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Abstract
The bidirectional communication

between the central nervous system and gut
microbiota, referred to as the gut-brain-axis,
has been of significant interest in recent
years. Increasing evidence has associated
gut microbiota to both gastrointestinal and
extragastrointestinal diseases. Dysbiosis
and inflammation of the gut have been
linked to causing several mental illnesses
including anxiety and depression, which are
prevalent in society today. Probiotics have
the ability to restore normal microbial bal-
ance, and therefore have a potential role in
the treatment and prevention of anxiety and
depression. This review aims to discuss the
development of the gut microbiota, the link-
age of dysbiosis to anxiety and depression,
and possible applications of probiotics to
reduce symptoms. 

Introduction
Healthy gut function has been linked to

normal central nervous system (CNS) func-
tion.1-4 Hormones, neurotransmitters and
immunological factors released from the
gut are known to send signals to the brain
either directly or via autonomic neurons.
The existence of the gut-brain axis was pro-
posed in the landmark study by Sudo and
colleagues that discovered the impaired
stress response in germ-free mice. Other
studies using germ-free mice not only sup-
ported this existence, but also the idea that
the gut-brain-axis (GBA) extends even
beyond these two systems into the
endocrine, neural, and immune pathways.2,5

Recently, studies have emerged focus-
ing on variations in the microbiome and the
effect on various CNS disorders, including,
but not limited to anxiety, depressive disor-
ders, schizophrenia, and autism.2,8,9 This
review focuses on the GBA in the context of
anxiety and depressive disorders.
Therapeutic interventions to treat dysbiosis,
or disturbance in the gut, and mitigate its

effects on the GBA are only recently com-
ing to the forefront as more is known about
this unique relationship. As a result,
research has been done on the use of probi-
otics in treatment of anxiety and depression
both as standalone therapy and as adjunct to
commonly prescribed medications. These
findings as well as their potential impact on
treatment are discussed in this paper.4,9 An
overview of the role of the gut microbiome,
from its development, to its relationship
with the emotional and cognitive centers of
the brain, while also providing ideas for
future research, are included in this review. 

The microbiome is defined as all
microorganisms in the human body and
their respective genetic material. The
microbiota is defined as all microorganisms
in a particular location, such as the GI tract
or skin.10,11 This distinction is relevant as
this review will focus on the microbiota of
the gut in the context of the gut-brain axis,
though there will be discussion of the
human microbiome where appropriate. 

Materials and Methods
This literature review is based on

English-language articles sourced from
PubMed. Keywords searched included:
microbiome development, neonatal micro-
biome, negative aspects of probiotic use,
anxiety and depressive disorders, gut brain
axis, anxiety, depression, hypothalamic-
pituitary axis (HPA), stress and the micro-
biome, microbiome composition, intestinal
bowel disease, cytokines, TNF-a, inter-
leukins, leaky gut, anxiety, depression, and
prostaglandins. Antibiotics were not includ-
ed in the search as the authors felt it was
beyond the scope of the discussion regard-
ing the existing microbiome, stress respons-
es, and their relationship with depression
and anxiety disorders. No geographical lim-
itations were included in the search.
Publications were initially excluded if they
were published before 2010. However, in
order to include an in depth understanding
of the research, articles published before
2010 were included if they were cited in
research published after 2010. This review
contains articles published through July of
2017.  

Results and Discussion
Development of the microbiome 

The microbiome is initially developed
via vertical transmission through the pla-
centa, amniotic fluid, and meconium.12-14

Two animal study suggested that fetuses

exposed to prenatal stress in the form of
maternal stress develop a gut microbiota
with decreased Bifidobacterium.14,15 Two
separate studies concluded that the mode of
delivery affects the initial microbiome and
gut microbiota. Infants delivered vaginally
had higher amounts of bacteria in their gut
compared to infants delivered by Cesarean
section.12,13 Beginning with the first week of
life, gastric colonization is highly dynamic.
This critical period during birth and GI
development is essential for newborn health
and immunity.16 Microbiota underdevelop-
ment during this period has been correlated
with numerous stress states including late-
onset sepsis,17 cardiovascular disease, and
atopic disease.18

Early nutrition also appears to play a
role in shaping the developing gut micro-
biota. Studies found that breastfeeding was
directly correlated with both IgA levels and
the number of organisms in the
Bifidobacterium genus present in the gut
and indirectly correlated with IL-6 lev-
els.13,15 IgA is predominantly a secretory
immunoglobulin that provides immunity
within the intestines and other mucosal
membranes. In contrast, IL-6 is a proin-
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flammatory cytokine that normally presents
in acute and chronic inflammation.
Bifidobacterium is an important part of the
infant microbiome,19 and together with
species in the Lactobacillus genus, is key in
producing gamma-Aminobutyric acid
(GABA), an inhibitory regulator of various
neural pathways.20 Breastmilk’s ability to
increase IgA and Bifidobacterium species
and to decrease IL-6 levels, and subsequent-
ly inflammation, reduces the risk of age-
related gastroenteritis.13

In comparison, infants fed formula dur-
ing their first four weeks of life demonstrat-
ed a decrease in total number of bacterial
species.15 Breast milk oligosaccharides
includes lactose as well as over 1000 dis-
tinct non-digestible molecules.21

Researchers suggest the non-digestible sug-
ars of breast milk provide a prime nutrition-
al source for bacterial fermentation.12 Breast
milk had similar effects in preterm infants
who were shown to have a different bacter-
ial makeup, with a predominance of pro-
teobacteria rather than Bifidobacterium and
Lactobacillus. Preterm infants fed breast
milk showed an increase only in the number
of Bifidobacterium, supporting the concept
that breast milk’s non-digestible sugars cre-
ate an environment better suited for of spe-
cific species.20

Cessation of breastfeeding is the pri-
mary diet change that leads to an adult-like
microbiome.22 Children who were weaned
from breast milk up to age four showed sim-
ilar patterns of microbiota development as
children weaned at an earlier age, indicating
that the length of time to transition from
breast milk to solid foods was not as impor-
tant as the transition itself.22

The key relationship between the gut
microbiota and diet continues throughout
life. Diet alterations can have significant
impact on the gut bacterial composition in
as little as 24 hours.20 However, the bacteri-
al composition is restored if the change in
diet is only temporary. Regardless of the
species inhabiting the gut, as long as their
symbiotic role is the same, the human host
will be able to function as normal.20

Symbiotic bacteria assist with immune tol-
erance, intestinal homeostasis, amino acid
and vitamin synthesis of the host, leading to
a healthy metabolism.13

The adult microbiome
As infants consume increasing amounts

of solid food, the microbiome is exposed to
diverse energy substrates, developing its
carbon metabolism.22,23 The adult microbio-
me becomes dominated by the
Bacteroidetes and Firmicutes phyla, rather
than the Lactobacillus and Bifidobacterium
genera.24 Relatively smaller quantities of

the Proteobacteria, Verrucomicrobia,
Actinobacteria, and Cyanobactera phyla,
and Fusobacteria genus can also be found.13

However, due to many factors including
diet, environment, season, health status, it is
almost impossible to define a “normal”
microbiome for the average human popula-
tion. It is important to note that although
microbiomes differ between every individ-
ual due to genetic diversity, researchers
have found that every microbiome falls into
one of three enterotypes. These enterotypes
differ by which species dominates one’s
bacterial composition, and include
Bacteroides, Prevotella, or Ruminococcus
species. The dominant species and therefore
enterotype results from the composition of a
person’s diet. Prevotella species enterotype
is associated with diets high in carbohy-
drates versus people eating high amounts of
protein are more likely to possess a
Bacteriodes species enterotype.25

Interestingly, these enterotypes are inde-
pendent of environmental components such
as age, body-mass index, gender and geo-
graphic location and seem to only be
dependent on diet and genetics.26

A Danish study of the gut microbiome
created the concept of high gene count
(HGC) and low gene count (LGC), both of
which are implicated in digestive health.27

Due to a functionally more prosperous
microbiome, the HGC group had a
decreased risk of both metabolic disease
and obesity. Important microbiome func-
tions of the HGC group included an
increased proportion of butyrate producing
organisms, increased propensity for hydro-
gen production, and reduced production of
hydrogen sulfide. It has also been shown
that short chain fatty acids offer relevant
benefits in terms of regulatory T cell induc-
tion as well as blood-brain barrier integri-
ty.28,29 In contrast, the LGC group had a
larger proportion of pro-inflammatory bac-
teria which predisposed them to IBD and
related disorders.30,31 The Human
Microbiome Project confirms this notion
with studies of stool specimens demonstrat-
ing that humans with a less diverse micro-
biome were more likely to be diagnosed
with IBD.25

When the human microbiome is chal-
lenged with changes in diet, stress, or
antibiotics, the physiology of the normal
microbiome undergoes change. A dysbiotic
state leads to increased intestinal permeabil-
ity and allows contents such as bacterial
metabolites and molecules as well as bacte-
ria themselves to leak through the submu-
cosa and into the systemic circulation, a
phenomenon aptly named leaky gut syn-
drome. A study by Zoppi et al. demonstrat-
ed that the gut microbiota uses the intestinal

endocannabinoid system to control the
degree of intestinal permeability.32 A sepa-
rate study was able to reduce translocation
of bacterial antigens such as LPS by using
antagonists to the intestinal cannabinoid
type 1 receptor in mice. Specifically, the
CB1R antagonists cannabidiol and tetrahy-
drocannabidiol were protective against
intestinal permeability, suggesting that
cannabinoids could play an important role
in treating inflammatory gastrointestinal
diseases such as IBD.33 Increased intestinal
permeability leads to detrimental effects on
the host immune system, which have been
demonstrated in diseases such as inflamma-
tory bowel disease (IBD), diabetes, asthma,
and psychiatric disorders including depres-
sion, anxiety, and autism.2,4,10,34,35

Although most of these studies have
focused on bacterial species in the gut
microbiome, other studies have elucidated
the importance of other microorganisms,
such as yeast. A study done by Burrus and
colleagues suggested that colonization with
Candida species may contribute to Autism
spectrum disorders.36 By preventing absorp-
tion of carbohydrates and minerals and
allowing excessive build-up of toxins, colo-
nization with Candida albicans was shown
to increase autistic behaviors in children
with autistic spectrum disorder. A similar
study suggested that it is the interaction
between propionic acid and ammonia
released by Candida albicans that results in
increased autistic behaviors.37 This interac-
tion produces an excessive amount of beta-
alanine, which is similar in structure to
GABA and has been proposed to be an
important contributor to autism spectrum
disorders. 

The inflammatory response
Inflammation of the GI tract places

stress on the microbiome through the
release of cytokines and neurotransmitters.
Coupled with the increase in intestinal per-
meability, these molecules then travel sys-
temically. Elevated blood levels of
cytokines TNF-a and MCP (monocyte
chemoattractant protein) increase the per-
meability of the blood-brain barrier,
enhancing the effects of rogue molecules
from the permeable gut.38,39 Their release
influences brain function, leading to anxi-
ety, depression, and memory loss.39-41

Depressive disorders are characterized
by both neuroplastic, organizational
changes, and neurochemical dysfunction.42

Illness is thought to begin when there is
deregulation of these systems and can large-
ly be attributed to cytokine release second-
ary to an exaggerated systemic response to
stressors.39,41 Endotoxin infusions to healthy
subjects with no history of depressive disor-
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ders triggered cytokine release and subse-
quent emergence of classical depressive
symptoms. The study established a direct
correlation between increased levels of IL-6
and TNF-a with symptoms of depression
and anxiety,43 indicating that pro-inflamma-
tory cytokines play a role in the develop-
ment of anxiety and depression. These
effects correlated with a state of chronic
inflammation and altered immune cells in
the peripheral blood. However, TNF-a
administered to healthy subjects resulted in
no depressive symptoms,38 suggesting that
toxin induced inflammation caused the
mood disturbance.

Pro-inflammatory cytokines are also
important stimulators of the hypothalamic-
pituitary-adrenal (HPA) axis (Figure 1). The
hypothalamus releases corticotropin releas-
ing factor from the hypothalamus, stimulat-
ing the adenohypophysis to release adreno-
corticotropic hormone (ACTH). In turn,
ACTH stimulates the adrenal release of cor-
tisol, a known stress hormone that acts as a
negative feedback signal in the pro-inflam-
matory signal transduction machinery.3,41

Hyperactivity or dysregulation of the
HPA axis is one of the most reliable biolog-
ical readouts in major depression and anxi-
ety.39 Rats with activated stress circuits
demonstrated anxiety and depressive-like
behaviors. Removal of the stimulus normal-
ized HPA hyper-reactivity, as measured by
their endogenous corticosterone levels, and
in turn reversed or mitigated their abnormal
behaviors.10

The interconnection of the endocrine,
neural, and immune pathways is demon-
strated in the relationship between brain
derived neurotrophic factor (BDNF) mRNA
in the dentate gyrus of the hippocampus and
the stress response in germ free mice.
BDNF supports the development of neurons
and synapses involved in regulation of emo-
tions and cognition; male germ free mice
have an increased stress response associated
with decreased hippocampus BDNF, which
could be reversed by recolonization with
Bifidobacteria species. Futhermore, the
Bifidobacteria was shown to alter mRNA
expression of GABA receptors and decrease
serum cortisol. This change was not seen
after the mice underwent vagatomies, sug-
gesting that the parasympathetic nervous
system was imperative for the bacteria’s
effects on their stress response.24

Probiotics, inflammation, and the
HPA axis

Probiotics are living microorganisms,
typically yeasts and bacteria, that have been
utilized as supplements to other medica-
tions or as alternative treatments for anxiety
and depression.44 Probiotics have also been

studied in the context of suppression of
inflammatory cytokines. Some studies have
found that human patients suffering from
chronic inflammation responded positively
to the ingestion of probiotics, as they
decreased production of TNF-a.45.46 In
patients with inflammatory bowel disease,
probiotics correlated with suppressed levels
of pro-inflammatory cytokines, and
improved intestinal barrier integrity. This
led to a decrease in differentiation of CD4+
T cells into Th2 cells, and inhibition of
nuclear factor kappa B, both of which are
highly involved in inflammation47 (Figure
2). 

Mothers who consumed probiotics
compared to controls were found to have an
altered gene expression associated with
improved inflammatory responsiveness in
the placenta and neonatal gut.20 Probiotic
usage in late pregnancy led to a decrease in

IL-4, IL-10, and Atopbium, a species of the
Actinobacteria phylum, with a concurrent
increase in Bifidobacterium species.48

Mothers who consumed probiotics two
weeks prior to delivery had babies with
altered expression of TLR-related genes in
the placenta and neonatal gut; the TLR gene
expression varied based on the type of pro-
biotics the mother consumed.49 These
infants were found to directly respond and
modify their inflammatory responses to
pathogenic bacteria compared to controls.49

Thus, providing mothers with specific pro-
biotic formulas may protect the infant from
persistent metabolic and immunologic dis-
ease processes.

Though human symptomatology is the
primary interest, animal studies have eluci-
dated the mechanisms underlying the rela-
tionship between probiotics and the
immune response. Mice with B and T lym-
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Figure 1. The gut-brain axis pathway. Image created by Megan Clapp and Emily Wilen.
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phocytes deficient in Rag1, a gene responsi-
ble for B and T cell maturation, had
increased colonic ion transport, resulting in
a state of dysbiosis and altered HPA axis
status. These mice were treated with probi-
otics containing Lactobacillus species and
demonstrated reduced intestinal permeabili-
ty and restored microbiome and HPA-axis
functionality.50 A separate study used mice
with a stress-induced reduction of HPA axis
function and neuronal firing. Probiotic ther-
apy maintained neurogenesis and synaptic
plasticity in the hippocampus, allowing the
survival and differentiation of cells into
neurons. These mice also produced lower
amounts of stress hormones, and preserved
intestinal permeability. The Lactobacillus
strain in the administered probiotic upregu-
lated BDNF and resulted in increased glu-
cocorticoid regulation of the HPA axis. 

Probiotics provide a neuroprotective
role by preventing stress-induced synaptic
dysfunction between neurons. Treatment
for as little as two weeks created an appre-
ciable decrease in ACTH and corticosterone
levels in rats, illustrating the suppressive
effects of probiotics on HPA axis.1,4

Probiotics have the potential to diminish the
HPA axis response to chronic stressors, and
prevent or reverse physiologic damage.4

Human and animal studies of probiotics
show similar reductions in anxiety and
depressive symptoms. Human patients suf-
fering from chronic stress were given a
three-week probiotic treatment containing
Bifidobacteria species. Subjects in the bot-
tom third of the elated/depressed scale
demonstrated the most improvement with
treatment. These patients rated an overall
happier mood on daily analogue scales
using six dimensions of mood including
energetic/tired, composed/anxious,
elated/depressed, clearheaded/muddled,
confident/unsure, and agreeable/angry.51

In a 30-day study, healthy volunteers

with no previous depressive symptoms
were given either probiotics or antidepres-
sants. Those given probiotics showed
reduced cortisol levels and improved self-
reported psychological effects to a similar
degree as participants administered
Diazepam, a commonly used anti-anxiety
medication.52 Analogous studies found that
probiotic therapy reduced depressive symp-
toms and improved HPA-axis functionality
as well as Citalopram and Diazepam.53,54

Comparing probiotics to the antidepres-
sant escitalopram in mice, the probiotics
were discovered to have similar effects.
They were equally successful in anxiety
reduction and were more effective than the
escitalopram in maintaining healthy metab-
olism and body weight.55 Though
researchers have not determined the mecha-
nism of action in humans, those who stud-
ied probiotics in rats found that oral inges-
tion of Bifidobacterium infantis resulted in
increased tryptophan, a serotonin
precursor,9 and GABA.56

Despite treatment with multiple antide-
pressants, each with different methods of
action, roughly 20% of patients do not show
improvement in reduction of anxiety or
depressive symptoms.57 The human and
mouse studies cited above indicated that
probiotics normalize cortisol levels, regu-
late the HPA axis and reduce circulating
pro-inflammatory cytokines. These mecha-
nisms suggest probiotic therapies may con-
fer certain benefits over therapeutic drugs.
Advantages include ease of availability,
lower cost, less dependence, and fewer side
effects compared to pharmaceutics.
Regulation of the microflora composition
offers the possibility to improve immune
function, homeostasis, and gut inflamma-
tion.58 Despite numerous studies citing the
benefits of probiotic treatment, their specif-
ic mechanisms of action are often unknown
and understudied, unlike prescription

drugs.59 Thus, dosage becomes an issue, as
the mechanisms and long-term effects have
yet to be studied in a human population.60

Probiotics enhance resistance to infectious
diseases via excretion of antimicrobial com-
ponents and increase the concentration of
anaerobic gram positive bacteria. However,
in some studies, subjects administered pro-
biotics reported fever, headaches, and nau-
sea with increased frequency after a bacter-
ial challenge.61,62 One study indicated that
the probiotics administered in mouse sub-
jects were not sufficient to prevent malef-
fects from a second immune challenge. This
suggests that while probiotics may be help-
ful in the acute phase, they are not a cure-all
in the long term.50 

Prebiotics such as fructo-oligosaccha-
rides and galacto-oligosaccharides are solu-
ble fibers used to stimulate the preexisting
gut microbiota. Additional studies in recent
years have shown that prebiotics confer
similar anxiolytic and antidepressant effects
as probiotics as they also diminish stress-
induced changes to the colonic microbiota
and create stabilized levels of
Bifidobacteria and Lactobacilli popula-
tions.63

Conclusions
The bidirectional link between the

brain, gut, and microbiome has come to the
forefront of the medical research communi-
ty in the past few years. The growing
amount of evidence substantiating this link
indicates it will be a valuable area for future
medical and nutritional practice, and
research. This review demonstrates the
importance of a healthy microbiome, partic-
ularly the gut microbiota, for patients suf-
fering from anxiety and depression, as dys-
biosis and inflammation in the CNS have
been linked as potential causes of mental

Figure 2. B and T cell development. Image created by Megan Clapp and Emily Wilen.
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illness. Of note, studies have shown that
probiotics effectively mitigated anxiety and
depressive symptoms similar to convention-
al prescription medications.7,51,53,54,56

However, several weaknesses are iden-
tified in the course of this selected review.
First, research linking TNF, cytokines, and
other stressors to the pathogenesis of mental
health disorders, particularly anxiety and
depression, is lacking, and thus provides an
area for future research, particularly regard-
ing levels of intestinal bacteria and their
correlation with levels of circulating
cytokines. 

The utility of probiotics is questionable
as no form is currently regulated by the
FDA, including natural sources such as
yogurt, kefir, or sauerkraut. Patients may be
more likely to use these natural sources of
probiotics both due to increased accessibili-
ty as well as the resurgence in food trends of
a return to more ancient food preparation
techniques. Recent research has shown that
the use of fermented foods in diets did con-
fer gastrointestinal and cognitive bene-
fits.64,65 However, until more evidence
behind the use of probiotics as therapy for
anxiety and depressive disorders is avail-
able, probiotics in any form cannot be con-
sidered a reliable therapy to anxiety and
depressive disorders as compared to psychi-
atric medications. Furthermore, gender dif-
ferences as well as comorbidities such as
obesity, lifestyle, and tobacco and alcohol
use may impact the overall benefit of probi-
otics.

Despite the lack of regulations, patients
prescribed mood-altering drugs may benefit
from concomitant use of probiotics. The
dysbiosis created by the prescribed medica-
tions, or resulting from the neurological dis-
turbance itself, may be mitigated by the
introduction of beneficial gut flora in a pro-
biotic form. Ultimately, the question that
needs to be addressed is can probiotics
alone fix the problem, or do they need to be
used with mood stabilizers?

The findings above, coupled with the
recent surge of interest of gut health in the
media, underscore the importance of future
research in understanding the gut flora.
Anxiety and depression are rising global
issues, effective and accessible treatments
would benefit millions of people world-
wide.
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