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Abstract: Intensive rice production has contributed to feeding the world’s growing world population,
but it has also increased fossil energy consumption. This paper examines the effect of increasing the
scale of rice farming on the energy efficiency of intensive rice production in Japan. A data envelopment
analysis (DEA) approach is used to calculate energy efficiency scores and identify operational
targets. A window analysis technique is applied to the 2005–2011 statistical data, with nine scales
of rice farming, ranging from <0.5 ha to ≥15 ha. Six energy inputs (fossil fuels, electricity, chemical
fertilizers, pesticides, agricultural services, and agricultural machinery) and the weight-based rice
yield are selected as the DEA inputs and the DEA output, respectively. The results show that the
energy efficiency scores range from 0.732 for farms of 1 ha to <2 ha, to 0.988 for farms ≥15 ha.
Overall, increasing the scale of rice farming in Japan improves energy efficiency because of a great
reduction in the energy consumed per unit area by agricultural machinery and agricultural services.
These findings suggest that increasing the scale of farming is an effective way to enhance the energy
efficiency of highly mechanized rice production in developed countries, such as Japan.

Keywords: energy efficiency; data envelopment analysis; window analysis; intensive farming;
rice; Japan

1. Introduction

Fossil fuels, which are nonrenewable resources, are indispensable to modern agriculture,
contributing to impressive yields in crop production [1]. They are primarily consumed in the
manufacture and operation of agricultural machinery and the production and application of chemical
fertilizer [2]. Although agriculture’s share of world energy use is small, it is noteworthy that the
development of energy-intensive agriculture has increased fossil fuel consumption [2].

Rice is a staple food for more than half the world’s population, with Asian regions accounting for the
bulk of its production [3]. In Japan, where rice has long been the traditional staple food [4], rice production
is highly mechanized compared with production in developing countries and it depends greatly on
inputs produced using fossil fuels, such as chemical fertilizers [5]. About 1.63 million hectares (ha) in
Japan are planted with rice, accounting for 37% of the total farmland [6]. Although Japanese rice farms
have traditionally been small (the average size is 1.9–2.4 ha according to the Ministry of Agriculture,
Forestry and Fisheries of Japan (MAFF) [7]), they are steadily growing in size as a result of agricultural
policy reforms, including the relaxation of farmland regulations [4].

Among the numerous studies that have measured the energy efficiency of rice production (e.g., [8–16]),
several researchers have examined whether the expansion of farm size improves the energy efficiency of
rice production [17–19]. Nassiri and Singh [17] found that an increase in the scale of rice farming does
not improve the energy efficiency of rice production in India. Similarly, Soni and Soe [19] reported that
there is no statistically significant difference in energy efficiency between small-scale and large-scale rice
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farms in Myanmar. In contrast, Pishgar-Komleh et al. [18] showed that large-scale rice farmers in Iran
have better energy indices compared with small-scale rice farmers. The focus of these studies was rice
production in developing countries with relatively low levels of intensification. The effects of farm size
expansion on the energy efficiency of intensive rice production in developed countries such as Japan have
not been analyzed.

This paper examines the effect of increasing the scale of rice farming on the energy efficiency
of intensive rice production in Japan. Agricultural policies that promote the expansion of farm size
may have both positive and negative effects on various aspects of rice production. In this paper,
energy efficiency indicators were used to integrate the economic and environmental aspects of an
increase in the scale of rice farming. Data envelopment analysis (DEA), which is a linear programming
technique for evaluating the performance of decision-making units (DMUs) [20,21], was applied
to calculate the aggregate energy efficiency of rice production [9,15,17]. In contrast to traditional
metrics such as the energy ratio (the energy output per unit of energy input), DEA-based energy
efficiency indicators enable the identification of energy-saving targets for energy-inefficient rice farms
by benchmarking them against energy-efficient farms that follow best operating practices [9,15].

2. Materials and Methods

2.1. Data Collection

Statistical data published by the MAFF in Japan are critical in developing an understanding of the
fundamental characteristics of Japanese rice production. To obtain a sample of the size required for
DEA calculations, 2005–2011 panel data based on scale observations of rice farming were collected
from a MAFF study [7] on rice production costs in Japan. The MAFF study [7] defined the scale of rice
farming by dividing rice farms into nine ranges: <0.5 ha, 0.5 to <1 ha, 1 to <2 ha, 2 to <3 ha, 3 to <5 ha,
5 to <7 ha, 7 to <10 ha, 10 to <15 ha, and ≥15 ha. In this paper, each of the nine scale ranges was
regarded as constituting a rice farm (i.e., a DMU) and, therefore, nine DMUs were taken into account
in the analysis. Average data for each scale range in each year were collected from the MAFF study [7].
The total sample sizes for calculating average data were 794–872 farms in 2005–2011 [7]. The sample
sizes for farms in each scale range, collected for 2008–2011, were 83–94 farms in the <0.5 ha range,
121–133 in the 0.5 to <1 ha range, 139–159 in the 1 to <2 ha range, 109–117 in the 2 to <3 ha range,
131–142 in the 3 to <5 ha range, 56–68 in the 5 to <7 ha range, 56–68 in the 7 to <10 ha range, 36–44 in
the 10 to <15 ha range, and 27–31 in the ≥15 ha range [7]. These data were not available for 2005–2007,
as the MAFF Annual Statistics Reports do not include sample sizes for farms for each scale range [7].

Physical inputs of fossil fuels were collected to calculate the on-farm energy inputs. Due to
the scarce physical data in the MAFF study [7], the production costs of inputs that were taken into
account were used for calculating the off-farm energy inputs, based on an input–output approach
(base year = 2005). Output data were available for the rice yield and the proceeds of rice and
its by-products.

The data for 2004 and before were excluded because the classification of the scales of rice-planted
areas differed from that for 2005 onward. We also omitted the data for 2012 and later, as the monetary
data could not be converted into 2005 real values because of the lack of deflators for the base year (2005).

2.2. Selection of DEA Input and Output Variables

The DEA-based energy efficiency scores for rice production were calculated using the significant
energy inputs and the weight-based rice yield. It is known that if a sample has a small number of
DMUs relative to the total number of DEA input and output variables, then most DMUs are deemed
efficient in DEA calculations [20,22–24]. Thus, to increase the discrimination power among DMUs,
the number of DEA input and output variables was made as small as possible. It was impossible to
increase the number of DMUs by extending the analysis period for the reasons mentioned above.
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The candidate DEA input variables were the energy inputs of fossil fuels, electricity, seeds and
seedlings, chemical fertilizers, purchased manure, pesticides, land improvement and irrigation,
agricultural services, buildings, motor vehicles, and agricultural machinery. The DEA input variables
used were selected on the basis of a cutoff approach; that is, an energy input variable was assumed to
be significant if it contributed more than 5% of the total energy consumption of rice production [25].
Manual labor inputs, which were considered in previous studies [17–19], were excluded from
consideration because nearly all Japanese rice production operations have been mechanized [5].

Table 1 lists the energy input coefficients on a net calorific value basis. The on-farm energy inputs
for the six forms of fossil fuel were calculated using direct energy-use coefficients [26,27]. There was
little difference in the energy input coefficients between the six forms of fossil fuel. The off-farm energy
inputs were calculated by multiplying the production costs by the embodied global energy intensities,
which embrace the global supply chains of Japanese products [28]. The energy input coefficient of
electricity was much greater than those of other inputs.

Table 1. Energy input coefficients on a net calorific value basis.

Coefficient

Fossil fuels (GJ/L) 1

Heavy oil 0.0371
Diesel oil 0.0359
Kerosene 0.0349
Gasoline 0.0329
Motor oil 0.0382

Premixed fuel 0.0331
Production costs (GJ/million yen) 2

Fossil fuels 81.6
Electricity 472.6

Seeds and seedlings 29.2
Chemical fertilizers 79.0
Purchased manure 35.3

Pesticides 65.3
Land improvement and irrigation 3 47.3

Agricultural services 3 47.3
Buildings 46.3

Motor vehicles 42.3
Agricultural machinery 51.2

1 95% of gross calorific value in direct energy use [26,27]; 2 Coefficients based on purchaser price for household
consumables or producer price in 2005 [28]; 3 Land improvement and irrigation and agricultural services have the
same coefficient because both were included in the agricultural service sector of the input–output tables [28].

The weight-based rice yield was used as the DEA output variable. Since by-products of rice
production were excluded, the input data were allocated to rice using the share in the total proceeds of
rice production from the sales of rice to calculate the energy inputs attributable to rice [29].

2.3. DEA Methodology

An input-oriented slacks-based measure of efficiency (SBM) model with variable returns to scale
(VRS) was used for measuring the DEA-based energy efficiency scores for rice production. Unlike radial
models, such as the Charnes–Cooper–Rhodes (CCR) model, the SBM model deals with input or output
slacks directly and does not assume proportional changes in inputs or outputs [30]. Since not all
inputs for rice production behave in a proportional manner, the SBM model is more appropriate
than radial models such as the CCR model [30]. An input-oriented approach, i.e., one that involves
setting a goal to reduce the input levels as much as possible while at least maintaining the present
output levels [20], is reasonable because rice farmers have more control over the inputs responsible for
energy consumption than over the outputs [31]. Given that Japanese rice farmers receive government
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subsidies under the rice production adjustment program [4,32], the assumption of VRS is better than
that of constant returns to scale (CRS) because not all farmers operate at optimal scales [33].−

In an input-oriented SBM model with VRS, if the DMUs (j = 1, . . . , n) have m inputs (x1j, . . . , xmj)
and s outputs (y1j, . . . , ysj), the relative efficiency of each DMUo (o = 1, . . . , n) to be evaluated is
calculated using the following optimization model [30]:

ρ∗I = min
λ,s− ,s+

1− 1
m

m

∑
i=1

s−i
xio

, (1)

subject to:

xio =
n

∑
j=1

xijλj + s−i (i = 1, . . . , m), (2)

yro =
n

∑
j=1

yrjλj − s+r (r = 1, . . . , s), (3)

n

∑
j=1

λj = 1, (4)

λj ≥ 0(∀j), (5)

s−i ≥ 0(∀i), (6)

s+r ≥ 0(∀r), (7)

where ρ∗I is SBM-input efficiency, s−i is the ith input slack, s+r is the rth output slack, and λj is the jth
intensity. If ρ∗I is one, a DMUo is SBM-input efficient. When a DMU moves onto the efficient frontier,
the input slacks and output slacks indicate the input excesses (potential input reductions) and the
output shortfalls (potential output increases), respectively [20,30,34].

As noted, we had only nine DMUs, which corresponded to the nine scale ranges of rice farming.
To address the small number of DMUs, a window analysis technique was applied to the 2005–2011
panel data, based on scale observations of rice farming [20,21]. In DEA window analysis, a DMU is
dealt with as if it were a different DMU in each year [20,21]. According to Cooper et al. [20], the length
of the window is calculated using:

pw =
k + 1

2
, (8)

where pw is the length of the window and k is the number of years. As the k was seven, pw was
four years. The first, second, third, and fourth windows, respectively, included the 2005–2008,
2006–2009, 2007–2010, and 2008–2011 panel data, based on scale observations of rice farming. The DEA
calculations were performed using DEA-Solver-PRO Version 10.0 [34] for the 36 DMUs (multiplying the
nine DMUs by four years) in each window.

3. Results

3.1. Descriptive Statistics of the Collected Data

Table 2 presents the descriptive statistics of the collected data on an annual mean basis. The data
are based on a rice-planted area-based unit (per ha). The allocation ratios based on economic
value (0.974–0.979 on an annual average) were used for allocating the input data to rice.
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Table 2. Descriptive statistics of collected data on an annual mean basis (2005–2011, per year) 1.

Rice Farming Scale (ha Per Farm)

<0.5 0.5 to <1 1 to <2 2 to <3 3 to <5 5 to <7 7 to <10 10 to <15 ≥15

Fossil fuels (L/ha) 2

Heavy oil 0 0.1 0 0 0 0.1 0 0 0
(0) (0.4) (0) (0) (0) (0.4) (0) (0) (0)

Diesel oil 111.4 116.4 116.7 119.4 120.1 121.2 136.0 153.9 152.8
(11.6) (7.9) (1.6) (8.7) (7.8) (2.4) (6.2) (11.4) (9.2)

Kerosene 34.4 43.4 73.4 79.9 88.4 98.2 108.9 109.8 103.4
(4.8) (2.9) (5.2) (6.8) (9.7) (4.8) (5.0) (16.2) (9.0)

Gasoline 94.2 88.2 75.6 72.2 67.0 59.4 60.1 64.7 44.5
(5.0) (4.0) (4.5) (7.2) (2.9) (7.6) (3.2) (5.5) (10.2)

Motor oil 5.0 3.6 3.5 3.4 2.5 3.1 2.5 3.2 1.8
(1.2) (0.7) (0.5) (0.5) (0.5) (0.7) (0.5) (0.5) (0.4)

Premixed fuel 19.4 15.1 8.9 4.6 4.3 2.9 2.9 2.5 0.8
(1.6) (1.4) (1.3) (1.1) (0.8) (0.6) (1.1) (1.1) (0.7)

Production costs (thousand yen/ha) 2,3

Fossil fuels 31.8 30.7 29.9 28.7 28.5 27.9 29.6 31.7 27.9
(3.4) (2.6) (2.5) (2.8) (3.5) (2.6) (3.4) (3.6) (3.5)

Electricity 4.4 5.5 7.3 7.2 6.5 7.3 6.5 7.3 5.4
(0.7) (0.8) (0.4) (0.7) (0.4) (0.6) (0.5) (1.1) (0.7)

Seeds and seedlings 66.8 46.3 32.8 23.9 23.4 20.5 18.1 16.6 16.1
(5.3) (5.4) (3.3) (0.9) (2.6) (1.4) (1.9) (1.1) (0.5)

Chemical fertilizers 88.3 81.8 75.5 75.8 71.5 76.6 69.7 63.0 64.3
(8.8) (7.7) (5.4) (7.7) (6.5) (5.4) (9.3) (5.5) (3.8)

Purchased manure 4.1 4.1 4.6 2.4 1.9 3.4 1.3 2.4 3.3
(1.0) (1.0) (0.4) (1.1) (1.0) (0.8) (1.4) (0.8) (1.9)

Pesticides 72.5 68.6 66.5 64.3 62.4 66.4 61.7 55.2 49.5
(3.8) (2.8) (3.6) (3.3) (3.1) (5.4) (4.5) (4.2) (3.4)

Land improvement and irrigation 42.5 43.6 47.3 49.0 52.7 55.8 51.7 55.7 49.0
(7.0) (10.1) (5.5) (6.2) (13.1) (5.5) (7.5) (3.9) (5.3)

Agricultural services 232.4 180.8 112.1 81.5 67.6 55.9 58.9 57.0 51.6
(19.7) (14.9) (15.1) (8.4) (11.7) (9.8) (9.7) (8.8) (4.8)

Buildings 107.4 82.9 56.0 37.7 30.5 25.7 33.8 38.2 33.4
(35.0) (23.8) (10.8) (6.3) (4.5) (5.5) (4.4) (5.1) (4.0)

Motor vehicles 66.2 50.5 32.8 26.1 21.0 16.8 15.9 16.3 13.2
(14.5) (5.5) (3.6) (5.5) (1.0) (2.5) (2.7) (3.5) (1.9)

Agricultural machinery 309.5 303.1 246.4 197.1 194.1 159.3 158.0 147.9 151.4
(61.6) (37.9) (12.7) (13.8) (13.9) (14.3) (25.6) (11.9) (7.2)

Rice yield (kg/ha) 5084 5040 5113 5231 5277 5346 5419 5380 5207
(131) (80) (72) (128) (93) (139) (189) (194) (131)

Allocation ratio 4 0.978 0.977 0.978 0.978 0.977 0.978 0.979 0.974 0.976
(0.002) (0.003) (0.004) (0.002) (0.003) (0.004) (0.005) (0.003) (0.006)

1 All data were derived from MAFF [7]. Values in parentheses are standard deviations; 2 Data were allocated to
rice using allocation ratios; 3 Production costs were converted into real values using a price index for agricultural
production materials (2005 = 100) [35]; 4 Allocation ratios were calculated by dividing sales of rice by total proceeds
from rice production.

Fossil fuels that were taken into account in on-farm consumption were heavy oil (0–0.1 L/ha/year),
diesel oil (111.4–153.9 L/ha/year), kerosene (34.4–109.8 L/ha/year), gasoline (44.5–94.2 L/ha/year),
motor oil (1.8–5.0 L/ha/year), and premixed fuel (0.8–19.4 L/ha/year). Diesel oil had the greatest
inputs across the scale ranges of rice farming, and kerosene and gasoline were the second or third
greatest inputs in each scale range. As the scale of rice farming expanded, the inputs of diesel oil and
kerosene increased substantially, whereas those of gasoline decreased considerably.

The production costs of rice (thousand yen/ha/year), depending on the scale of farming,
were 27.9–31.8 for fossil fuels, 4.4–7.3 for electricity, 16.1–66.8 for seeds and seedlings, 63.0–88.3
for chemical fertilizers, 1.3–4.6 for purchased manure, 49.5–72.5 for pesticides, 42.5–55.8 for land
improvement and irrigation, 51.6–232.4 for agricultural services, 25.7–107.4 for buildings, 13.2–66.2 for
motor vehicles, and 147.9–309.5 for agricultural machinery. Many of the production costs decreased as
the scale of rice farming expanded. In particular, agricultural services and agricultural machinery had
the two greatest effects on cost saving when there was an increase in the scale of rice farming.

The rice yields were within the range of 5040 to 5419 kg/ha/year. Although the rice yields
increased with the scale of rice farming, a downward trend was found in the data from the 7 to <10 ha
range to the ≥15 ha range.



Sustainability 2018, 10, 120 6 of 11

3.2. Energy Consumption

Table 3 presents the energy consumption of rice production on an annual mean basis.
The <0.5 ha range had the highest energy consumption (64.2 GJ/ha/year), whereas the ≥15 ha range
had the lowest (39.0 GJ/ha/year). Thus, an increase in the scale of rice farming contributed to
reducing the total energy consumption. Compared with the <0.5 ha range, the ≥15 ha range showed
a decrease of 8.6 and 8.1 GJ/ha/year in the energy inputs of agricultural services and agricultural
machinery, respectively.

Table 3. Energy consumption of rice production on an annual mean basis (2005–2011, GJ/ha/year) 1.

Rice Farming Scale (ha Per Farm)

<0.5 0.5 to <1 1 to <2 2 to <3 3 to <5 5 to <7 7 to <10 10 to <15 ≥15

Fossil fuels 11.7 11.7 12.1 12.1 12.2 12.2 13.3 14.3 12.9
(1.0) (0.6) (0.4) (0.8) (0.8) (0.4) (0.4) (1.0) (1.0)

Electricity 2.1 2.6 3.4 3.4 3.1 3.5 3.1 3.5 2.6
(0.3) (0.4) (0.2) (0.3) (0.2) (0.3) (0.2) (0.5) (0.3)

Seeds and seedlings 2.0 1.4 1.0 0.7 0.7 0.6 0.5 0.5 0.5
(0.15) (0.16) (0.10) (0.03) (0.08) (0.04) (0.06) (0.03) (0.01)

Chemical fertilizers 7.0 6.5 6.0 6.0 5.6 6.1 5.5 5.0 5.1
(0.7) (0.6) (0.4) (0.6) (0.5) (0.4) (0.7) (0.4) (0.3)

Purchased manure 0.15 0.14 0.16 0.09 0.07 0.12 0.05 0.08 0.12
(0.04) (0.04) (0.01) (0.04) (0.03) (0.03) (0.05) (0.03) (0.07)

Pesticides 4.7 4.5 4.3 4.2 4.1 4.3 4.0 3.6 3.2
(0.2) (0.2) (0.2) (0.2) (0.2) (0.4) (0.3) (0.3) (0.2)

Land improvement and irrigation 2.0 2.1 2.2 2.3 2.5 2.6 2.4 2.6 2.3
(0.3) (0.5) (0.3) (0.3) (0.6) (0.3) (0.4) (0.2) (0.3)

Agricultural services 11.0 8.6 5.3 3.9 3.2 2.6 2.8 2.7 2.4
(0.9) (0.7) (0.7) (0.4) (0.6) (0.5) (0.5) (0.4) (0.2)

Buildings 5.0 3.8 2.6 1.7 1.4 1.2 1.6 1.8 1.5
(1.6) (1.1) (0.5) (0.3) (0.2) (0.3) (0.2) (0.2) (0.2)

Motor vehicles 2.8 2.1 1.4 1.1 0.9 0.7 0.7 0.7 0.6
(0.61) (0.23) (0.15) (0.23) (0.04) (0.11) (0.11) (0.15) (0.08)

Agricultural machinery 15.9 15.5 12.6 10.1 9.9 8.2 8.1 7.6 7.8
(3.2) (1.9) (0.6) (0.7) (0.7) (0.7) (1.3) (0.6) (0.4)

Total 64.2 58.9 51.1 45.5 43.6 42.1 42.0 42.3 39.0
(5.8) (3.4) (1.2) (2.0) (1.2) (1.5) (1.9) (1.5) (1.8)

1 Energy inputs were allocated to rice using allocation ratios. Values in parentheses are standard deviations.

As shown in Figure 1, the contribution rates for energy consumption in rice production
were, in order, fossil fuels (24.75%), agricultural machinery (23.27%), chemical fertilizers (12.11%),
agricultural services (10.62%), pesticides (8.57%), and electricity (6.12%). Each of these contributors
accounted for more than 5% of the total energy consumption and was thus considered to be a significant
DEA input variable based on the cutoff approach.Sustainability 2017, 10, 120  7 of 11 
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Figure 1. Contributors to the energy consumption of rice production based on a weighted average for
all scale ranges of rice farming in 2005–2011. The weighted average was weighted with respect to the
average values of sample sizes for each scale range in 2008–2011 [7].
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3.3. DEA-Based Energy Efficiency Scores and Operational Targets

Table 4 presents the energy efficiency scores for rice production based on DEA window
analysis. The DEA calculations were performed using the six DEA inputs (fossil fuels, electricity,
chemical fertilizers, pesticides, agricultural services, and agricultural machinery) and one DEA output
(rice yield). Annual averages of energy efficiency scores were shown in each window, and cumulative
averages were calculated by averaging window-based energy efficiency scores. From the perspective
of cumulative averages, the energy efficiency scores ranged from 0.732 for the 1 to <2 ha range
to 0.988 for the ≥15 ha range. The energy efficiency scores increased with the scale of rice farming,
although the <0.5 ha range, the smallest scale of rice farm considered, had a relatively high score (0.930).

Table 4. Energy efficiency scores for rice production based on DEA window analysis.

Rice Farming Scale (ha Per Farm)

<0.5 0.5 to <1 1 to <2 2 to <3 3 to <5 5 to <7 7 to <10 10 to <15 ≥15

Average for each window
2005–2008 0.99998 0.866 0.782 0.929 0.931 1 1 0.99998 0.970
2006–2009 1 0.769 0.717 0.801 0.922 0.955 0.965 0.969 0.985
2007–2010 0.903 0.677 0.717 0.794 0.891 0.907 0.929 0.940 1
2008–2011 0.818 0.657 0.714 0.789 0.882 0.871 0.891 0.926 0.996

Cumulative average 0.930 0.742 0.732 0.828 0.907 0.933 0.946 0.959 0.988

Table 5 presents the operational targets for rice production based on cumulative averages from
the DEA window analysis. The potential reductions for the DEA inputs and the potential increases
for rice yields indicate the variations required for a DMU to become efficient [20,30,34]. The 1 to <2 ha
and 0.5 to <1 ha ranges, which had the two lowest energy efficiency scores (0.732–0.742 on a cumulative
average basis; refer to Table 4), had larger potential reductions for the DEA inputs, especially for
agricultural machinery (4.582–7.032 GJ/ha) and agricultural services (2.662–4.603 GJ/ha), and greater
potential increases (26.1–36.2 kg/ha) for rice yield than the other ranges. In these ranges, the potential
reduction rates for agricultural machinery (36.2–44.6%) and agricultural services (51.7–54.5%) were very
high, whereas the potential increase rates (0.5–0.7%) for rice yield were extremely low.

Table 5. Operational targets for rice production based on cumulative averages from DEA
window analysis.

Rice Farming Scale (ha Per Farm)

<0.5 0.5 to <1 1 to <2 2 to <3 3 to <5 5 to <7 7 to <10 10 to <15 ≥15

Fossil fuels
Potential reduction (GJ/ha) 0.153 0.267 0.329 0.109 0.024 0.059 0.161 0.387 0.060
Potential reduction rate (%) 1.3 2.3 2.7 0.9 0.2 0.5 1.2 2.7 0.5

Electricity
Potential reduction (GJ/ha) 0.045 0.349 1.014 0.746 0.350 0.421 0.214 0.228 0.032
Potential reduction rate (%) 2.2 13.1 29.2 22.1 11.3 12.5 7.1 6.7 1.3

Chemical fertilizers
Potential reduction (GJ/ha) 0.419 1.091 0.868 0.778 0.583 0.527 0.563 0.186 0.073
Potential reduction rate (%) 6.0 16.9 14.5 13.0 10.3 8.6 10.2 3.7 1.4

Pesticides
Potential reduction (GJ/ha) 0.369 1.133 1.180 0.844 0.523 0.399 0.351 0.245 0.048
Potential reduction rate (%) 7.9 25.6 27.6 20.4 13.0 9.4 9.0 7.0 1.5

Agricultural services
Potential reduction (GJ/ha) 1.525 4.603 2.662 1.249 0.283 0.206 0.073 0.114 0.080
Potential reduction rate (%) 14.2 54.5 51.7 31.9 9.1 7.5 2.7 4.4 3.4

Agricultural machinery
Potential reduction (GJ/ha) 2.259 7.032 4.582 1.702 1.361 0.296 0.379 0.052 0.005
Potential reduction rate (%) 14.1 44.6 36.2 17.0 13.6 3.6 4.7 0.7 0.1

Rice yield
Potential increase (kg/ha) 0.02 26.1 36.2 22.3 0 0 3.6 10.1 10.8
Potential increase rate (%) 0.0004 0.5 0.7 0.4 0 0 0.1 0.2 0.2
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4. Discussion

4.1. Findings and Implications

The primary reason that DEA-based energy efficiency scores increased with the scale of rice
farming in Japan was that the indirect energy inputs per hectare for agricultural machinery and
agricultural services decreased greatly with scale. Thus, both of these inputs are key operational
reduction targets for improving DEA-based energy efficiency indicators. In this paper, the values
of the off-farm energy inputs were calculated using the energy coefficients per unit of cost [28].
Therefore, a great reduction in the costs per hectare of agricultural machinery and agricultural services
results in a great reduction in these energy inputs. Although large-scale rice farmers purchase larger
and more expensive agricultural machines than do small-scale farmers [7], their cost per hectare is less,
reflecting economies of size or, in other words, the ability of a farm to lower its costs of production
by expanding size [36]. Moreover, the greater investment in agricultural machinery by these larger
farms contributes to a greater decrease in the cost of agricultural services per hectare, by considerably
reducing dependence on contractors for services such as harvesting [7].

In contrast, fossil fuels, electricity, chemical fertilizers, and pesticides were not found to be
important as operational reduction targets. The primary reason that the energy potential reductions
per hectare for fossil fuels and electricity are small is that their energy inputs per hectare increase with
the scale of rice farming. Large-scale rice farmers who do much of the work themselves have much
greater inputs per hectare for diesel oil for field work and kerosene for grain drying than do small-scale
farmers, who are highly dependent on contractors [7]. They also require more electricity inputs
per hectare for grain dryers and rice hullers during postharvest operations than do the small-scale
farmers [7].

Unlike fossil fuels and electricity, the energy inputs per hectare for chemical fertilizers and
pesticides decrease as the scale of rice farming increases. In Japan, large-scale rice farms have a
higher adoption rate of environmentally friendly farming practices compared with small-scale farmers,
resulting in reduced use of chemical fertilizers and pesticides [4]. However, little difference was found
between large- and small-scale rice farms in the energy inputs per hectare for chemical fertilizers and
pesticides. Thus, their energy potential reductions per hectare are small.

The input-oriented SBM model with VRS used in the DEA calculations yielded the potential
increases for the DEA output, in addition to the potential reductions for the DEA inputs [30,34].
The potential increases for the rice yield were zero or extremely small because an input-oriented
assumption was made in the DEA calculations [20], and there is little difference in rice yields for the
different scale ranges of rice farming, compared with the DEA inputs, such as agricultural machinery
and agricultural services.

Our results demonstrate the advantages that are gained by increasing the scale of rice farming.
This is especially important in improving the energy efficiency of highly-mechanized rice production
in developed countries, such as Japan. However, these results differ from those found in developing
countries, where the advantages of scale are not an effective way to enhance the energy efficiency of
low-level mechanized rice production because the indirect energy input of agricultural machinery
accounts for only a very small percentage of the total energy consumption of rice production [17–19].

4.2. Lack of Discrimination Power for the <0.5 ha Range

Since the <0.5 ha range has relatively large energy inputs and low rice yields, its DEA-based
energy efficiency scores should be small. However, given that the DEA-based energy efficiency scores
are in the range of 0.732 to 0.988 on a cumulative average basis, the <0.5 ha range has a very high
score (0.930).

One possible reason for the poor discrimination within this range of rice farming is the relatively
few DMUs compared with the number of DEA input and output variables [20,22–24]. Several rules
of thumb have been proposed for the number of DMUs required for achieving a reasonable level of
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discrimination, e.g., 2m× s [23] and 3(m + s) [20], where m and s are the number of DEA inputs and
outputs, respectively. Since 36 DMUs (multiplying nine DMUs by four years) with six inputs and one
output were included in each window, the DEA calculations satisfied both rules. Thus, in this case,
a lack of DMUs was not a major reason for the deficient discrimination power for the <0.5 ha range.

Another possible reason is the assumption of VRS. If a subset of DMUs operates at a very different
scale compared with the remaining DMUs, they will be classified as efficient in DEA calculations with
VRS [22,24]. Further, if there are no inherent scale effects, small and large DMUs will be overrated
in DEA calculations with VRS [23]. This possibility was investigated by comparing the DEA-based
energy efficiency scores calculated under the assumption of VRS with those calculated under the
assumption of CRS. With CRS, the DEA-based energy efficiency scores on a cumulative average basis
ranged from 0.714 for the 1 to <2 ha range to 0.978 for the ≥15 ha range, with a score of 0.910
for the <0.5 ha range. These results are very similar to the DEA-based energy efficiency scores
calculated with VRS. This indicates that the assumption of VRS was not a major reason for the
lack of discrimination power for the <0.5 ha range.

Although the data collection period (2005–2011) could not be extended because of the lack of
deflators for the base year (2005), if the data from 2012 were included in the analysis, the discrimination
might be improved for the <0.5 ha range. In the DEA window analysis, the <0.5 ha range for 2005–2009
was determined to be efficient or nearly efficient, whereas that for 2010–2011 was determined to be
very inefficient (0.613–0.658).

5. Conclusions

DEA-based energy efficiency indicators for intensive rice production in Japan were evaluated
in accordance with the scale of rice farming. DEA window analysis was applied to panel data based
on scale observations of rice farming that were collected from MAFF data for 2005–2011. Six DEA
inputs (fossil fuels, electricity, chemical fertilizers, pesticides, agricultural services, and agricultural
machinery) and one DEA output (rice yield) were used in the DEA calculations, which were based on
an input-oriented SBM model with VRS.

The results showed that, overall, increasing the scale of rice farming improves the energy efficiency
of intensive rice production. This is because an increase in the scale of rice farming that involves
greater agricultural machinery investment greatly reduces the energy inputs per unit area for both
agricultural machinery and agricultural services. The findings suggest that the advantages that result
from an increase in the scale of farming are especially effective in enhancing the energy efficiency of
highly-mechanized rice production in developed countries such as Japan. However, energy efficiency
improvements based on these advantages of scale would not necessarily be realized for low-level
mechanized rice production in developing countries.

To develop larger rice farms, Japanese agricultural policies have been reformed by applying
the important payment programs to business-oriented farmers, in addition to relaxing the farmland
regulations [4,32]. Further, because the rice production adjustment program prevents competitiveness
by increasing rice production costs and muting market signals [4,32], its abolishment will also contribute
to building larger rice farms. These agricultural policy reforms should promote energy-efficient rice
production in Japan, resulting in larger-scale farming.

In this paper, to address the small number of DMUs, a window analysis technique was applied
to the panel data based on scale observations of rice farming. Further studies are needed to better
understand the time trends regarding the energy efficiency of Japanese rice farms.
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