameters [33]. To the best of the authors’ knowledge,
no research has been undertaken to date that applies both the GRNN and ANFIS approaches to predict
the carbon fluxes at the ecosystem level using the EC-based data.

The present study attempts to model and predict the carbon fluxes based on the continuous
six-year EC measurements in three old-growth forests under different climates. The major goal of this
research is to investigate the feasibility of GRNN and ANFIS in terms of estimating the carbon flux
exchanges between the biosphere and the atmosphere. Further, the results of both the well-established
GRNN and ANFIS models are compared with those of commonly used ANN and SVM models and
traditional empirical model (multiple linear regression, MLR). The secondary objective of the study is to
examine the modeling differences among the three primary components of carbon exchanges, including
gross primary production (GPP), ecosystem respiration (R) and net ecosystem exchange (NEE).

2. Materials and Methods

2.1. Site Description and Data Used

Measurements of carbon fluxes were conducted at three sites in Canada. The three sites were
chosen for this study because they represent different types of forests and have obvious differences
in stand age and biological structure. In addition, continuous multi-year half-hourly measurements
of CO2 flux with EC technique were collected from these sites. The two forest sites, CA-Oas and
CA-Obs, are situated near the southern boundary of the boreal plain ecological region in north-central
Saskatchewan, Canada. The two sites were established based on the dominant boreal tree species.
The two forest sites have the similar characteristics of synoptic meteorological forcing, while present
the remarkable differences in their soil texture, topography and tree stem density. CA-Oas site is
located in Prince Albert National Park, Saskatchewan, Canada. This mature trembling aspen site is s a
boreal deciduous broadleaf forest generated from a fire in 1919, and had a mean canopy height of 22 m
and an average stand age of 75 years in 2004 [34]. CA-Obs site is located about 80 km east-northeast
of CA-Oas, and is predominately covered by black spruce with an average canopy height of 7.2 m.
According to the statistics from the nearest long-term weather station during 1971 to 2000, the mean
annual air temperature and cumulative annual precipitation are 0.4 ◦C and 467 mm, respectively,
for both CA-Oas and CA-Obs sites [34]. CA-Gro site is situated about 80 km southwest of Timmins in
northeastern Ontario, Canada. The site is a representative of the boreal mixed wood forest and was
regenerated after the high level logging which primarily occurred in the 1930s. This site is primarily
covered by five different types of species, including black spruce, balsam fir, trembling aspen, white
spruce and white birch. At the CA-Gro site, the mean annual air temperature and cumulative annual
precipitation during the study period (2004–2006, 2008–2010) are 3.29 ◦C and 784 mm, respectively.
More details on the sites are presented in Table 1.

Table 1. Site characteristics used in this study. The mean annual temperature (MAT, ◦C) and total
annual precipitation (TAP, mm year−1) are for the time period (Period). Vegetation types are deciduous
broadleaf forest (DBF), evergreen needle-leaf forest (ENF) and mixed forest (MF).

Site Latitude Longitude Elevation MAT TAP Vegetation Period Reference

CA-Oas 53.63 −106.20 601 1.82 343 DBF 2003–2008 Griffis, et al. [35]
CA-Obs 53.99 −105.12 629 1.00 373 ENF 2004–2009 Krishnan, et al. [36]

CA-Gro 48.22 −82.16 341 3.29 784 MF 2004–2006,
2008–2010 McCaughey, et al. [37]

Based on the EC technique, continuous half-hourly carbon fluxes for six or more years were
measured at each site. Positive NEE stands for a loss of CO2 to the atmosphere, while negative NEE
implies an uptake of CO2 by the ecosystem. The method of gap-filling for eddy covariance-measured
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NEE and its partitioning into GPP and R was according to the Fluxnet-Canada Research Network
protocol [38]. Briefly, R was obtained from both nighttime and cold-season NEE. The gap-filling
of missing R during nighttime and calculation of R during daytime were on the basis of an
empirical relationship between R and soil temperature. Finally, GPP was estimated based on the
daytime-observed NEE and calculated daytime R. During the cold season, GPP was set to zero.
More details regarding the EC instrument characteristics, NEE gap-filling and its separation scheme
as well as the random errors in NEE, R and GPP have been provided for CA-Oas and CA-Obs in
Griffis et al. [35] and Zha et al. [34], and CA-Gro in McCaughey et al. [37].

Meteorological variables were also observed, mainly including air temperature (Ta), net radiation
(Rn), relative humidity (Rh), wind speed, volumetric soil moisture content and soil temperature (Ts).
The EC measurements began in April 1996, May 1999, and July 2003 at CA-Oas, CA-Obs, and CA-Gro,
respectively. Table 2 presents the daily statistical parameters of the used data during a period of six
years. At the three sites, the correlation values for both GPP and R are generally greater than those for
NEE. The variables, Ta, Ts and Rn, show strong positive correlation with both GPP and R, while have
negative correlation with NEE.

Table 2. Daily statistical parameters of flux tower measured environmental variables including air
temperature (Ta, ◦C), net radiation (Rn, mol m−2), relative humidity (Rh, %), soil temperature (Ts, ◦C),
gross primary productivity (GPP, g C m−2 day−1), ecosystem respiration (R, g C m−2 day−1) and net
ecosystem exchange (NEE, g C m−2 day−1) during the whole period in all three stands.

Stand Variable Xmean Xmax Xmin Xsd Xku Xsk CC1 CC2 CC3

CA-Oas

Ta 1.82 26.46 −35.04 13.02 2.22 −0.40 0.70 0.82 −0.50
Rn 5.19 18.94 −4.67 5.66 2.02 0.45 0.69 0.68 −0.60
Rh 69.88 98.78 21.83 16.15 2.62 −0.52 −0.18 −0.21 0.13
Ts 4.73 17.31 −5.81 5.81 1.69 0.30 0.83 0.93 −0.64

GPP 2.87 15.99 −0.84 4.29 2.83 1.17 1.00 0.91 −0.94
R 2.25 8.69 −1.17 2.11 2.34 0.81 0.91 1.00 −0.70

NEE −0.62 4.34 −10.41 2.55 3.69 −1.29 −0.94 −0.70 1.00

CA-Obs

Ta 1.00 26.37 −35.31 13.15 2.15 −0.34 0.83 0.81 −0.58
Rn 6.71 21.90 −4.28 6.17 2.05 0.48 0.72 0.56 −0.71
Rh 72.35 100.00 24.56 16.69 2.46 −0.43 −0.31 −0.16 0.42
Ts 3.19 15.41 −9.18 4.99 1.99 0.58 0.87 0.94 −0.48

GPP 2.23 9.41 −0.15 2.56 1.96 0.68 1.00 0.90 −0.80
R 1.70 7.28 −0.26 1.73 2.66 0.97 0.90 1.00 −0.47

NEE −0.53 3.90 −5.20 1.24 3.03 −0.84 −0.80 −0.47 1.00

CA-Gro

Ta 3.29 27.83 −31.66 12.35 2.26 −0.36 0.78 0.82 −0.46
Rn 6.60 21.97 −3.42 5.75 2.13 0.51 0.69 0.58 −0.64
Rh 74.98 98.93 21.54 15.47 3.27 −0.78 −0.25 −0.18 0.27
Ts 5.56 17.68 −1.21 5.45 1.65 0.45 0.87 0.94 −0.48

GPP 2.88 13.59 −0.45 3.38 2.70 0.98 1.00 0.92 −0.80
R 2.59 10.62 −0.21 2.31 2.66 0.90 0.92 1.00 −0.50

NEE −0.29 4.27 −8.51 1.56 5.64 −1.42 −0.80 −0.50 1.00

Note: Xmean, Xmax, Xmin, Xsd, Xku and Xsk refer to the mean, maximum, minimum, standard deviation, kurtosis and
skewness of each variable, respectively; CC1, CC2 and CC3 refer to the correlation coefficient between each variable
and GPP, R and NEE, respectively.

2.2. Machine Learning Methods

2.2.1. Artificial Neural Network

The ANN model with a parallel computing system is widely recognized owing to its strong
ability of approximating the non-linear relationship between inputs and outputs. ANN approach
is widely recognized as an important supervised technique for addressing various issues, such as
regression and classification, in a wide range of fields [39–41]. Commonly, the feed-forward neural
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network is the most classic ANN model and was used here in the present study. This network structure
includes three different types of layers, namely, input layer, hidden (intermediate) layer and output
layer. The present work used only one hidden layer because even for a specific ANN model with a
single hidden layer, it can also approximate any continuous multivariate function with reasonable
precision. The optimal number of hidden units selected for a specific network with lowest error during
the validation period is determined through varying the number of hidden neurons on the basis of
the corresponding data set. For the purpose of determining the optimum weights and thresholds of
multilayer neural networks, the back propagation algorithm was adopted in this study with the aim to
minimize the error between the actually simulated and expected targets from outputs for each case.
Moreover, Levenberg-Marquardt algorithm was used as the training function by this study, because of
its superiority of faster learning speed over some traditional conjugate gradient algorithms.

2.2.2. Support Vector Machine

The SVM model has rapidly gained popularity over the past few decades, since it was first
proposed by Vapnik [42]. This advanced machine learning technique is essentially focused on
addressing the classification and regression problems, which are involved in a broad range of research
fields. A noteworthy innovation of SVM method is that, when solving the estimated error between the
measured and the calculated, SVM depends on the structural risk minimization principle, which was
introduced by Vapnik [42] in order to obtain an optimum network structure through minimizing the
so-termed penalized empirical risk. This principle seeks to constrict the upper boundary on the desired
risk and has some distinct superiority over conventional empirical risk minimization algorithm, which
is adopted by the traditional neural network techniques. Just owing to this noticeable difference, several
lines of evidence support that the SVM method presents a more powerful generalization ability than
many neural network methods. When developing a SVM model, selecting a proper kernel function
is of particular importance. To ensure the predictive accuracy, several kernel functions, including
polynomial, sigmoid, radial basis functions, were compared and evaluated based on our applied data
sets. Many attempts were made by this study and the radial basis function (RBF), which achieved the
best performance, was utilized for all the SVM models. In addition, three critical parameters, including
kernel width of RBF, the value of cost function and insensitive loss coefficient, were together optimized
according to the grid search procedure.

2.2.3. Adaptive Neuro-Fuzzy Inference System

The ANFIS method is considered to be a sophisticated machine learning technique, and was
introduced by Jang [32], based on the aforementioned ANN and fuzzy inference system (FIS). ANFIS is
a more interpretable model and can offer more robust results than traditional ANN method, primarily
due to the fact that it is able to qualitatively and quantitatively elucidate the nonlinear relationship
between inputs and outputs through utilizing systematically the respective strengths of both ANN
and FIS techniques. When developing a specific ANFIS for a given training data set, selecting a proper
FIS is a major task. There are two widely used types of FISs, namely, Sugeno system [43] and Mamdani
system [44]. The former was adopted by this study due to the implicitly of design in the consequent
part and high computational efficiency. For a specific ANFIS model, there are generally two types
of parameters that need to be optimized, the premise parameters and the consequent parameters.
In the present study, the hybrid learning algorithm are composed of gradient descent algorithm
and least-squares method, which were used to optimize the premise parameters and the consequent
parameters, respectively. Generating a FIS is an important issue, which can be performed using
several methods, such as grid partitioning, mountain and subtractive clustering. The grid partitioning
algorithm is widely utilized, but the use of this method is substantially impeded owing to the curse
of dimensionality. For this reason, the subtractive clustering technique was adopted by this study.
Detailed description of subtractive clustering algorithm can be found in Cobaner [45].
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2.2.4. General Regression Neural Network

GRNN as a feed-forward neural network could be usually subsumed under the category of
radial basis function network. It is proposed by Specht [33] based on nonlinear regression theory
and hence can be used as an alternative machine learning technique for approximating any arbitrary
function of input-output variables from a given training dataset. In comparison with the conventional
ANN approach based on back propagation algorithm, the major strengths of GRNN method can be
summarized in the following aspects: (1) the simplicity of the network structure that heavily depends
upon the number of input and output variables as well as the sample size of a specific training dataset,
and does not necessitate any modification during the learning process; (2) the quick speed of learning
as the GRNN does not require to be trained by using an time-consuming iterative procedure which
must be carried out for ANN according to the back propagation algorithm with a huge amount of
computation; (3) the solution of the problem of local minimum through the use of Gaussian radial
basis kernel function as the transfer function in the pattern layer. In addition to these strengths,
another noteworthy point is that the GRNN model does not need many iterations to determine its
inner algorithms or parameters, except for the spread factor that may substantial influence the model
generalization capability. In this study, the optimal spread factor selected from a set of alternative ones
in the range of 0.01 to 1 was determined by using an iterative algorithm with fourfold cross-validation.
More details about the GRNN method can be found in Specht [33] and Kisi [46].

2.3. Model Implement and Evaluation

In this study, four different machine learning methods, ANN, GRNN, ANFIS and SVM, were
investigated and compared to estimate daily carbon fluxes in three forest ecosystems. In addition,
the MLR model was also used in this investigation with the intention of examining the strength of
machine learning approaches against traditional regression technique. The correlation coefficient
values between environmental variables and each carbon flux in all the ecosystems have been given
in Table 2. The results showed that all the carbon fluxes were highly correlated with Ta, Ts and Rn,
implying that these variables were the most effective parameter influencing carbon fluxes. To obtain
an accurate and reasonable comparison of modeling performance among different carbon fluxes,
the applied methods with different variable combinations for inputs were tried in this study. For the
sake of convenience, these abbreviated models are summarized in Table 3. We used all the models for
each flux in order to make the comparison of various carbon fluxes as fair as possible.

Table 3. The input combinations for different methods with environmental variables including air
temperature (Ta, ◦C), net radiation (Rn, mol m−2), relative humidity (Rh, %), soil temperature (Ts, ◦C).

Models Input
CombinationsANN GRNN ANFIS SVM MLR

ANN1 GRNN1 ANFIS1 SVM1 MLR1 Ta
ANN2 GRNN2 ANFIS2 SVM2 MLR2 Rn
ANN3 GRNN3 ANFIS3 SVM3 MLR3 Rh
ANN4 GRNN4 ANFIS4 SVM4 MLR4 Ts
ANN5 GRNN5 ANFIS5 SVM5 MLR5 Ta, Rn
ANN6 GRNN6 ANFIS6 SVM6 MLR6 Ta, Rn, Rh
ANN7 GRNN7 ANFIS7 SVM7 MLR7 Ta, Rn, Rh, Ts

Complete 6-year environmental and carbon flux data were used at all the sites. These data
were divided into three datasets. The first 4-year dataset was used for training, the fifth year dataset
was used for validation for the purpose of avoiding over-fitting and assuring the ability of model
generalization, and the last 1-year dataset was for testing. It is noteworthy that all the applied models
were separately trained and extrapolated for validation and prediction, owing to the differences in
age among the three sites. Before the training of the applied models was started, all input and output
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variables were normalized between 0 and 1, respectively. The computer programs of all the machine
learning models and statistical analysis of estimated results were undertaken in MATLAB (version 8.2,
The Mathworks, Inc., Natick, MA, USA). Coefficient of determination (R2), Nash-Sutcliffe efficiency
(NSE), bias error (Bias) and root mean square error (RMSE) were considered for the performance
evaluation of the used models. These performances indices are defined as below:

R2 =


N
∑

i=1
(Yo,i − Yo)(Ym,i − Ym)√

N
∑

i=1
(Yo,i − Yo)

2 N
∑

i=1
(Ym,i − Ym)

2


2

(1)

NSE = 1 −

N
∑

i=1
(Yo,i − Ym,i)

2

N
∑

i=1
(Yo,i − Yo)

2
(2)

Bias =
1
N

N

∑
i=1

(Ym,i − Yo,i) (3)

RMSE =

√√√√ 1
N

N

∑
i=1

(Yo,i − Ym,i)
2 (4)

where Yo and Ym denote the observed and modeled values of daily carbon fluxes, respectively; Yo and
Ym are the means of observed and modeled values, respectively; N is the number of observed values.

3. Results

3.1. Modeling of Daily Gross Primary Productivity

The performance indices, including R2, NSE, Bias and RMSE, are used to evaluate the accuracy
of the employed models in predicting the daily GPP, R and NEE in three different forest stands in
the present study. Table 4 shows the estimated accuracy of the applied models in the prediction
of daily GPP in the testing period at the three sites. It is clearly seen from Table 4 that the models
with full environmental variables (Ta, Rn, Rh, Ts) have the best accuracy for each method and site.
Therefore, the following comparisons of the used models are mainly based on the inputs using these
four variables. The developed machine learning models are consistently superior to the corresponding
MLR models at the three sites. Regarding the comparisons of the machine learning models at CA-Obs
site, the ANN model is superior to the other models in the testing period. However, the GRNN model
generally provides the worst performance. The overall model efficiency of the used models can be
ranked as follows: ANN, ANFIS, SVM, GRNN and MLR according to the R2, NSE, Bias and RMSE
metrics. Similar to CA-Obs site, the GRNN model also gives the worst performance among the four
machine learning models in the testing period at CA-Oas site, while the ANFIS model generates the
best estimates. The overall ranks of the used models in the testing period can be summarized as
follows: ANFIS, SVM, ANN, GRNN and MLR. Unlike CA-Oas site, the ANN model in the testing
period performs the best at CA-Gro site. Additionally, the ANFIS and SVM models have the similar
model efficiency and they are both slightly superior to the GRNN model.

In order to examine the efficiency of each model in predicting the GPP, R and NEE in all the three
stands, the overall mean accuracy of each model for all the stands in the testing period is provided
in Table 5. It is apparent from the table that the MLR model in the prediction of GPP generally has
the worst accuracy in the testing period, whereas the ANN, ANFIS and SVM models yield the similar
performance with the higher values of R2 ranging from 0.922 to 0.927 and NSE from 0.901 to 0.909.
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Furthermore, to provide deeper insight into the responses of different forest stands to the applied
models in the prediction of daily GPP, R and NEE, the mean performance of all machine learning
models for each site in the testing period is summarized in Table 6. As demonstrated in the table for
GPP prediction, the models yield the best precision at CA-Obs site, and give similar results at both
CA-Oas and CA-Gro sites.

Table 4. Comparisons of machine learning models with different input combinations in the testing
period for gross primary productivity (GPP, g C m−2 day−1) in the three boreal forest stands.

Model
CA-Obs CA-Oas CA-Gro

R2 NSE Bias RMSE R2 NSE Bias RMSE R2 NSE Bias RMSE

ANN1 0.880 0.854 −0.358 1.046 0.753 0.742 −0.243 2.279 0.736 0.682 0.573 1.705
ANN2 0.482 0.472 0.003 1.989 0.428 0.420 0.203 3.417 0.554 0.529 0.395 2.076
ANN3 0.001 −0.088 0.311 2.854 0.062 0.062 0.022 4.347 0.110 0.072 0.483 2.914
ANN4 0.811 0.788 −0.305 1.259 0.831 0.830 0.118 1.848 0.795 0.778 0.340 1.425
ANN5 0.903 0.883 −0.273 0.937 0.808 0.806 −0.069 1.975 0.804 0.763 0.488 1.473
ANN6 0.932 0.917 −0.317 0.789 0.871 0.870 −0.087 1.618 0.861 0.825 0.430 1.267
ANN7 0.963 0.944 −0.253 0.645 0.909 0.905 0.211 1.386 0.907 0.877 0.319 1.060

GRNN1 0.876 0.825 −0.488 1.145 0.752 0.720 −0.524 2.377 0.734 0.699 0.486 1.660
GRNN2 0.485 0.470 0.056 1.992 0.434 0.428 0.261 3.395 0.564 0.551 0.325 2.027
GRNN3 0.000 −0.108 0.367 2.881 0.063 0.058 0.082 4.357 0.125 0.090 0.527 2.886
GRNN4 0.794 0.770 −0.311 1.311 0.841 0.822 −0.359 1.894 0.802 0.787 0.270 1.396
GRNN5 0.904 0.882 −0.282 0.941 0.786 0.786 0.050 2.078 0.795 0.733 0.598 1.562
GRNN6 0.926 0.886 −0.402 0.924 0.870 0.864 −0.105 1.652 0.838 0.803 0.465 1.341
GRNN7 0.944 0.925 −0.259 0.747 0.900 0.864 0.667 1.655 0.899 0.834 0.603 1.234
ANFIS1 0.882 0.856 −0.353 1.037 0.750 0.741 −0.222 2.286 0.736 0.695 0.504 1.669
ANFIS2 0.474 0.459 0.087 2.013 0.414 0.402 0.266 3.470 0.565 0.549 0.354 2.031
ANFIS3 0.000 −0.124 0.440 2.901 0.063 0.062 −0.061 4.347 0.127 0.088 0.550 2.889
ANFIS4 0.785 0.764 −0.314 1.329 0.806 0.806 0.077 1.977 0.804 0.780 0.294 1.420
ANFIS5 0.902 0.883 −0.309 0.938 0.790 0.790 −0.033 2.058 0.797 0.749 0.526 1.515
ANFIS6 0.938 0.921 −0.302 0.771 0.886 0.884 −0.135 1.529 0.866 0.823 0.485 1.271
ANFIS7 0.960 0.936 −0.271 0.690 0.917 0.913 0.249 1.326 0.904 0.863 0.438 1.120
SVM1 0.876 0.851 −0.354 1.056 0.754 0.745 −0.295 2.268 0.732 0.698 0.397 1.662
SVM2 0.501 0.498 0.136 1.939 0.392 0.304 0.334 3.744 0.564 0.545 0.188 2.041
SVM3 0.001 −0.362 0.116 3.193 0.035 −0.350 −2.735 5.215 0.090 −0.012 −0.530 3.043
SVM4 0.758 0.725 −0.498 1.434 0.868 0.867 −0.007 1.638 0.802 0.780 0.185 1.420
SVM5 0.902 0.886 −0.274 0.924 0.796 0.796 0.048 2.029 0.800 0.755 0.483 1.497
SVM6 0.932 0.919 −0.237 0.781 0.881 0.881 −0.059 1.547 0.865 0.813 0.490 1.307
SVM7 0.956 0.936 −0.281 0.695 0.916 0.910 0.276 1.350 0.894 0.859 0.359 1.136
MLR1 0.758 0.707 −0.586 1.480 0.510 0.498 −0.490 3.177 0.615 0.568 0.637 1.988
MLR2 0.465 0.453 0.040 2.024 0.408 0.397 0.292 3.482 0.556 0.539 0.375 2.054
MLR3 0.000 −0.076 0.220 2.837 0.019 0.018 −0.124 4.443 0.033 −0.029 0.499 3.067
MLR4 0.778 0.746 −0.350 1.379 0.752 0.738 0.108 2.297 0.766 0.723 0.351 1.591
MLR5 0.759 0.731 −0.387 1.419 0.542 0.539 −0.065 3.044 0.699 0.654 0.583 1.779
MLR6 0.786 0.744 −0.551 1.384 0.604 0.601 −0.187 2.832 0.738 0.702 0.517 1.650
MLR7 0.882 0.846 −0.262 1.074 0.805 0.785 0.430 2.081 0.843 0.793 0.318 1.375

Note: Bold numbers show the best performance among the models with different input combinations for each
method and stand.

Table 5. Comparisons of different models in the three stands for gross primary productivity
(GPP, g C m−2 day−1), ecosystem respiration (R, g C m−2 day−1) and net ecosystem exchange (NEE,
g C m−2 day−1) in the testing period.

Model
GPP R NEE

R2 NSE Bias RMSE R2 NSE Bias RMSE R2 NSE Bias RMSE

ANN 0.926 0.909 0.092 1.030 0.944 0.818 0.236 0.717 0.789 0.754 0.160 0.889
GRNN 0.914 0.874 0.337 1.212 0.936 0.887 0.148 0.624 0.770 0.731 −0.017 0.950
ANFIS 0.927 0.904 0.138 1.045 0.944 0.816 0.243 0.725 0.785 0.751 0.132 0.889
SVM 0.922 0.901 0.118 1.060 0.941 0.812 0.260 0.737 0.779 0.738 0.173 0.914
MLR 0.843 0.808 0.162 1.510 0.915 0.799 0.256 0.807 0.569 0.523 0.094 1.258
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Table 6. Comparisons of different stands using all the five models for gross primary productivity
(GPP, g C m−2 day−1), ecosystem respiration (R, g C m−2 day−1) and net ecosystem exchange (NEE,
g C m−2 day−1) in the testing period.

Stand
GPP R NEE

R2 NSE Bias RMSE R2 NSE Bias RMSE R2 NSE Bias RMSE

CA-Obs 0.941 0.918 −0.265 0.770 0.937 0.925 −0.027 0.496 0.764 0.714 0.208 0.701
CA-Oas 0.889 0.875 0.367 1.56 0.919 0.917 0.070 0.622 0.769 0.756 −0.188 1.272
CA-Gro 0.889 0.845 0.407 1.185 0.952 0.637 0.643 1.047 0.682 0.628 0.305 0.966

Figures 1 and 2 illustrate the comparisons of daily GPP between observed and predicted using
the data-driven models at the three sites in the form of scatter plot and time series graph, respectively.
As clearly seen from Figure 1, the fit lines of the models (ANN, GRNN, ANFIS and SVM) during the
testing period for CA-Oas site appear to be consistent with the ideal fit lines (y = x), whereas at
CA-Obs site, these models have higher values of R2 and NSE than those of the corresponding models
for CA-Oas and CA-Gro stands (Tables 4 and 6). Moreover, all the five models generate more scattered
estimates at both CA-Oas and CA-Gro sites in comparison with CA-Obs site.
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but at CA-Gro site, all the five models provide similar estimates. Specifically at CA-Obs site, the ANN 
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the whole period in the three boreal forest stands. (a) For CA-Obs stand using ANN model; (b) for
CA-Oas stand using ANFIS model; and (c) for CA-Gro stand using ANN model.

On the other hand, as demonstrated in Figure 2, the over- and under-estimation of the best model
for each site in predicting daily GPP among the training, validation and testing periods are examined.
It is apparent from Figure 2 that most of the simulated values from the best ANN model in the testing
period (the last 1 year) are substantially underestimated at CA-Obs site, while greatly overestimated at
CA-Gro site. This is also confirmed by the aforementioned scatter plots in Figure 1.

3.2. Modeling of Daily Ecosystem Respiration

The estimated precision of the used models for predicting daily R in the testing period in the
three sites are provided in Table 7. As shown from the table, the models with full input variables
(Ta, Rn, Rh, Ts) perform the best for each method and site. The machine learning models with these
variables consistently outperform the corresponding MLR models at both CA-Obs and CA-Oas sites,
but at CA-Gro site, all the five models provide similar estimates. Specifically at CA-Obs site, the ANN
model performs the best among the four machine learning models in the testing period, with respect
to R2, NSE and RMSE. The predictive precision of the ANFIS is similar to that of the SVM. These two
models give the inferior performance. As a whole, the GRNN model provides the lowest precision in
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the prediction of daily R. At CA-Oas site, the GRNN model is also inferior to the other three models
(ANN, ANFIS and SVM) in terms of R2, NSE and RMSE. Besides, the ANFIS model performs the best
among the five models. In conclusion, the overall model rankings of the applied models over the
testing period can be ranked as follows: ANFIS, ANN, SVM, GRNN and MLR. In contrast to CA-Obs
and CA-Oas sites as mentioned before, the GRNN model yields the best performance among the five
models at CA-Gro site according to the four performance indices. In addition, the ANFIS performs the
second best. The ANN and SVM models give similar accuracy.

Table 7. Comparisons of machine learning models with different input combinations in the testing
period for ecosystem respiration (R, g C m−2 day−1) in the three boreal forest stands.

Model
CA-Obs CA-Oas CA-Gro

R2 NSE Bias RMSE R2 NSE Bias RMSE R2 NSE Bias RMSE

ANN1 0.829 0.821 −0.032 0.776 0.837 0.830 −0.116 0.892 0.847 0.487 0.802 1.258
ANN2 0.258 0.234 0.275 1.606 0.378 0.364 0.122 1.725 0.421 0.246 0.677 1.525
ANN3 0.011 −0.148 0.428 1.967 0.055 0.053 0.011 2.105 0.070 −0.173 0.799 1.902
ANN4 0.904 0.881 0.076 0.634 0.904 0.902 0.073 0.675 0.938 0.618 0.721 1.085
ANN5 0.842 0.832 −0.083 0.752 0.830 0.828 −0.074 0.897 0.853 0.467 0.849 1.282
ANN6 0.913 0.907 0.023 0.560 0.893 0.892 −0.048 0.710 0.908 0.573 0.740 1.148
ANN7 0.954 0.946 −0.033 0.428 0.927 0.927 0.027 0.585 0.950 0.580 0.714 1.138

GRNN1 0.827 0.807 −0.081 0.807 0.822 0.821 0.007 0.914 0.852 0.414 0.952 1.345
GRNN2 0.272 0.252 0.236 1.588 0.381 0.368 0.134 1.719 0.418 0.284 0.604 1.487
GRNN3 0.012 −0.141 0.394 1.961 0.047 0.032 0.267 2.128 0.080 −0.166 0.848 1.897
GRNN4 0.905 0.889 −0.059 0.610 0.904 0.901 0.082 0.679 0.950 0.680 0.672 0.993
GRNN5 0.837 0.816 −0.101 0.788 0.828 0.812 0.249 0.937 0.848 0.532 0.794 1.202
GRNN6 0.895 0.886 −0.020 0.620 0.873 0.872 0.062 0.775 0.902 0.595 0.759 1.118
GRNN7 0.941 0.929 −0.037 0.488 0.914 0.914 0.032 0.635 0.954 0.818 0.448 0.749
ANFIS1 0.828 0.821 −0.029 0.776 0.834 0.830 −0.091 0.890 0.849 0.500 0.804 1.242
ANFIS2 0.243 0.219 0.280 1.622 0.381 0.364 0.170 1.725 0.422 0.251 0.676 1.520
ANFIS3 0.014 −0.176 0.426 1.991 0.050 0.049 0.013 2.109 0.082 −0.135 0.775 1.872
ANFIS4 0.904 0.894 −0.010 0.596 0.913 0.910 0.081 0.650 0.947 0.621 0.671 1.081
ANFIS5 0.846 0.840 −0.050 0.735 0.839 0.839 −0.035 0.868 0.853 0.479 0.837 1.268
ANFIS6 0.912 0.906 −0.007 0.563 0.903 0.901 −0.093 0.682 0.910 0.532 0.788 1.201
ANFIS7 0.947 0.935 −0.019 0.468 0.930 0.930 0.040 0.574 0.954 0.584 0.709 1.132
SVM1 0.826 0.818 −0.062 0.783 0.837 0.835 −0.098 0.878 0.851 0.546 0.743 1.183
SVM2 0.248 0.244 0.062 1.596 0.380 0.333 0.104 1.766 0.426 0.235 0.514 1.536
SVM3 0.025 −0.253 −0.143 2.055 0.049 −0.101 −0.773 2.269 0.072 −0.095 0.091 1.838
SVM4 0.907 0.898 −0.049 0.588 0.912 0.908 0.116 0.654 0.945 0.646 0.645 1.045
SVM5 0.843 0.832 −0.108 0.752 0.840 0.838 −0.077 0.869 0.855 0.534 0.766 1.199
SVM6 0.910 0.901 −0.052 0.577 0.899 0.895 −0.107 0.699 0.916 0.516 0.803 1.222
SVM7 0.947 0.935 −0.017 0.469 0.925 0.923 0.088 0.601 0.951 0.579 0.709 1.140
MLR1 0.697 0.686 −0.182 1.028 0.659 0.647 −0.208 1.285 0.734 0.435 0.874 1.321
MLR2 0.242 0.227 0.221 1.613 0.377 0.356 0.196 1.736 0.418 0.252 0.665 1.520
MLR3 0.026 −0.110 0.282 1.933 0.026 0.025 0.008 2.135 0.011 −0.224 0.732 1.944
MLR4 0.877 0.868 −0.041 0.667 0.898 0.885 0.127 0.733 0.945 0.629 0.660 1.070
MLR5 0.684 0.677 −0.153 1.043 0.654 0.647 −0.081 1.284 0.742 0.442 0.861 1.312
MLR6 0.734 0.702 −0.316 1.002 0.700 0.691 −0.133 1.202 0.792 0.522 0.810 1.215
MLR7 0.893 0.882 −0.031 0.629 0.902 0.891 0.163 0.715 0.951 0.625 0.636 1.076

On the other hand, it is clearly seen from Table 5 that the GRNN model in the three stands for
forecasting daily R gives the best accuracy in the testing period, in terms of NSE, Bias and RMSE.
However, the MLR model gives the worst accuracy. The ANN, ANFIS and SVM models achieve
similar performance, according to the four indices. As shown in Table 6, no apparent performance
indicator is found among the three stands in the prediction of daily R using the five data-driven models.
Nevertheless, it should be noted that at CA-Gro site, the models give the best accuracy in terms of R2

and NSE indices.
Figure 3 presents the comparisons of daily R between observed and predicted using the five

models at the three sites in the form of scatter plot. As shown in Figure 3, although the regression fit
lines between measured and estimated R by the ANN, GRNN, ANFIS and SVM models at CA-Oas
stand are closer to the 1:1 lines, higher mean values of R2 = 0.937 and NSE = 0.925 are obtained by the
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models at CA-Obs site (Table 6). Besides, these models at CA-Obs site display less scattered estimates
than those at CA-Oas and CA-Gro sites.Sustainability 2018, 10, 0203 10.3390/su10010203 12 of 25 
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It is evident from Figure 4 that the distribution of predicted values versus observed values for
daily R in the testing period varies among different sites. Similar to the time series comparison of
daily GPP in Figure 2, the under- and over-estimation of the best model (especially in the peaks) in
forecasting daily R in the testing period are clearly seen at CA-Obs and CA-Gro sites, respectively,
as shown in Figure 4. This is consistent with the scatter plots in Figure 3 as mentioned before.
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period in the three boreal forest stands. (a) For CA-Obs stand using ANN model; (b) for CA-Oas stand
using ANFIS model; and (c) for CA-Gro stand using GRNN model.

3.3. Modeling of Daily Net Ecosystem Exchange

Table 8 summarizes the accuracy of the applied models for forecasting daily NEE in the testing
period. It can be clearly seen from the table that the models with full input variables (Ta, Rn, Rh,
Ts) generate the best accuracy for each method and site. The four machine learning models with
these variables consistently perform better than the corresponding MLR models at the three sites.
At CA-Obs site, the ANN model generally gives the best precision among the five models. The SVM,
GRNN and ANFIS models yield similar accuracy in terms of R2, NSE and RMSE. Unlike CA-Obs
site, the ANFIS model at CA-Oas site is superior to the other models in terms of R2, NSE and RMSE.
In addition, the ANN and SVM models have similar accuracy in predicting the daily NEE and they
both outperform the GRNN model. At CA-Gro site, the modeling performance among the ANN,
GRNN and ANFIS models is nearly consistent in the testing period. These three models are superior
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to the SVM and MLR models. As shown in Table 5, regarding the prediction of daily NEE, the ANN,
ANFIS and SVM models achieve similar mean accuracy for the three sites. However, the MLR model
gives the worst accuracy. Furthermore, it can be seen from Table 6 that the models for daily NEE
prediction provide similar performance for CA-Obs and CA-Oas sites according to R2 and NSE criteria.
Generally, the applied models for these two sites perform better than those for CA-Gro site.

Table 8. Comparisons of machine learning models with different input combinations in the testing
period for net ecosystem exchange (NEE, g C m−2 day−1) in the three boreal forest stands.

Model
CA-Obs CA-Oas CA-Gro

R2 NSE Bias RMSE R2 NSE Bias RMSE R2 NSE Bias RMSE

ANN1 0.502 0.438 0.313 0.998 0.553 0.536 0.165 1.782 0.387 0.310 0.358 1.321
ANN2 0.514 0.465 0.222 0.974 0.376 0.362 −0.151 2.090 0.507 0.475 0.250 1.152
ANN3 0.054 0.026 −0.073 1.314 0.067 0.064 0.065 2.532 0.107 0.098 0.126 1.510
ANN4 0.423 0.332 0.382 1.088 0.614 0.614 0.026 1.625 0.412 0.333 0.301 1.299
ANN5 0.736 0.701 0.207 0.728 0.638 0.636 0.039 1.580 0.605 0.559 0.315 1.056
ANN6 0.775 0.719 0.270 0.705 0.744 0.744 0.004 1.325 0.674 0.631 0.301 0.966
ANN7 0.830 0.785 0.232 0.618 0.817 0.815 −0.073 1.125 0.719 0.663 0.322 0.923

GRNN1 0.515 0.433 0.330 1.003 0.558 0.538 0.134 1.779 0.402 0.346 0.276 1.286
GRNN2 0.528 0.464 0.271 0.975 0.376 0.352 −0.387 2.106 0.507 0.481 0.249 1.146
GRNN3 0.050 0.035 0.124 1.309 0.073 0.066 0.034 2.529 0.107 0.067 −0.311 1.537
GRNN4 0.368 0.297 0.313 1.117 0.685 0.627 −0.557 1.597 0.420 0.337 0.344 1.295
GRNN5 0.739 0.685 0.235 0.748 0.637 0.606 −0.344 1.642 0.614 0.274 0.927 1.355
GRNN6 0.779 0.725 0.079 0.699 0.714 0.694 −0.339 1.447 0.661 0.554 0.436 1.062
GRNN7 0.805 0.766 0.055 0.644 0.787 0.755 −0.353 1.294 0.718 0.672 0.246 0.911
ANFIS1 0.510 0.438 0.327 0.998 0.535 0.525 0.147 1.803 0.396 0.335 0.304 1.296
ANFIS2 0.531 0.482 0.193 0.959 0.354 0.345 −0.106 2.117 0.510 0.468 0.304 1.160
ANFIS3 0.052 0.038 −0.008 1.307 0.071 0.066 0.067 2.529 0.129 0.109 0.223 1.501
ANFIS4 0.338 0.281 0.297 1.130 0.694 0.692 0.026 1.453 0.433 0.336 0.377 1.296
ANFIS5 0.732 0.678 0.240 0.756 0.640 0.639 −0.028 1.572 0.609 0.565 0.304 1.049
ANFIS6 0.804 0.739 0.281 0.681 0.761 0.759 0.032 1.285 0.683 0.628 0.322 0.970
ANFIS7 0.808 0.758 0.264 0.655 0.830 0.824 −0.158 1.097 0.716 0.670 0.289 0.914
SVM1 0.490 0.449 0.262 0.988 0.552 0.539 0.184 1.776 0.424 0.348 0.336 1.284
SVM2 0.539 0.482 0.253 0.958 0.315 0.241 −0.289 2.279 0.493 0.413 0.388 1.218
SVM3 0.031 −0.063 0.137 1.373 0.012 −0.192 1.178 2.857 0.078 −0.058 0.583 1.636
SVM4 0.244 0.133 0.432 1.240 0.708 0.701 0.052 1.430 0.446 0.325 0.468 1.307
SVM5 0.737 0.697 0.202 0.733 0.642 0.640 −0.051 1.569 0.630 0.564 0.318 1.050
SVM6 0.795 0.755 0.212 0.659 0.737 0.737 0.023 1.343 0.666 0.597 0.355 1.010
SVM7 0.818 0.768 0.258 0.641 0.811 0.809 −0.089 1.142 0.707 0.636 0.351 0.959
MLR1 0.408 0.305 0.404 1.109 0.307 0.294 0.282 2.196 0.298 0.254 0.237 1.372
MLR2 0.524 0.467 0.182 0.972 0.345 0.342 −0.096 2.120 0.496 0.455 0.289 1.173
MLR3 0.057 0.049 0.062 1.298 0.011 0.008 0.132 2.603 0.052 0.025 0.233 1.569
MLR4 0.273 0.201 0.310 1.190 0.495 0.481 0.018 1.883 0.349 0.292 0.309 1.337
MLR5 0.557 0.491 0.234 0.949 0.379 0.378 −0.016 2.060 0.503 0.464 0.278 1.163
MLR6 0.557 0.492 0.235 0.949 0.443 0.443 0.054 1.951 0.518 0.475 0.293 1.151
MLR7 0.560 0.493 0.231 0.948 0.598 0.576 −0.267 1.703 0.548 0.499 0.319 1.124

The measured and predicted values of daily NEE using the five models for the three stands are
compared in Figures 5 and 6. It is apparent from Figure 5 that the fit lines of the applied models during
the testing period at CA-Obs and CA-Oas sites are closer to the ideal fit lines (y = x) than those
obtained at CA-Gro site. Meanwhile, the mean values of R2 and NSE generated by the five models at
the former two sites are substantially higher than those at the latter site (Table 6). Additionally, all the
models at the CA-Gro site have more scattered estimates in comparison with the other two sites.
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On the other hand, the over- and under-estimation of the best model in predicting the daily NEE
for the three sites among the training, validation and testing periods are illustrated in Figure 6. It is
clear that most of the estimated values closely follow the corresponding observed values in the three
stands. In the growing season, however, the NEE values simulated by the GRNN model at CA-Gro
site fail to well match the corresponding measured values.
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3.4. Modeling of Hourly Carbon Fluxes

To examine the modeling ability of machine learning methods at a finer time scale, we further use
these approaches to estimate hourly carbon fluxes at the three sites. The results estimated by different
models with four input variables in the testing period are shown in Table 9. It should be noted that the
gap-filled hourly carbon flux data were not used for these estimates. The number of observed NEE
data available in the testing period in Table 9 is 5865 (2009), 6233 (2008) and 6099 (2010) for CA-Obs,
CA-Oas and CA-Gro, respectively. As a whole, the machine learning models accurately quantify
hourly carbon fluxes at the three sites. They consistently and substantially outperform the MLR model
for GPP and NEE estimates in terms of R2, NSE, Bias and RMSE, while for R estimates, the MLR model
achieves satisfactory results comparable to those of machine learning models. Specifically, for the
comparison among the three sites in the prediction of hourly GPP, the developed machine learning
models offered the highest accuracy at CA-Obs site, followed by CA-Oas site. Regarding the estimates
of hourly R among the three sites, according to the R2 indictor, the applied models perform the best at
CA-Gro site, whereas they provide the worst statistical results with respect to NSE, Bias and RMSE
indices. On the whole, these models generate the best R estimates in terms of NSE, Bias and RMSE.
For NEE estimates, the machine learning models give similar results at both CA-Obs and CA-Oas sites,
and slightly perform better than the models at CA-Gro site.
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Table 9. Comparisons of different models with four input variables for predicting hourly gross primary
productivity (GPP, g C m−2 hour−1), ecosystem respiration (R, g C m−2 hour−1) and net ecosystem
exchange (NEE, g C m−2 hour−1) in the testing period in the three boreal forest stands.

Site Model
GPP R NEE

R2 NSE Bias RMSE R2 NSE Bias RMSE R2 NSE Bias RMSE

CA-Obs

ANN 0.932 0.910 −0.015 0.056 0.843 0.832 0.001 0.036 0.850 0.821 0.013 0.060
GRNN 0.924 0.905 −0.009 0.057 0.827 0.577 −0.040 0.057 0.819 0.789 0.015 0.065
ANFIS 0.914 0.890 −0.016 0.061 0.838 0.823 −0.002 0.037 0.844 0.811 0.013 0.061
SVM 0.925 0.904 −0.015 0.057 0.833 0.826 0.001 0.037 0.842 0.814 0.011 0.061
MLR 0.690 0.671 −0.008 0.106 0.723 0.714 0.001 0.047 0.544 0.526 0.008 0.097

CA-Oas

ANN 0.893 0.893 0.006 0.094 0.767 0.766 0.001 0.049 0.834 0.832 −0.008 0.096
GRNN 0.885 0.877 −0.024 0.101 0.755 0.729 −0.016 0.053 0.828 0.828 0.001 0.097
ANFIS 0.886 0.886 0.005 0.097 0.769 0.768 0.001 0.049 0.819 0.819 −0.004 0.100
SVM 0.893 0.892 0.006 0.095 0.766 0.765 0.002 0.049 0.834 0.832 −0.008 0.096
MLR 0.606 0.601 0.017 0.182 0.737 0.730 0.005 0.053 0.460 0.457 −0.012 0.173

CA-Gro

ANN 0.859 0.844 0.016 0.088 0.887 0.563 0.030 0.051 0.810 0.803 0.013 0.087
GRNN 0.850 0.728 0.077 0.116 0.884 0.399 -0.085 0.091 0.800 0.715 0.057 0.104
ANFIS 0.846 0.829 0.019 0.092 0.889 0.587 0.029 0.049 0.794 0.789 0.010 0.090
SVM 0.853 0.838 0.015 0.090 0.883 0.572 0.028 0.050 0.803 0.796 0.013 0.088
MLR 0.634 0.621 0.014 0.137 0.884 0.591 0.028 0.049 0.531 0.526 0.014 0.134

As commonly known in the eddy covariance community, the requirement for turbulent
atmospheric conditions limits the quality of data observed by the eddy covariance technique.
Half-hourly NEE data are directly measured and may be rejected due to low turbulence conditions.
The majority of missing NEE data occur during nighttime. Therefore, it is essential to provide some
insights into the modeling ability of our proposed models for nighttime and daytime NEE data. In this
study, the identification of nighttime and daytime was according to the values of photosynthetic
photon flux density (PPFD). A positive PPFD implied daytime, while nighttime was defined by the
periods of the day without light (the values of PPFD were equal to zero). The comparisons of different
models with four input variables for predicting hourly NEE in the testing period for daytime and
nighttime datasets at the three sites are summarized in Table 10. As can be seen from the Tables 9
and 10, the NEE estimates of each model for the daytime data at both CA-Obs and CA-Oas sites are
similar to those for all the data (daytime + nighttime), and are considerably better than those for the
nighttime data. In contrast, at CA-Gro site, all the models (except MLR) for the daytime and nighttime
data give similar estimates according to the R2 performance index (Table 10), while in terms of the
NSE index, the estimates from all the models for the daytime data are consistently superior to those
for the nighttime data.

As a case study, Figure 7 illustrates hourly NEE between eddy covariance measured and predicted
by the ANFIS model in the testing period. The daily courses of hourly measured and predicted NEE
flux for 7 days during the mid-growing season at the three sites are displayed in Figure 7a–c. It can
be clearly seen that most of the modeled NEE values at the three sites well match the corresponding
observed ones. In comparison with the estimates at both CA-Oas and CA-Gro sites, the simulated
NEE values at CA-Obs site more closely match the corresponding measured ones. The scatter plots of
ANFIS modeled and measured hourly NEE flux for both nighttime and daytime datasets at the three
sites are presented in Figure 7d–f. As shown in the figures, considerable difference between nighttime
and daytime datasets can be found in the magnitude and variation of hourly NEE for an entire testing
year, which are largely reduced during nighttime primarily due to the absence of photosynthesis.
For the daytime datasets among the three sites, the fit line of the ANFIS model at CA-Oas site is closest
to the ideal straight line of slope one, while this model have the highest value of R2 at CA-Obs site.
However, for the nighttime datasets among the three sites, the best estimates occur at CA-Gro site in
terms of both the slope of the fit line and R2 value.
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Table 10. Comparisons of different models with four input variables for predicting hourly net ecosystem
exchange (NEE, g C m−2 hour−1) in the testing period for daytime and nighttime datasets in the three
boreal forest stands.

Model Dataset
CA-Obs CA-Oas CA-Gro

R2 NSE Bias RMSE R2 NSE Bias RMSE R2 NSE Bias RMSE

ANN
Daytime 0.847 0.809 0.023 0.076 0.822 0.820 −0.010 0.121 0.765 0.761 0.012 0.111

Nighttime 0.566 0.533 0.004 0.041 0.590 0.580 −0.005 0.052 0.799 0.674 0.015 0.041

GRNN
Daytime 0.824 0.784 0.024 0.081 0.814 0.814 0.003 0.123 0.750 0.677 0.061 0.129

Nighttime 0.400 0.385 0.006 0.047 0.601 0.589 −0.002 0.051 0.803 0.251 0.052 0.062

ANFIS
Daytime 0.841 0.799 0.025 0.078 0.814 0.814 −0.005 0.123 0.753 0.751 0.008 0.113

Nighttime 0.544 0.511 0.003 0.042 0.419 0.414 −0.003 0.061 0.684 0.568 0.012 0.047

SVM
Daytime 0.844 0.807 0.022 0.077 0.822 0.820 −0.007 0.121 0.757 0.753 0.012 0.113

Nighttime 0.496 0.476 0.002 0.043 0.582 0.569 −0.008 0.053 0.784 0.645 0.015 0.043

MLR
Daytime 0.483 0.456 0.021 0.129 0.453 0.443 −0.014 0.213 0.457 0.451 0.017 0.169

Nighttime 0.073 0.061 −0.003 0.058 0.121 0.176 −0.010 0.107 0.012 0.105 0.010 0.075
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Figure 7. Eddy covariance measured and ANFIS predicted hourly net ecosystem exchange (NEE) in
the testing period. (a–c) Daily course of hourly NEE for 7 days during the mid-growing season at the
three sites; and (d–f) Scatter plot of hourly NEE both in the daytime and nighttime datasets at each site.
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4. Discussion

For the first time, the suitability and potential of two advanced machine learning techniques,
namely ANFIS and GRNN, were investigated in the prediction of terrestrial carbon fluxes using
the EC-measured data in three forest ecosystems. Besides, another three traditional approaches
(ANN, SVM and MLR) were also used as benchmarks in order to evaluate the modeling capability
of all the applied models in the present study. In the following subsections, we primarily focused
on discussing the estimates of carbon fluxes among the machine learning models, according to the
different performance evaluation indices. In addition, we also provided the advantages and limitations
of the present research, as well as the possible improvements in the future work.

4.1. Capability of Machine Learning Models and Their Comparison

Our results demonstrated that the applied machine learning models with full input variables
(Ta, Rn, Rh, Ts) did an excellent job of explaining approximately average 92%, 94% and 78% of
diurnal variances in GPP, R and NEE for the three stands, respectively (Table 5). These models also
exhibited great capability in mapping the hourly variation of different carbon fluxes in response to
environmental factors. According to the estimates of each method with different input combinations
(Tables 4, 7 and 8), it is clear that the relative importance of driving variables is different with respect
to each carbon flux. More specifically, the contributions of Ta and Ts in estimating daily GPP are similar
and more than those of Rn and Rh at the three sites. Ts is the most predominant factor controlling the
variability of R flux at each site, followed by Ta and then Rn. However, considerable difference among
the three forest sites was found in the contributions of these driving variables to NEE. At CA-Obs site,
Ta and Rn provided similar contributions and played more important role than Ts and Rh; At CA-Oas
site, Ts offered the largest contribution to NEE, followed by Ta and then Rn; The largest contribution to
NEE at CA-Gro site was from Rn, followed by Ts and then Ta. Overall, the contribution of Rh to each
carbon flux at the three sites was relatively lower, compared with the other three variables.

In addition, these advanced machine learning models consistently performed better than the
traditional MLR model for each carbon flux prediction. The predictive performance of these techniques
at various terrestrial ecosystems was also confirmed by previous studies, mainly involving ANN
and SVM approaches [12,21,47]. Additionally, it is worth mentioning here that both ANN and SVM
machine learning techniques in recent years have been extensively accepted as preferred tools to
upscale the terrestrial carbon fluxes from site to regional scale [13,20,48,49]. More importantly, previous
studies have pointed out that, based on the data derived from the remote sensing and EC techniques,
data-driven models can perform better than land surface models for predicting the terrestrial carbon
fluxes at regional and global scales [50,51].

Furthermore, regarding all the examined machine learning models, our results revealed that
these models can consistently estimate hourly and daily carbon fluxes at the three sites (Tables 5
and 9). Specifically, conventional ANN method remains adequately competent in reproducing the
carbon fluxes due to its strong generalization ability. For this reason, recently, it has been continuously
utilized in the estimation of carbon fluxes [22,52,53]. In addition, ANFIS, as a state of the art method, is
designed by combining the strength of FIS and adaptive neural networks for the purpose of identifying
the beneficial knowledge within the trained networks in the form of fuzzy logic expression. Therefore,
ANFIS seems to be able to overcome the weakness of knowledge interpretation which is still a great
challenge for neural networks. In theory at least, ANFIS could perform better than ANN method and
this assumption has been proved by many previous studies in practical terms [54,55]. However, in the
present work, our results showed that ANFIS and ANN produced the similar estimates, which concurs
with the results of both Karimi et al. [56] and Piri et al. [57] for the hydrological time series forecasting.
A potential reason for the difference can be accounted for by the fact that the generalization capability of
ANFIS is hugely influenced by FIS with various identification algorithms [45,58], indicating that other
identification algorithms for generating a FIS, such as fuzzy c-means, mountain, and grid partitioning,
may enhance the modeling performance of ANFIS method for the current research.
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Moreover, in order to improve the predictive ability of data-driven techniques, packaging heuristic
algorithms into data-driven models with the intention of optimizing the model structures and/or
parameters is broadly adopted as a preferred solution. A large number of novel nature-inspired
optimization algorithms (e.g., particle swarm optimization [59], artificial bee colony [60] and cuckoo
search optimization [61]) have been developed over the last two decades [62]. It should be particularly
stressed that the models developed in this study have been successfully optimized by various heuristic
algorithms in diverse research fields (e.g., hydrological prediction, wind speed and solar radiation
forecasting). For instance, Baghban et al. [63] used genetic algorithm to tune, optimize, and determine
the respective key parameters of ANFIS and SVM methods for predicting the dew point temperature
of moist air and obtained excellent results; Moosavi et al. [64] utilized particle swarm optimization
algorithm in conjunction with ANFIS and SVM approaches to estimate the surface soil moisture and
respectively improved the predictive performance of original ANFIS and SVM models without using
optimization algorithm. Consequently, to improve the modeling accuracy of carbon fluxes in the
present work, further studies can be devoted to optimizing the machine learning models by the aid of
different meta-heuristic algorithms.

4.2. Advantages and Limitations of Present Research and Future Work

We modelled the carbon fluxes at three different forest ecosystems using four different modeling
techniques. The ability of these techniques has been demonstrated in terms of dealing with the
nonlinear processes that control the daily carbon fluxes. In general, the best predictive results
for the three carbon fluxes were provided at the evergreen needle-leaf forest (CA-Obs), followed
by the deciduous broadleaf forest (CA-Oas), whereas the worst performance was obtained at the
mixed forest (CA-Gro), maybe due to the difficulty for our proposed models in seizing the useful
knowledge resulting from the influences of more complex and instable underlying surface (Table 6).
Moreover, this performance difference among the three sites may be due to the climate extreme events.
For instance, at CA-Gro site, compared with the 4-year means over the training period, the annual
average values of Rn, Ts and Ta and in the testing period were higher by about 0.2 mol m−2, 0.2 ◦C and
1.6 ◦C, respectively. These three variables have been found to be the most important driving factors
dominating the variation of carbon fluxes (Tables 4, 7 and 8). On the other hand, for each estimated
flux at all the three forest ecosystems, our applied models generally produced satisfactory results
(Tables 5 and 6), especially for GPP and R fluxes. In addition, more remarkable difference among the
three fluxes was that the predictive results of both GPP and R were substantially superior to those of
NEE, which is in accordance with the previous studies [22,65]. As a matter of fact, NEE, as a balance
between GPP and R fluxes, is controlled by the interplay of assimilation and respiration processes
between the biosphere and the atmosphere, and this interplay highly influences the diurnal, seasonal
and inter-annual variations in NEE involving amplitude and phase [66]. Consequently, accurately
estimating NEE remains a great challenge for the researchers to date.

Furthermore, it is a generally acknowledged fact that pursuing excessively the convenience and
simplification of the used models may cause the under-fitting for the trained models. In our study,
a possible reason for the lower explanation of NEE from the applied models seems to be the missing
of some key driving variables for model design, such as biomass pools and management activities.
Therefore, in the follow-up work, the sensitivity analysis of a variety of variables in relation to carbon
fluxes (particularly for NEE), as well as the addition of effective driving variables as model inputs
should be further investigated to improve the predictive performance of our proposed models for
the carbon flux forecasting. On the other hand, NEE measurements have been extensively used for
estimating carbon budgets at different spatial and temporal scales. Therefore, data gaps in NEE
measured by EC technique must be precisely filled [19,67]. However, no standard gap-filling approach
for CO2 flux time series data with the EC method has been widely accepted [15,68]. Consequently,
it is of importance to identify optimal filling approaches for accurately determining carbon budgets.
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According to the present estimates, our proposed methods could be used as useful alternatives to
address the problem of gap-filling in EC measurements in the future.

In practical terms, our study presented the performance difference among the utilized models
and also found that the instability of the data-driven models in terms of predictive accuracy for each
case indeed existed (Tables 5, 9 and 10). To obtain more stable model as well as better predictive
accuracy, a novel technique, namely ensemble learning, has gained extensive attention in recent
years [69,70]. The purpose of ensemble learning is to combine the positive properties of a diverse
set of learners generated from either the same or different machine learning methods. Apart from
the applied methods, the performance of ensemble learning generally varies depending on both the
generation of input data from the whole sample and the integration of various learners for the final
output. At present, many studies focus on the ensemble generation approaches for inputs of different
learners, mainly including bagging [71], boosting [72], and random forests [73]. These algorithms can
be combined with machine learning methods for producing more accurate solution than an individual
method, which has been proved by previous studies both in theory and practice [74,75]. For example,
for the water quality forecasting, Barzegar et al. [76] reported that a boosting algorithm in conjunction
with wavelet-based ELM and wavelet-based ANFIS models performed better than their respective
single models without using the ensemble technique, respectively. Keenan et al. [77] found the
variability in predictive capability among nine different machine learning approaches for estimating
the species distributions in three forest stands and obtained a better predictive results through multiple
model ensemble technique. To our best knowledge, the suitability and ability of ensemble learning
techniques have never been explored for carbon flux forecasting research. Therefore, it may be effective
to enhance the performance of our applied models in terms of stability and predictability for the
present study. However, it is beyond the scope of the current investigation and will be undertaken in
our follow-up work.

5. Conclusions

This study focused on investigating the feasibility and potential of both the GRNN and ANFIS
models for modeling and forecasting daily carbon fluxes in three different forest ecosystems. Moreover,
their predictive accuracy was compared with traditional ANN, SVM and MLR models. All the models
were evaluated according to several performance indicators (R2, NSE, Bias and RMSE). It has been
found that all the machine learning models proposed in this study, including ANN, GRNN, ANFIS and
SVM, were capable of accounting for the most variance in each carbon flux at both daily and hourly
time scales in the three stands, especially for both GPP and R. These modern models consistently
performed better than conventional MLR model for both daily and hourly carbon flux estimates in
terms of R2, NSE, Bias and RMSE. Therefore, these advanced models were able to elucidate precisely
non-linear processes of controlling the exchanges of the carbon fluxes between land and the atmosphere
at the ecosystem level. Moreover, among all the applied models, the ANFIS and ANN models provided
similar estimates of carbon fluxes and slightly outperformed the GRNN and SVM models. In practical
terms, however, the ANFIS and GRNN models are more robust and flexible, and have less parameters
needed for selection and optimization, when compared with two common ANN and SVM models.
Accordingly, both the ANFIS and GRNN models are valuable tools for estimating forest carbon fluxes
and interpolating the missing carbon flux data during the long-term EC measurements.

Considering the findings above, our study has conclusively demonstrated for the first time that
both the ANFIS and GRNN models can effectively reproduce carbon fluxes at the ecosystem level.
Consequently, when upscaling the carbon and water fluxes from ecosystem to regional or global scale,
these promising tools should be taken into consideration, which is comparatively important for the
scientific community to determine the global carbon and water budgets and offer reliable information
for policy makers responding to global climate change.
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