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Abstract: Marine environments are rich in natural resources, and therefore, have been targeted
for human occupation from at least the Pleistocene. In the modern day, the preservation and
documentation of the physical archaeological evidence of human occupation and use of coasts, islands,
and the ocean must now include mitigating the impacts of global climate change. Here, I review recent
efforts to document archaeological sites across the islands of Polynesia using geospatial technology,
specifically remote sensing, high-resolution documentation, and the creation of archaeological site
geodatabases. I discuss these geospatial technologies in terms of planning for likely future impacts
from sea level rise; a problem that will be felt across the region, and based on current evidence, will
affect more than 12% of all known sites in New Zealand (Aotearoa).

Keywords: geospatial technologies; global environmental change; archaeology; Pacific Ocean

“In coastal regions around the world, we need to accelerate our own efforts to inventory, investigate,
and interpret the history of endangered coastal sites . . . We must pull our heads from the proverbial
sand for we are literally racing a rising tide.” [1]

1. Introduction

Marine environments are rich in natural resources, and therefore, have been targeted for human
occupation in the Pacific from at least the Pleistocene (see [2] for a recent review). The physical
evidence of human activity in the past is often referred to as a “cultural resource” because, like natural
resources, the archaeological sites where we find ancient artifacts, human remains, and architecture
have significant scientific and humanitarian value and are finite (see [3] for a brief outline of use of the
term cultural resources in the United States). In the modern day, the preservation and documentation
of the physical archaeological evidence of human occupation and use of coasts, islands, and the
ocean must now include mitigating the impacts of global climate change, especially projected rising
sea levels.

Known trends in sea level rise [4–11] and coastal erosion [12–14] makes sites located in marine
environments especially vulnerable to the impacts of climate change. Within the past decade, research
on the effects of climate change on cultural resources has risen steeply, representing a range of
disciplines and methods [15]. But, at present, research is geographically uneven, with many studies
focusing on Europe and North America, and it is exceedingly rare for archaeological investigations to
deal directly with modern climate change on coastal and islands sites in the Pacific [16–20].

There is a pressing need in archaeology to engage in a rapid evaluation of the utility of
technology and the results of impact studies to stay ahead of the “rising tide” [1]. The suite of
geospatial technologies available to archaeologists—including GPS, GIS, remote sensing, and laser
scanning—are useful tools for documenting and analyzing evidence and communicating the results of
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our research [21,22]. Current research on the effects of climate change on cultural resources employs
geospatial technologies like remote sensing, GIS, and modeling [15].

Here, I review recent efforts to document archaeological sites in different coastal and marine
environments across the islands of Polynesia using geospatial technology, specifically remote sensing,
high-resolution documentation, and archaeological site geodatabases. I address two questions: how
have we recently used geospatial technology in the archaeology of Polynesia? And, how can we use it
better in the future to address the coming consequences of climate change?

The topics addressed here—geospatial technology, coastal and island archaeology, and climate
change—cover a lot of issues and literature that have been summarized or discussed elsewhere
(e.g., [23–25]), and so to begin, I want to be clear about the scope of this review.

First, I have tried to include examples of a wide range of geospatial technologies. Some of these
technologies, such as GPS and remote sensing using satellite imagery, are so pervasive that it would be
impossible to include every study. Other technologies that might be applied, for example declassified
satellite imagery, simply have not been used in the region. Still other technologies, such as the use of
Unmanned Aerial Vehicles, are not yet well represented in peer-reviewed literature when it comes to
studies relevant to the effects of climate change on coasts.

Second, I am primarily concerned with the impacts of sea level rise. There are of course other
consequences of climate change that will impact archaeology, for example drought and increased
occurrences of wild fires, but my focus here is on coasts and near shore marine environments. These
same environments are also prone to many other threats, specifically, urban development.

Third, I have focused on the archaeology of Polynesia, in part because it is my field of expertise,
but also because sea level rise has the potential to have a proportionally greater devastating impact
compared to other regions. In longer settled islands and coasts, archaeological sites that exist today
have survived a number of changes in sea levels. In the case of Polynesia, the chronology of human
settlement is, by world standards, extremely recent with the longest settlements going back less than
3000 years (2838 ± 8 years before present; [26]), and some islands did not have human inhabitants
until 700 years ago (1270–1309 AD, [27]). In this paper, I primarily discuss the scientific losses due to
climate change with the recognition that all of these locations have cultural value to the communities
that live there today [28].

2. Remote Sensing

For archaeologists, remote sensing includes a range of tools used to detect and classify targets
at a distance. I begin with two types of remote sensing commonly used in the region: imagery from
aircrafts and satellites, and the use of LiDAR (Light Detection and Ranging) mounted on aircraft.
Next, since much of what archaeologists are concerned with lay buried underground, I outline
how archaeologists use geophysical survey techniques such as electronic resistivity/conductivity,
magnetometry, and ground penetrating radar. Finally, I highlight several special challenges for
applying remote sensing in near shore maritime environments.

2.1. Airborne and Satellite Imagery

The first large scale push to photograph the islands of Polynesia came during World War II. After
the war, more color imagery becomes available, and we see aerial photography become a regular
part of archaeology in New Zealand (Aotearoa) and in the Hawaiian Islands throughout the 1960s
and 1970s.

In New Zealand, the focus was initially on large earthwork sites, hilltop fortifications created
by Maori, which is not surprising given that there are over 6000 of these types of sites across the
country [29,30]. In the 1990s, concern was raised over the property rights involved with photographing
these iconic sites, specifically, if local Maori could claim air images as their cultural property, as has
been done with rock art [31].
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In the Hawaiian Islands, air photography played a key role in the first full-coverage surveys
aimed at recording settlement patterns evident over large sections of land. In valley environments,
these surveys recorded networks of irrigated pondfields, many of which were still in use. In places
that were extremely important for non-irrigated agriculture it was air photography that first gave
archaeologists the notion that there were abandoned “field systems” that were of equal or greater
importance to traditional farming [32]. The first GIS studies of non-irrigated agriculture were based on
digitized versions of air photo maps [33].

Declassified images from the Cold War era satellites have been applied successfully to
archaeological remote sensing in many places in the world [34], except in Polynesia despite having
surprisingly good coverage (Figure 1). I had a closer look at declassified images of Rapa Nui (Easter
Island) in the hopes of determining why these had not been applied. Rapa Nui is a small island by
world standards (165 sq km), and small among volcanic islands in the Pacific, but substantially larger
the region’s coral atolls. Certainly, the number of images available on EarthExplorer (USGS) are limited
(n = 12), which makes it difficult to find days where clouds are not blocking areas of interest, and the
quality is far too low resolution to show archaeological features (Figure 2; note that CORONA images
range in quality from 2 to 140 m).
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Figure 2. Example of declassified corona image from Rapa Nui (Easter Island, Chile). Taken on 29 
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famous moai statutes from the island’s quarry [35], and the systematic classification of land used for 
farming [36]. The latter study used Worldview 2 imagery (0.5 m panchromatic; 2 m multispectral) of 
the entire island. About a third of the island was deemed not appropriate for analysis because it was 
either cloudy or developed. The study’s target—gardens with a layer of stones placed across the 
ground surface to cut down on soil erosion—were identified based on a supervised automated 

Figure 2. Example of declassified corona image from Rapa Nui (Easter Island, Chile). Taken on
29 October 1963. DS09059A031MC056. Source: EarthExplorer, USGS.

Commercial satellites have made high resolution image analysis possible (Figure 3). For example,
high resolution satellite images have been used on Rapa Nui to map the trails used to move the
famous moai statutes from the island’s quarry [35], and the systematic classification of land used for
farming [36]. The latter study used Worldview 2 imagery (0.5 m panchromatic; 2 m multispectral)
of the entire island. About a third of the island was deemed not appropriate for analysis because it
was either cloudy or developed. The study’s target—gardens with a layer of stones placed across
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the ground surface to cut down on soil erosion—were identified based on a supervised automated
processes, with GPS survey data to help train the model. From this data, it was estimated that between
2.5 and 12% of island was gardened. Importantly, the coastal zone (0–50 m asl) was identified as
an extremely active location for gardening (highest median classification), but yielded the largest
error bars (min, max), making the coastal zone in great need for further survey aimed at tracking
agricultural development.

1 

 

 

Figure 3. Applications of commercial-grade high-resolution imagery on Rapa Nui (Easter Island, Chile).
These studies of Rapa Nui (a) mapped formal pathways for statue transport (b) and areas of likely
gardening (c). Sources: [33,34].
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The sequence of air and satellite images now available for Pacific Islands is making it possible to
track shoreline erosion and accretion, and there are good GIS tools to do so (see [37] use of the USGS
Digital Shoreline Analysis System). Shorelines are of course dynamic and require careful attention to
defining specifically how features are changing. A study on the western coast of Hawai‘i Island looked
at the changes in the coastline due to both anthropogenic and natural processes [38]. It showed that
even two beaches within a short distance of one another were undergoing directly opposite processes
(Figure 4). In this specific case, both are likely to impact archaeological sites.
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2.2. Airborne LiDAR

Within the past decade we have started to see more regular use of airborne LiDAR in archaeology
in general [39], and in Polynesia specifically (see [40] for a recent review). The high cost of flying this
type of remote sensing has for the most part been shouldered by government agencies with an interest
in planning for natural disasters and climate change. In New Zealand, vast regions of the country have
been flown, and datasets are available (Land Information New Zealand, LINZ) (for an archaeological
application, see [41]).

The first applications of airborne LiDAR in Polynesia were in the North Kohala District of
Hawai‘i Island and were aimed at creating detailed maps of surface architecture over large study areas
(Figure 5; [42–44], see also [45]). These are landscapes where field surveys had made progress recording
features but the sheer size and high density of targets proved impossible to record completely through
primary fieldwork. LiDAR derived datasets allowed for the quantification of agricultural development
to a degree that would have not been possible otherwise and helped refine models of the evolution of
the larger political economy as it related to food surplus.

New applications of airborne LiDAR in the islands of Tonga [45] and Sāmoa [46] and have made
advances in the identification of features through automated or semi-automated feature extraction [45],
and the documentation of full archaeological landscapes [46]. In Sāmoa, a range of features were
mapped; habitation terraces, agriculture, and monuments. In Tonga, most mapping focused on burial
mounds, with other studies on a large earthwork hillfort and monumental complex on coast. While
these projects were not designed with climate change in mind their results may prove especially useful
for future planning.

To date, we have only seen one application of airborne LiDAR focused on the impacts of sea level
rise on the archaeological record of Polynesia (Figure 6) [19]. Johnson et al. [19] began by the impacts
of higher than usual coastal surges up to 1 m above current sea level following the 2011 tsunami
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off Honshu, Japan. The study focused on the site of the political and religious center at Hōnaunau,
Hawai‘i Island. Using LiDAR provided by FEMA [47], they modeled different scenarios of the impacts
of sea level rise up to 1.9 m above current levels and found that the spatially extensive impacts of the
tsunami corresponded to different models of sea level rise in different portions of the coast—some
0.5–1.0 m and others closer to the 1.0–1.5 m models. They concluded that local bathymetry is important
to predicting the impacts of extreme events. Further, because the islands of the Hawaiian chain are
slowly rising or falling at different rates, the problem of predicting impacts is linked to good models of
those rates.Sustainability 2018, 10, 185 7 of 23 
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2.3. Geophysical Survey

The application of geophysical techniques to detect and map buried archaeological deposits and
features is practiced all over the world. In the islands of the Pacific, there are two communities of
practitioners, one in New Zealand (Figure 7) and the other spread over the rest of the region but mainly
in Polynesia (Figure 8). Figure 7 shows how relatively large scale magnetometry survey was used
to identify the layout of an early village site. Note that anomalies were test excavated to determine
confidence levels on data interpretation. Figure 8 shows examples of how geophysical survey has been
used to identify and excavate stone architecture to reveal its construction history.

Dialog about best practices [48,49] and broadly conceived tests of methods [50,51] are rare, but
show a commitment to using the technology wisely. Geophysical survey is somewhat regularly used
in contract archaeology, and also paired with academic excavations in Polynesia [52–55]. However,
paring of excavation with geophysical survey is by no means always the case. Since geophysical
survey is often used as a technique to learn more about an area that would be too culturally sensitive to
excavate surveys are rarely validated through excavation. There is also a tendency to interpret results
based on current surface architecture and/or historic maps without excavating to test interpretations.
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2.4. Near-Shore Maritime Survey

Maritime environments require a different set of remote sensing tools and direct survey is
considerably more logistically difficult than on land. In the Hawaiian Islands, Van Tilburg [56] has
noted that there are a remarkable number of examples of pre-European contact era sites in near-shore
shallow water environments (Figure 9). These include temple sites (in Hawaiian called heiau) built on
top of coral reefs, like the better-known site of Nan Madol in Micronesia, and fishponds defined by
thick stone wall sea breaks. Sailors and Honda [57] used a suite of techniques to identify a portion
of a former fishpond that is not visible, or barely visible, on air and satellite imagery. Underwater
transects across coral reef environments off Oahu Island has shown greater than expected density of
traditional fishing gear on the sea floor around areas of high biodiversity, suggesting these may have
been favored as fishing spots in the past [58].
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3. High-Resolution Documentation

Archaeology has rapidly adopted a suite of methods to document sites, features, and objects with
incredibly high resolution. Advances in the translation of digital photographs to 3D models through
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photogrammetry has allowed for detailed models of the famous moai statues—both in museums
and on Rapa Nui (Easter Island). Examples can be seen as photorealistic meshes that can easily be
annotated with interpretive text and accessed online (Figure 10).Sustainability 2018, 10, 185 11 of 23 
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of the current state of the foundations of monumental structures. Mulrooney et al. [60] used a tripod-
mounted TLS to collect millions of points that were then meshed together into architecturally discrete 
sections of the foundation of Pu‘ukohala Heiau (Figure 12). The volume of these sections, along with 
details in local history about the site’s construction history, were used to make labor estimates. More 
recently, earthquake damage to the site was followed by a reconstruction that was carefully 

Figure 10. Photogrammetric 3D model of moai statues from Rapa Nui (Easter Island). This includes a
moai in the British Museum (top) and photos taken on tours (bottom). Source: Sketchfab. Models by
James Miles and Barthelemy dAns—Planetarium.

One particularly challenging feature to document and preserve for archaeologists are the tree
carvings of the Chatham Islands [59]. Known by the technical term dendroglyphs (tree images), these
carvings are only located in a few coastal stands of trees (Figure 11). Barber et al. [59] used handheld
3D scanner to record dendroglyphs, technique that uses a different set of technology, one based on the
time-of-flight of the laser, rather than on photogrammetry.
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In Polynesia, terrestrial laser scanners (TLS) are being used more and more to create 3D models
of the current state of the foundations of monumental structures. Mulrooney et al. [60] used a
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tripod-mounted TLS to collect millions of points that were then meshed together into architecturally
discrete sections of the foundation of Pu‘ukohala Heiau (Figure 12). The volume of these sections, along
with details in local history about the site’s construction history, were used to make labor estimates.
More recently, earthquake damage to the site was followed by a reconstruction that was carefully
documented with TLS [61]. Similar TLS-based approached have been applied in other locations,
including on moai statues (Figure 13).
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Figure 12. Tripod-mounted terrestrial 3D laser scan of temple architecture, Pu‘ukohala Heiau, Hawai‘i
Island. Sources: Google Earth, [60].
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4. Archaeological Site Geodatabases

One of the fundamental tools available for working toward mitigating the impacts of climate
change on cultural resources are archaeological site geodatabases. In practice, there are a number
of different types of these geodatabases, including data repositories, locational indexes, radiocarbon
databases, project websites, and academic sources [41]. Government and private cultural resource
management geodatabases tend to be the least accessible due to the sometimes sensitive nature of
locational data. There are few academic geodatabases for the Pacific like the Rapa Nui Archaeological
Database, which has archived versions of select data from past projects.

In the Pacific, the largest archaeological site geodatabase is maintained by the New Zealand
Archaeological Association and is called ArchSite (archsite.org.nz) (Figure 15). It is an integrative
web hosted site database that has a public viewer and a private logon for professionals. The public
face of ArchSite does not allow visitors to zoom in to a level that would allow them to navigate
sites, and only the NZAA site number is listed. It has migrated from a paper-based recording system
where site locations were represented by coordinates (centers of sites) estimated within 100 m error.
A major upgrade to the database in recent years has meant that a portion of the site locations are now
established by GPS. At present, it includes 68,753 sites [63].
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The data model used by ArchSite—points representing sites with a wide range of sizes, ages,
and components—is common to archaeology because it allows us to index previously recorded data
and communicate our results to others. One of the major disadvantages of points-as-sites is they can
be misleading at different scales. For example, at the scale of the entire country, ArchSite appears to be
a complete physical survey of New Zealand. But, it is clear that the professional database, while far
more complete than other representations of sites, there are also locations that have not been surveyed
(un-surveyed locations shown in Figure 16). At a much closer scale, we find something that is more
important to planning for sea level rise—many sites are so close to the coast that they plot just off shore.

With the caveat that ArchSite represents our best current database of sites, and that site locations
represented as points have known inherent issues, I wanted to determine how many were likely at risk
for damage given projected global sea level rise. Following Anderson et al. [16], sites were classified
by elevation above current sea level (Table 1). In total, 9430 sites, or 14% of all sites, are within 5 m
of current sea level, with the greatest proportion plotting at, or below, sea level today (Figure 17).
If sea level rise is more-or-less constant, then this result suggests the most rapid impacts will be in the
immediate future, followed by a steady rate of loss. Two areas that will be especially hard hit by sea
level rise are the northern half of the North Island, and the northern half of the South Island. Figure 18
shows the distribution of sites in these areas. It would appear that the shallow harbors and off-shore
islands that were often targeted for intense settlement in the past are in the greatest danger.
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Table 1. Estimated number of archaeological sites impacted by projected sea level rise (After [16]).
Elevations derived from 25 m resolution DEM (LINZ).

Elevation (m asl) Archaeological Sites (n = ) Archaeological Sites (% Total Sites) Map Symbol

Less than 0 4208 6.1% Red
0–1 1096 1.6% Orange
1–2 995 1.5% Yellow
2–3 951 1.4% Yellow-Green
3–4 1043 1.5% Light Green
4–5 1137 1.7% Green
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To determine if the coarseness of the digital elevation model (DEM) used (25 m resolution) may
be painting a far direr picture than is the case, I reevaluated a small sub-section around the city of
Auckland, this time using an 8 m resolution DEM (LINZ). The average difference in estimated elevation
between the two DEMs is +0.27 m (s.d. = 2.44, min = −18.97, max = +15.22); a small difference in
most cases. The absolute difference between sites classified as less than 5 m above current sea level is
minimal, n = 26 sites, or a less than 2% difference (25 m DEM, n = 357 out of n = 1567 below 5 m; 8 m
DEM, n = 331 out of n = 1567). If we extrapolate out to the scale of the entire country, it may be that the
initial estimate of ~14% of sites to be impacted is slightly high, and should be lowered to ~12%. More
broadly, it is fair to say that more than 12% of known archaeological sites are likely to be impacted
along with an unknown number of additional unrecorded coastal sites.

If we look more closely, the net change in classification is more informative than the absolute
difference in the number of sites that might be impacted. In this case the net change is n = 66 sites. It is
calculated by the number of sites initially classified as below 5 m asl that are re-classified as above
(n = 46 sites), plus the number of sites that moved in the opposite direction (n = 22). In Figure 19,
reclassification is broken down by elevation. The reclassification of the higher sites (3–5 m asl) accounts
for a most of the net change (51 out of 66 sites) and is likely due to differences in DEM interpolation.
The reclassification of sites near sea level is understandable in that even small differences in the DEM
along the coast could shift the estimated elevation a great deal. In this case, it was about twice as likely
to revise sites below the cut off.
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Figure 19. Sea level rise modeling with higher resolution digital elevation model (8 m resolution DEM).
Map of detailed study area (a) shows sites at risk. If we assume that the 8 m resolution DEM provides a
better estimate of the position of sites relative to current sea level, than it would appear the 25 m DEM
performed well (b).

While national scale DEM are largely consistent in estimates of archaeological site elevations,
it is important to note that we should not expect this same degree of continuity with 1 m resolution
airborne LiDAR–derived DEM data. For example, Figure 20 shows the location of a shell midden first
recorded in 1996. This site’s record indicates a recent update to correct its coordinates and describes
it as, “eroding out of a section and trampled by public walkers.” It was initially estimated to have
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an elevation of 0.0 m asl (25 m DEM), then an elevation of 1.2 m asl (8 m DEM). In both estimates,
the site would have correctly been identified as among those currently, or in the immediate future,
to be impacted by sea level rise. The LiDAR derived 1 m DEM shows elevation values around the
point at the center of the site are 3.35 to 3.85 m asl, values that could be misleading if not looked at in a
more fine-grained site-specific analysis.
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5. Discussion

Recent applications of geospatial technology in the archaeology of Polynesia, while rarely
explicitly concerned with the problem of future sea level rise, highlight a number of tools for identifying,
documenting, and preserving coastal and marine archaeological sites. The comparison of remote
sensing via air photography and satellite imagery shows an enormous potential to classify coastal
erosion with specificity in terms of both location and degree of severity. For example, in one study
from small atolls in the Western Pacific [64], imagery from the end of World War II and much more
recent imagery were used to calculate an estimated loss of total sandy beach area weighted to account
for the inconsistent timing of when images were flown. The use of large-scale digital elevation
models combined with archaeological site geodatabases is also useful at identifying “hot spots” on
different scales.

Looking forward, coastal airborne LiDAR surveys offer an even greater degree of accuracy and
precision, and will be especially useful when—like air images—we will have LiDAR from across a
number of years to quantify coastal change over time. Johnson et al.’s [19] study employed coastal
LiDAR to show that the serge from a tsunami did not fit the generalized model for sea level rise in that
it had uneven effects linked to local conditions. At this stage, it is unclear how high-energy storms
(e.g., typhoons), which we are likely to see more of as a consequence of climate change and that will be
far more difficult to predict, will change how we approach identifying sites in danger.
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Archaeology continues to come to terms with the overwhelmingly massive scale of the problem
of sea level rise [1]. Geospatial technologies like geophysical survey and terrestrial laser scanning,
ideally speaking, offer a partial solution by allowing for rapid survey without the time-consuming
task of large full-scale excavations. Those that are non-destructive or minimally destructive also have
the considerable advantage of being techniques that can potentially be used in culturally sensitive
locations and can be repeated to monitor the condition sites. However, recent applications of geospatial
technology highlight several problems for the efforts to document and preserve sites in addition to
the sheer size of the task. For example, while we have developed guidelines for best practices in
using techniques like geophysical survey, including advice specific to island environments [50], there
continues to be no centralized for data [65], making it impossible to work cumulatively, or compare
results. The points-as-sites data model solves this indexing problem. However, with the exception
of New Zealand, these databases are non-existent or inaccessible. This is especially problematic for
low-lying islands that will be the first to be impacted.

One avenue that may prove useful in dealing with the large geographic scale of the impacts of sea
level rise is the shift toward more regular use of distributive data models [66]. A recent study of Great
Mercury Island, a small island off of New Zealand’s North Island, is a good example of an approach to
field work and spatial analyses that takes a site-less survey approach [67]. Specifically, arbitrary units
of observation (25 × 25 m) were used to create an inventory of evidence visible on the ground surface,
with the explicit acknowledgement that these represent a palimpsest of centuries of activity. It is not
difficult to imagine how a similar approach could be used to aid in both rapid documentation and
evidence-based decision making for coastal regions.

The use of volunteer networks of people to collect geographic information on archaeological sites
has generally been under used in Polynesia. This is understandable, given potentially intractable
issues of land access, site preservation through the deliberate withholding of locational information,
and concern about the quality of the information produced (e.g., [68]). One alternative is to consider
how archaeology in public spaces might be better documented and monitored through volunteer
information, as has been seen in places like Scotland (i.e., Scottish Coastal Archaeology and the Problem
of Erosion, SCAPE, http://www.scharp.co.uk/).

6. Conclusions

For archaeology, there is a pressing need to stay ahead of the impacts of sea level rise and climate
change. This makes it critical to effectively use geospatial technology now and in the future. In the
islands of Polynesia, remote sensing is especially useful in identifying where coastal erosion will likely
impact archaeological sites. A number of different tools have been used to document sites, including
geophysical survey and terrestrial laser scanning. Nonetheless, the sheer scale of the problem will
require a reorientation of academic research and cultural resource management. Here I used available
data to estimate that more than 12% of recorded archaeological sites in New Zealand will likely to be
impacted, a total more than 8250 sites, with about half of sites within 1 m of current sea level.

Based on this review, I want to highlight two general topics that, in my view, archaeologists need
to explicitly consider both within Polynesia and elsewhere in future:

More and better data sharing. Today, we are grossly underutilizing the capacity of geospatial
technology to make our research discoverable and accessible to other scholars. The tasks of identifying
sites in danger and staying ahead of the problem of sea level rise will require archaeologists to find
new ways to make our results useable beyond the original study.

Making the case for investigating coastal archaeological sites. Today, we are seeing more uses
of geospatial technology to make it clear what the specific impacts of sea level rise will be on
archaeological sites, but our geodatabases represent sites of all kinds and time periods and do not
include the many archaeological sites that are currently unrecorded. It is especially important to use
site inventory studies, like the one presented here, to make it clear to the public that to learn the true
future impacts of sea level rise requires a great deal more investigation.

http://www.scharp.co.uk/
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