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Abstract: Lymphoma diagnoses in the US are substantial, with an estimated 89,380 new cases in 2023,
necessitating innovative treatment approaches. Phase 1 clinical trials play a pivotal role in this context.
We developed a binary predictive model to assess trial adherence to expected average durations,
analyzing 1089 completed Phase 1 lymphoma trials from clinicaltrials.gov. Using machine learning,
the Random Forest model demonstrated high efficacy with an accuracy of 0.7248 and an ROC-AUC of
0.7677 for lymphoma trials. The difference in the accuracy level of the Random Forest is statistically
significant compared to the other alternative models, as determined by a 95% confidence interval
on the testing set. Importantly, this model maintained an ROC-AUC of 0.7701 when applied to lung
cancer trials, showcasing its versatility. A key insight is the correlation between higher predicted
probabilities and extended trial durations, offering nuanced insights beyond binary predictions. Our
research contributes to enhanced clinical research planning and potential improvements in patient
outcomes in oncology.

Keywords: trial duration; machine learning prediction; clinical research planning; lymphoma
clinical trials

1. Introduction

In the US, lymphoma has a significant impact on public health. It is estimated that
89,380 new cases will be diagnosed in 2023, ranking it among the top ten most frequently
diagnosed cancers worldwide [1]. Tragically, the 5-year mortality rate for lymphoma
exceeds 25% [1], and the disease is anticipated to claim over 21,080 lives within 2023 [1],
highlighting the urgent need for innovative treatments. Phase 1 clinical trials play a crucial
role in this arena, representing the first phase of human testing for investigational agents
and turning years of lab research into actionable clinical solutions [2]. These trials form
the foundation for later stages that emphasize efficacy and wider patient benefits. Their
significance is clear: without these initial insights, the progression of novel treatments
would be halted.

In this study, we aim to develop a binary predictive model to determine if trials will
align with the average duration derived from our dataset, sourced from clinicaltrials.gov.
Recognizing this benchmark is pivotal for several reasons:

• Resource and Strategic Planning: Predicting trial durations helps ensure optimal
distribution of personnel and funds, minimizing inefficiencies. Furthermore, this
foresight enables organizations to make informed decisions about trial prioritization,
resource allocation, and initiation timelines [3,4];

• Patient Involvement and Safety: estimating trial durations provides patients with clar-
ity on their commitment, which safeguards their well-being and promotes informed
participation [5];
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• Transparent Relations with Regulators: Providing predictions on trial durations,
whether below or above the average, fosters open communication with regulatory
authorities. This strengthens compliance, builds trust, and establishes transparent
relationships among all stakeholders [6].

2. Background

As lymphoma diagnoses increase, precision in predicting Phase 1 lymphoma clini-
cal trial durations has become crucial. Accurate predictions allow for efficient resource
distribution, strategic foresight, enhanced patient participation and safety, and an open
dialogue with regulatory authorities. Various studies, including research from Nature, have
demonstrated that a variety of factors, such as strategic challenges, commercial barriers,
operational setbacks, and unmanageable toxicity, frequently lead to unforeseen delays in
clinical trials [7–9]. Multiple industry studies further emphasize this, noting that nearly
85% of trials experience setbacks [10], highlighting the pressing need for reliable duration
prediction tools or calculators.

In the realm of clinical trial calculators, the predominant focus lies on calculating sam-
ple size (the number of subjects needed for adequate statistical power) [11–13]. However,
there is a notable absence of widely used calculators or applications that provide estimated
clinical trial durations based on enrollment numbers and various trial design variables.
Given the scarcity of research on trial duration estimation, the existing studies often focus
solely on adverse events as an outcome measure to determine duration. This approach over-
looks trials with multiple outcome measures and neglects various non-outcome measure
variables, such as enrollment, trial locations, intervention types, sponsors, and study pat-
terns, all of which collectively influence estimation. For example, LV Rubinstein et al. [14]
used a parametric test based on exponential death time assumptions to provide trial length
calculations for statistical power. However, its heavy reliance on parametric assumptions
and limited consideration of non-exponential death times or other outcome measures
restrict its broad applicability. Furthermore, existing research frequently neglects the in-
tegration of large, actual historical trial datasets to derive duration insights. Camerlingo,
Nunzio et al. [15] developed a formula to determine the minimum trial duration needed to
evaluate glucose control time-in-ranges for desired values. However, for practical use, it
requires extensive real-world experimentation in clinical trials due to its reliance on simu-
lated data from continuous glucose monitoring (GCM). In contrast, our research introduces
a machine learning-based clinical trial duration calculator capable of handling a diverse
array of trial-specific variables and integrating large volumes of actual historical clinical
trials, thereby providing a more robust and comprehensive duration estimation.

Machine learning has shown immense promise in clinical trials for aspects like trial
design, patient recruitment, outcome predictions, and regulatory adherence. A deeper dive
into the existing literature, however, reveals a distinct lack of research on using machine
learning to predict clinical trial durations, especially regarding Phase 1 lymphoma trials.
There are noteworthy machine learning applications in various trial phases, such as using
machine learning to optimize trial design for ARDS patients in ICUs [16], forecasting early
trial terminations [17], and refining trial design to improve success rates [18]. In patient
recruitment, machine learning combined with EHR data and NLP has been employed for
patient eligibility [19] and participant identification [20]. A wealth of studies also exist
on outcome predictions using machine learning, from predicting treatment responses [21]
to forecasting outcomes based on patient profiles [22] to predicting negative outcomes,
with an emphasis on mortality events [23]. In regulatory compliance, machine learning
has been used to automate clinical research classification [24] and recommend regulatory
strategies [6].

However, in this vast landscape, the specific application of machine learning for
clinical trial duration prediction remains largely untapped. One pertinent study used a
gradient-boosted tree-based model on Roche’s dataset to gauge trial efficiency, albeit not
concentrating on duration prediction [4]. Currently, a significant gap exists in applying
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machine learning models for clinical trial duration predictions—a void our research intends
to fill. We are at the forefront of this domain, showcasing how machine learning can
predict clinical trial timeframes. Our study not only addresses a significant gap in the
literature but also stresses the importance of duration prediction in clinical trial planning
and resource allocation. Given the unpredictable nature of continuous outcomes in clinical
research [25–27], our technique leans towards binary prediction. Instead of estimating exact
durations, our model evaluates whether a trial will be shorter or longer than the average
duration derived from the clinicaltrials.gov dataset. This approach aligns with recent
trends in oncology predictions [28–30], presenting several benefits. Notably, the binary
framework is less influenced by outliers, reducing distortions from extreme values [31–34].
By categorizing results into distinct, actionable groups, our model brings clarity and ensures
a balance between practicality and prediction reliability.

Key Contributions:

• Pioneering Work in Duration Prediction: our machine learning model stands as a
trailblazing effort in the domain, bridging the existing gap in duration prediction
applications and establishing benchmarks for future research;

• Diverse Modeling: we extensively reviewed eight machine learning models, highlight-
ing the Random Forest model for its unparalleled efficiency in predicting durations;

• Comprehensive Variable Exploration: our model incorporates varied variables, from
enrollment metrics to study patterns, enhancing its predictive capabilities;

• Insight into Data Volume: beyond mere predictions, we delve into determining the
optimal data volume required for precise forecasting;

• In-Depth Model Probability: Apart from binary predictions, our model associates
higher probabilities with longer average durations, along with a 95% CI. This precision
offers a comprehensive range of potential trial durations, aiding informed decision-
making and strategic planning;

• Broad Applicability: with proven efficacy in lung cancer trials, our model showcases
its potential use across various oncology areas.

3. Materials and Methods
3.1. Dataset

We sourced our dataset from clinicaltrials.gov [35], a prominent global registry for
clinical research studies. Our research focused exclusively on Phase 1 trials related to
‘Lymphoma’ that had started before 2023 and were marked as ‘Completed’. This approach
resulted in a collection of 1231 studies. The decision to exclude trials conducted in 2023
was primarily driven by concerns related to seasonality. Given that we are only halfway
through the year, data from 2023 may not provide a comprehensive understanding of the
seasonal factors affecting trial durations.

For external validation, we gathered data on 907 completed Phase 1 trials related to
‘Lung Cancer’ up to the same reference date. This decision was guided by several consider-
ations. First, clinical trial data for lung cancer studies were sufficiently comprehensive on
clinicaltrials.gov, enabling us to compile a dataset with a comparable level of detail to our
primary lymphoma dataset. Second, lung cancer, as a well-studied and prevalent cancer
type, adds a layer of diversity to the external validation process, enhancing the robustness
and generalizability of our predictive model across different oncological contexts. Last,
the commonalities in trial design, regulatory requirements, and clinical trial endpoints
between lymphoma and lung cancer trials [36,37] make the external validation a relevant
and meaningful test of our model’s performance.

Table 1 provides an overview of the dataset’s columns using an example trial. The
‘Duration’ variable was computed by calculating the time interval between the ‘Start Date’
and the ‘Completion Date’. The average duration of Phase 1 lymphoma trials was found
to be 1788 days, roughly equivalent to 5 years. Subsequently, we established a binary
prediction target based on this 5-year benchmark. The remaining variables in our dataset
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were utilized as predictors for our model. In the dataset, approximately 40% of trials
exceeded this benchmark, while around 60% fell below it.

Table 1. Overview of columns in the Phase 1 lymphoma trial dataset using an example trial.

Column Value

NCT Number NCT02220842

Title

A Safety and Pharmacology Study of Atezolizumab
(MPDL3280A) Administered With Obinutuzumab or

Tazemetostat in Participants With Relapsed/Refractory
Follicular Lymphoma and Diffuse Large B-cell Lymphoma

Acronym

Status Completed

Study Results No Results Available

Conditions Lymphoma

Interventions Drug: Atezolizumab|Drug: Obinutuzumab|Drug:
Tazemetostat

Outcome Measures

Percentage of Participants With Dose Limiting Toxicities
(DLTs)|Recommended Phase 2 Dose (RP2D) of

Atezolizumab|Obinutuzumab Minimum Serum
Concentration (Cmin)|Percentage of Participants With

Adverse Events (AEs) Graded According to the National
Cancer Institute (NCI) Common Terminology Criteria for

Adverse Events version 4.0 (CTCAE v4.0)...

Sponsor/Collaborators Hoffmann-La Roche

Gender All

Age 18 Years and Older (Adult, Older Adult)

Phases Phase 1

Enrollment 96

Funded By Industry

Study Type Interventional

Study Designs
Allocation: Non-Randomized|Intervention Model:

Parallel Assignment|Masking: None (Open
Label)|Primary Purpose: Treatment

Other IDs GO29383|2014-001812-21

Start Date 18 December 2014

Primary Completion Date 21 January 2020

Completion Date 21 January 2020

First Posted 20 August 2014

Results First Posted

Last Update Posted 27 January 2020

Locations

City of Hope National Medical Center, Duarte, California,
United States|Fort Wayne Neurological Center, Fort

Wayne, Indiana, United States|Hackensack University
Medical Center, Hackensack, New Jersey, United States. . .

Study Documents

URL https://ClinicalTrials.gov/show/NCT02220842
(accessed on 25 July 2023)

Note: column ‘Outcome Measures’ and ‘Locations’ shortened due to space constraints.

https://ClinicalTrials.gov/show/NCT02220842
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3.2. Data Preprocessing

To build an appropriate predictive model for Phase 1 lymphoma clinical trial durations,
we conducted data preprocessing. We first removed trials with missing start or completion
dates, reducing the lymphoma dataset from 1231 to 1089 studies. We split this data into 80%
for training and 20% for testing, and we used 5-fold cross-validation for hyperparameter
tuning and model selection. We addressed missing values by imputing the mean for
numerical variables like enrollment in the lymphoma data. Categorical variables with
missing values were treated as a separate category. For the lung cancer dataset, which
served as external validation, we followed a similar process, reducing the dataset from
907 to 840 studies. We imputed missing values in the enrollment variable with the mean
and treated missing values in categorical variables as a separate category.

3.3. Data Exploration and Feature Engineering

Upon analyzing the lymphoma clinical trials dataset, we pinpointed several columns
significantly influencing the clinical trial duration. These include the following:

• Figure 1 illustrates that trials tend to take longer with increased enrollment. For
example, trials with 0–20 enrollees averaged about 1417 days, while those with 61 or
more enrollees extended to 2218 days—roughly 1.6 times longer. This difference was
statistically significant at a 95% confidence level;

• In Figure 2, industry-led trials concluded more quickly than non-industry-led ones.
On average, industry-led trials (510 trials) had a mean duration of 1414 days, notably
shorter than non-industry-led trials with a mean duration of 2118 days across 579 trials.
This difference was statistically significant at a 95% confidence level;

• The number of conditions or interventions in a trial correlates with its duration, as
indicated in Figures 3 and 4. For instance, trials with fewer than three conditions lasted
about 1714 days (Figure 3). Those with more than three conditions had a 215-day
longer mean duration (1929 days), with statistical significance across the three groups
at a 95% confidence level. In Figure 4, trials with more than one intervention, on
average, took 248 days longer to complete than those with only one intervention
(1661 days), a statistically significant difference at 95%;

• Figure 5 shows that the primary purpose significantly affects the trial duration. ‘Treat-
ment’ trials had a mean duration of 1821 days, while trials with other primary purposes
were completed almost two years quicker, with a mean duration of 1145 days. This
difference was statistically significant at a 95% confidence level.
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In columns with substantial textual data, such as ‘Outcome Measures’ and ‘Spon-
sor/Collaborators’, we employed the spaCy library [38] to determine semantic resemblance
between terms. Words with a similarity score surpassing 0.8 were grouped using a Disjoint
Set Union (DSU) approach [39], enhancing the categorization beyond mere string matching.
For example, terms such as ‘adverse events’, ‘adverse reactions’, and ’aes’ all relate to
the ‘Outcome Measures’ category for adverse events. Notable findings from this analysis
segment include the following:

• Figure 6 reveals that trials focusing on adverse events in the ‘Outcome Measures’
column tend to conclude faster. Trials without adverse event measurement had a
mean duration of 1919 days across 716 trials, while those with such measurement
had a mean duration of 1537 days across 373 trials. This difference was statistically
significant at a 95% confidence level;

• In Figure 7, trials indicating the ‘National Cancer Institute (NCI)’ as a sponsor tended to
have longer durations. Trials with NCI sponsorship had a mean duration of 2246 days,
compared to trials without, which had a mean duration of 1648 days. This difference
was statistically significant at a 95% confidence level;

• Figure 8 highlights that the involvement of biological interventions in trials often
results in extended durations, a statistically significant difference at 95%.
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These insights from our exploratory data analysis informed our feature creation for
modeling. Following iterative selection, we incorporated 30 features into our models.
Table 2 below enumerates these features, ranked in descending order of importance, as
determined by Gini Gain [40].
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Table 2. Cont.

Feature Name Explanation

MTD Outcome Measure (Lead) Leading outcome measure is maximally tolerated dose
(true/false)

Radiation Intervention Intervention type includes radiation (true/false)

Tmax Outcome Measure Outcome measure includes time of Cmax (true/false)

Cmax Outcome Measure Outcome measure includes maximum measured
concentration (true/false)

Non-Open Masking Label Trial use non-open masking label (true/false)

Crossover Assignment Patient assignment is crossover (true/false)

3.4. Machine Learning Models and Evaluation Metrics

Using Python 3.9.7, we selected eight distinct machine learning models/classifiers to
predict the duration of lymphoma clinical trials. Our choices were informed using previous
research in oncology clinical trial predictions [4,6,16–24] and the inherent strengths of each
model. These models are Logistic Regression (LR), K-Nearest Neighbor (KNN), Decision
Tree (DT), Random Forest (RF), XGBoost (XGB), Linear Discriminative Analysis (LDA),
Gaussian Naïve Bayes (Gaussian NB), and Multi-Layer Perceptron Classifier (MLP).

Each model underwent a thorough evaluation of the lymphoma dataset. To refine
the models and achieve optimal results, we used the GridSearchCV (GSCV) technique
from the Scikit-Learn library [41]. GSCV effectively helps in hyperparameter tuning by
cross-validating the classifier’s predictions and pinpointing the best parameter combination
for peak performance.

3.4.1. Logistic Regression (LR)

We started with Logistic Regression for its simplicity and clarity. We utilized the
LogisticRegression function from Scikit-Learn’s linear_model library [41]. However, its
linear decision boundary might fall short of capturing complex data relationships.

3.4.2. K-Nearest Neighbors (KNN)

To address the limitations of linearity, we next looked to KNN, an instance-based
learning method that classifies based on data similarity. We implemented KNN using the
KNeighborsClassifier from Scikit-Learn’s neighbors library [41]. Given its computational
intensity, especially with a relatively higher number of features, we sought more compu-
tationally efficient models, leading us to tree-based options, starting with the Decision
Tree (DT).

3.4.3. Decision Tree (DT)

Decision Trees offer a more expressive way of modeling. We implemented the model
using the DecisionTreeClassifier function from Scikit-Learn’s tree library [41]. However,
their susceptibility to overfitting led us to consider ensemble techniques such as Random
Forest and XGBoost.

3.4.4. Random Forest (RF) and XGBoost (XGB)

Random Forests and XGBoost leverage the collective strength of multiple trees. Specif-
ically, Random Forest aggregates trees using bagging, while XGBoost refines predictions
sequentially through a boosting mechanism. We implemented Random Forest using the
RandomForestClassifier from Scikit-Learn’s ensemble library [41] and XGBoost using the
XGBClassifier function from the XGBoost library [42].
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3.4.5. Linear Discriminant Analysis (LDA) and Gaussian Naïve Bayes (Gaussian NB)

Transitioning from discriminative models like Logistic Regression, K-Nearest Neigh-
bors, and tree-based methods, we integrated Linear Discriminant Analysis (LDA) and
Gaussian Naïve Bayes (Gaussian NB) to explore a probabilistic approach.

LDA seeks to maximize class separation by identifying the linear combination of
features that best distinguish between classes. This method presupposes that features
within each class are normally distributed with identical covariance matrices. On the other
hand, Gaussian NB is grounded in Bayes’ theorem, operating under the assumption of
feature independence.

We employed the LinearDiscriminantAnalysis function for LDA and the GaussianNB
function for Gaussian NB, both sourced from Scikit-Learn [41]. Recognizing the stringent
assumptions of these methods, we turned our attention to models renowned for their
flexibility and potential for high accuracy, specifically neural networks.

3.4.6. Multi-Layer Perceptron (MLP)

Concluding our model selection, we turned to the Multi-Layer Perceptron, a neural
network renowned for its ability to model complex relationships without being bound by
strict data assumptions. However, MLP’s “black box” nature makes it less transparent
compared to models like Logistic Regression and Decision Trees. This can hinder its inter-
pretability in critical scenarios. We implemented MLP using Scikit-Learn’s MLPClassifier
from the neural_network library [41].

To assess the effectiveness of our classifiers, we employed established metrics, specif-
ically accuracy, Area Under the Curve (AUC) of the Receiver Operating Characteristic
(ROC), precision, recall, and F1-score. These metrics are grounded in the values of true
positives (TP), false positives (FP), false negatives (FN), and true negatives (TN):

• Accuracy measures the fraction of correct predictions (see Equation (1));
• ROC visually represents classifier performance by plotting recall against the false

positive rate (see Equation (2)) across diverse thresholds. This visual representation
is condensed into a metric via the AUC, a value between 0 and 1, where 1 signifies
flawless classification;

• Precision gauges the reliability of positive classifications, shedding light on the inverse
of the false positive rate (see Equation (3));

• Recall (or sensitivity) denotes the fraction of actual positives correctly identified,
emphasizing the influence of false negatives (see Equation (4));

• F1-score provides a balance between precision and recall, acting as their harmonic
mean (see Equation (5)).

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

False Positive Rate = 1 − TN
TN + FP

=
FP

FP + TN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 Score =
2 × Precision × Recall

Precision + Recall
=

2TP
2TP + FP + FN

(5)

4. Results and Discussion
4.1. Sample Characteristics

In our model for predicting the duration of Phase I clinical trials for lymphoma, we
partitioned our data such that 80% was used for training and validation, employing a 5-fold
cross-validation technique. The remaining 20% was reserved for testing. Table 3 provides a
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detailed breakdown of the main attributes of our datasets, spotlighting the 12 most salient
features identified in Section 3—Data Exploration, for both the training/cross-validation
and testing sets.

Table 3. Key characteristics of training/cross-validation and testing datasets for lymphoma clinical trials.

Characteristics Training/Cross-Validation
Sets (n = 871)

Testing Set
(n = 218)

Percentage of Trials Exceeding 5-Year
Completion Time (Target) 40% 40%

Mean Trial Participant Enrollment 49 50

Percentage of Industry-led Trials 46% 48%

Average Number of Trial Locations 6 6

Average Outcome Measures Count 6 6

Average Medical Conditions Addressed 4 4

Average Interventions per Trial 3 2

Percentage of NCI-Sponsored Trials 23% 24%

Percentage of Trials with AES Outcome Measure 34% 34%

Percentage of Trials with Open-Label Masking 91% 92%

Percentage of Titles Suggesting Efficacy 50% 51%

Percentage of Trials Involving Biological
Interventions 23% 20%

Percentage of Randomly Allocated Patient Trials 24% 27%

The table illustrates the similarities between our training/cross-validation and testing
datasets across various attributes. Notably, both sets have an equivalent distribution of the
target variable, with 40% of trials taking over 5 years to complete. Metrics like Average
Enrollment of Trial Participants and Percentage of Trials Led by Industry show only slight
variations. This uniformity across key characteristics supports the appropriateness of the
data split for model training and testing.

4.2. Machine Learning Classification

Table 4 assesses the prediction capabilities of eight machine learning classifiers using
a 5-fold cross-validation approach. Results were presented as average values within
a standard deviation. While all these metrics hold significance in gauging a model’s
forecasting ability, we primarily focused on accuracy, followed by the ROC-AUC metric.

Both XGBoost (XGB) and Random Forest (RF) demonstrated strong performance
metrics. XGBoost achieved an accuracy of 74.42%, an ROC-AUC score of 78.54%, and
a precision of 70.09%, and Random Forest followed closely with an accuracy of 73.71%
and an ROC-AUC of 77.55%, emphasizing its notable predictive prowess. Although their
average metrics were similar, Random Forest exhibited more variability in parameters
like recall (62.86 ± 9.69%). Logistic Regression (LR) and Linear Discriminant Analysis
(LDA) provided comparable results, with accuracies of 71.18% and 70.72% and respective
ROC-AUC scores of 77.60% and 75.67%. The Multi-Layer Perceptron (MLP) registered
an accuracy of 67.17% and an ROC-AUC of 70.71%. However, its recall’s higher standard
deviation (49.14 ± 9.84%) hinted at potential inconsistencies across runs. Gaussian Naïve
Bayes notably achieved a high recall of 90.86%, but its accuracy is compromised, given its
score of 52.93%. K-Nearest Neighbors (KNN) and Decision Tree (DT) lagged in performance,
indicating potential areas for improvement.
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Table 4. Performance metrics of machine learning classifiers using 5-Fold cross-validation.

Models/Classifier Accuracy ROC-AUC Precision Recall F1-Score

XGBoost (XGB) 0.7442 ± 0.0384 0.7854 ± 0.0389 0.7009 ± 0.0439 0.6286 ± 0.0828 0.6614 ± 0.0633

Random Forest (RF) 0.7371 ± 0.0389 0.7755 ± 0.0418 0.6877 ± 0.0403 0.6286 ± 0.0969 0.6544 ± 0.0667

Logistic Regression (LR) 0.7118 ± 0.0324 0.7760 ± 0.0282 0.6525 ± 0.0487 0.6171 ± 0.0506 0.6323 ± 0.0367

Linear Discriminant
Analysis (LDA) 0.7072 ± 0.0393 0.7567 ± 0.0365 0.6457 ± 0.0545 0.6114 ± 0.0388 0.6272 ± 0.0412

Multi-Layer Perceptron
(MLP) 0.6717 ± 0.0302 0.7071 ± 0.0593 0.6133 ± 0.0423 0.4914 ± 0.0984 0.5414 ± 0.0684

Gaussian Naïve Bayes
(Gaussian NB) 0.5293 ± 0.0169 0.6980 ± 0.0274 0.4571 ± 0.0096 0.9086 ± 0.0194 0.6081 ± 0.0097

K-Nearest Neighbors (KNN) 0.6223 ± 0.0475 0.6487 ± 0.0445 0.5385 ± 0.0762 0.4286 ± 0.0619 0.4786 ± 0.0661

Decision Tree (DT) 0.6464 ± 0.0252 0.6363 ± 0.0317 0.5567 ± 0.0295 0.5771 ± 0.0780 0.5651 ± 0.0502

For the top four models with the highest accuracy and ROC-AUC scores (XGBoost,
Random Forest, Logistic Regression, and Linear Discriminative Analysis), we further
compared their performance on the testing set. As detailed in Table 5, Random Forest
continues to be the top-performing model on the testing set, consistent with its strong
performance in cross-validation. It exhibits the best accuracy, ROC-AUC, and F1-score.
Linear Discriminative Analysis (LDA) has moved to the second position in terms of accuracy
and F1-score, showing robust generalization, possibly due to its assumptions about the
underlying distribution of the data that enable it to derive optimal decision boundaries
between classes [33]. Interestingly, XGBoost, which was the top model in cross-validation,
now has relatively lower accuracy than Random Forest and Linear Discriminative Analysis.
This shift might be attributed to overfitting during cross-validation, where the model could
have captured noise in the training data that did not generalize well. Logistic Regression
maintains its position, showcasing consistent but comparatively lower performance.

Table 5. Comparative performance of top 4 models on lymphoma testing data.

Model/Classifier Accuracy ROC-AUC Precision Recall F1-Score

Random Forest (RF) 0.7248 0.7677 0.675 0.6136 0.6429

Linear Discriminative
Analysis (LDA) 0.6927 0.7319 0.6180 0.6250 0.6215

XGBoost (XGB) 0.6881 0.7574 0.6282 0.5568 0.5904

Logistic Regression (LR) 0.6422 0.7281 0.5581 0.5455 0.5517

To intuitively assess how Random Forest’s accuracy compares with that of Linear
Discriminative Analysis, Logistic Regression, and XGBoost models in clinical trial duration,
we utilized the calibration curve in Figure 9. This curve depicts the percentage of actual
trials lasting over 5 years against the predicted probability of exceeding this duration. All
four top models are compared against the perfectly calibrated line (the diagonal). In the
figure, within the predicted probability range of 0–0.6, all models closely align with the
calibrated line, except for XGBoost. Beyond a predicted probability of 0.6, especially within
the 0.6–0.8 range, all models deviate further. Notably, Random Forest remains the closest
fit among the four. Beyond a predicted probability of 0.8, other models do not return to the
proximity observed in the 0–0.6 range. In contrast, Random Forest strives to return from
deviation and maintains optimal performance, similar to the 0–0.6 range. Furthermore, to
determine whether there is a statistically significant difference in accuracy levels between
Random Forest and the other three models, we conducted chi-square tests. These tests
compared the number of correctly predicted trials using Random Forest with each of the
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other three models individually, as shown in Table 6. The results indicate that all p-values
are less than 0.05, suggesting that the differences in accuracy levels between Random Forest
and the other three models are statistically significant at a 95% confidence interval.
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Table 6. Chi-square test—Random Forest vs. other models on correctly predicted trials (testing set).

Total Lymphoma Trials on
Testing Set

Correctly Predicted Trials
Using Random Forest (RF) Chi-Square Test Results

218 158

Correctly Predicted Trials using Linear
Discriminative Analysis (LDA) 151

p-Value (RF vs. LDA) 1.45 × 10−17

Correctly Predicted Trials using
XGBoost (XGB) 150

p-Value (RF vs. XGB) 4.35 × 10−30

Correctly Predicted Trials using Logistic
Regression (LR) 140

p-Value (RF vs. LR) 2.77 × 10−21

In conclusion, the Random Forest model consistently outperformed in accuracy, ROC-
AUC, and other key metrics on both cross-validation and out-of-sample testing datasets,
and the difference in accuracy levels is statistically significant at a 95% confidence interval.
Thus, we advocate for its adoption as the most reliable model to predict the duration of
phase I lymphoma clinical trials. Table 7 delves into the parameter tuning for this model.
In our grid search for Random Forest, we experimented with tree counts ranging from 50
to 500; max depths of none, 10, 20, and 30; min sample splits of 2, 5, and 10; and explored
both bootstrap options. The best-performing configuration utilized a max depth of 20, a
min samples split of 10, 100 trees, and no bootstrap.
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Table 7. Parameter tuning results for the optimal random forest model.

Model/Classifier Optimal Parameters

Random Forest (RF) max depth: 20; min sample split: 10; number of trees:
100; bootstrap: false; and seed: 42

With the final trained Random Forest model, we forecasted the probability of a Phase
1 trial exceeding a duration of five years on the lymphoma testing set. Figure 10 displays
the average duration of Phase 1 lymphoma trials across 5-quantile probability groups,
with associated 95% confidence intervals. The data show an increasing trend: the average
duration rises with higher predicted probabilities. Specifically, the average duration is
around 3.12 years (or 1140 days) for the first quantile group and approximately 6.44 years
(or 2352 days) for the fifth quantile group. Furthermore, for all probability groups, the
upper bounds of the 95% CI correlate with higher predicted probabilities, while the lower
bounds follow the inverse pattern. This enhanced representation provides more than
just a binary outcome, offering stakeholders a detailed range of potential trial durations
complete with confidence intervals. Such precision aids in better decision making and
strategic planning, turning uncertainties into clear, actionable insights for efficient clinical
trial management. Table 8 delineates the corresponding probability range by quantile
groups based on the results from the lymphoma testing set.
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Table 8. Probability quantile groups with corresponding average duration and 95% confidence
intervals.

Probability
Quantile Group

Probability
Range

Average
Duration

Lower Bound
(95% CI)

Upper Bound
(95% CI)

Q1 0 to 0.1624 1140 days 935 days 1345 days
Q2 0.1624 to 0.3039 1541 days 1235 days 1847 days
Q3 0.3039 to 0.4697 1799 days 1557 days 2041 days
Q4 0.4697 to 0.6291 2150 days 1730 days 2569 days
Q5 0.6291 to 1 2352 days 2005 days 2699 days
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4.3. Random Forest Model Validation
4.3.1. Impact of Varying Training Data Sizes on Model Performance

In Figure 11, we illustrate the performance trajectory of our random forest model on
lymphoma testing data with increasing training sizes. An interesting trend emerges: while
there is a positive correlation between training size and accuracy, the incremental gains
in accuracy diminish as the dataset size increases. For instance, the leap in accuracy from
20% to 60% training size is notable, but after the 60% mark, the growth rate tapers. By the
time we reach our full set of 871 trials (highlighted by the red dot), the model achieves
an accuracy peak of 0.7248. It is noteworthy that even though the highest ROC-AUC is
recorded at 60% data usage, the difference in comparison to the full dataset is slim. This
subtle increase in accuracy, coupled with the broadened data spectrum when using all
871 trials, assures us of a well-generalized model. The current analysis underscores our
confidence in the 871-trial dataset; additional data from clinicaltrials.gov might refine the
model further, but the likelihood of a significant boost in efficiency is marginal.
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4.3.2. External Validation Using Phase 1 Lung Cancer Trial Data

In the external validation process, we evaluated the efficacy of eight machine learning
models on Phase 1 lung cancer trial data. Figure 12 illustrates the performance metrics
for each model. The Random Forest (RF) classifier demonstrated the highest performance,
with an accuracy of 0.7405 and an ROC-AUC of 0.7701. Logistic Regression (LR) and Linear
Discriminant Analysis (LDA) followed, registering accuracy rates of 0.7321 and 0.7310 and
ROC-AUC values of 0.7671 and 0.7647, respectively. Despite its recognized robustness in
a variety of healthcare applications [43–46], XGBoost (XGB) was ranked fourth, with an
accuracy of 0.725 and an ROC-AUC of 0.7632. The other models displayed relatively lower
performance metrics.

Utilizing the final trained Random Forest model, similar to our approach with the
lymphoma dataset, we predicted the probability of a Phase 1 lung cancer trial extending
beyond five years. Figure 13 presents the average duration of Phase 1 lymphoma trials,
grouped by 5-quantile probability, accompanied by 95% confidence intervals. There was a
clear trend: trials with higher predicted probabilities tended to have longer average dura-
tions. This trend, observed in both lymphoma and lung cancer trials, not only supplements
the simple binary output regarding whether the trial is likely to be below or beyond 5 years
but also provides essential insights for stakeholders in planning and resource allocation for
clinical trial research.
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Considering the cross-validation and testing results from the lymphoma dataset,
the consistent performance of the Random Forest model was evident. These outcomes
further justify our selection of Random Forest as the optimal model for forecasting Phase 1
lymphoma clinical trials. The Random Forest classifier’s consistency across both datasets
suggests its potential general applicability for Phase 1 clinical trial predictions.
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Limitations

This study, while providing valuable insights, comes with certain limitations that
merit consideration. Primarily, our dataset was exclusively extracted from clinicaltrials.gov,
which, although a comprehensive platform, does not cover all Phase 1 lymphoma trials
worldwide. This may introduce biases or omit nuances evident in trials recorded in other
databases or those from different regions. Furthermore, the decision to eliminate trials
with missing start or completion dates, while methodologically sound, could inadvertently
exclude particular patterns or outliers that are relevant [47]. Employing mean imputation
as a method to address missing values, while a common practice, has its limitations as
it can reduce the variance and might influence the predictive power of our models [48].
The external validation with the lung cancer data strengthens our findings, but it also
emphasizes the need for further validations across various cancer types to understand
the comprehensive applicability of our model. Finally, while the Random Forest model
demonstrated consistency across the datasets, the inherent variability and intricacies of
clinical trials, even within the same phase or disease type, could impact its generalizability.
Enhancing the model’s general applicability might be achieved by incorporating more
diverse datasets, adding domain-specific features, or refining preprocessing strategies to
account for these complexities.

5. Conclusions

In our analysis of Phase 1 lymphoma clinical trials from clinicaltrials.gov, we pin-
pointed 30 significant factors affecting trial durations. For instance, trials with larger
enrollments usually had extended durations, while industry-led efforts concluded more
promptly. Trials linked to the ‘National Cancer Institute (NCI)’ or those examining a more
extensive range of conditions or interventions generally took longer. Conversely, trials
concentrating on adverse event measurements ended more rapidly.

Of the eight machine learning models we evaluated, the Random Forest classifier
stood out as the most effective. It achieved an accuracy of 0.7248 and an ROC-AUC score
of 0.7677 on the lymphoma trial testing dataset. Adjusting the training data size revealed
that accuracy gains began to level off after using 60% of the data. This indicates that our
chosen dataset size is close to optimal for this analysis. Notably, when tested on Phase
1 lung cancer trial data, the classifier achieved an accuracy of 0.7405 and an ROC-AUC
of 0.7701, underscoring its adaptability beyond just lymphoma trials. This points to its
potential for predicting durations for a broader set of Phase 1 clinical trials.

Going deeper, we carried out a thorough analysis of average durations by predicted
probability groups. This additional exploration provided stakeholders with more pre-
cise duration estimates, accompanied by a 95% confidence interval for each group. This
information is invaluable for strategic planning, resource allocation, and risk mitigation.

By predicting Phase 1 lymphoma trial durations, distinguishing between longer and
shorter trials, and providing a 95% confidence interval for the duration range, our model
addresses critical aspects of clinical trial management, aids in strategic planning, and has
the potential to enhance patient outcomes. Clinical trial delays can incur costs ranging from
USD 600,000 to USD 8 million daily [49]. Our model plays a role in addressing these poten-
tial costs by contributing to efficient trial resource allocation and management, the saved
cost of which could be redirected toward further drug development, ultimately enhancing
patient outcomes. Moreover, considering the 10% failure rate in clinical drug development
due to factors like poor strategic planning [8], our research plays a pivotal role in aiding
resource management and strategic planning through duration predictions, potentially
improving success rates. While acknowledging the complexities of drug development, our
research offers a tangible step toward more efficient, cost-effective, and successful Phase 1
clinical trials, ultimately benefiting patients and advancing oncology research.
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