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Abstract: Tuberculosis (TB), a respiratory disease caused by Mycobacterium tuberculosis (Mtb), is a
significant cause of mortality worldwide. The lung, a breeding ground for Mtb, was once thought to
be a sterile environment, but has now been found to host its own profile of microbes. These microbes
are critical in the development of the host immune system and can produce metabolites that aid in
host defense against various pathogens. Mtb infection as well as antibiotics can shift the microbial
profile, causing dysbiosis and dampening the host immune response. Additionally, increasing cases
of drug resistant TB have impacted the success rates of the traditional therapies of isoniazid, rifampin,
pyrazinamide, and ethambutol. Recent years have produced tremendous research into the human
microbiome and its role in contributing to or attenuating disease processes. Potential treatments
aimed at altering the gut-lung bacterial axis may offer promising results against drug resistant TB
and help mitigate the effects of TB.
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1. Introduction to Tuberculosis: Incidence and Significance of the Problem

Tuberculosis (TB) is a highly infectious airborne disease caused by the bacilli Mycobac-
terium tuberculosis (Mtb). It ranks as the thirteenth leading cause of death worldwide and the
second leading cause of death from a singular infectious agent behind COVID-19 [1]. Ac-
cording to the Global Tuberculosis Report 2022 by the World Health Organization (WHO),
an estimated 10.6 million people globally were ill with TB in 2021, reflecting a 4.5% increase
compared to that in 2020 [1]. Additionally, the incidence of TB cases increased from 2020
to 2021 by roughly 3.6% [1]. Of all TB cases in 2021, 6.7% of cases were co-morbid with
acquired immune deficiency syndrome (AIDS), which thereby presents as a risk factor to TB
acquisition along with factors such as poverty and indoor air pollution [1–3]. To emphasize
the great impact TB has globally, notable geographic hotspots of the 2021 TB cases include
South-East Asia (45%), Africa (23%), and the Western Pacific (18%) [1]. Death numbers
have grown as well, with 1.6 million deaths occurring in 2021 in comparison to 1.5 million
deaths in 2020 [1]. TB therefore continues to pose a significant health risk worldwide.

During the COVID-19 pandemic, TB resources were difficult to access by affected
persons. The WHO reported decreases in TB diagnoses during the pandemic, hinting at
the resultant underlying increase in undiagnosed TB cases. The WHO’s End TB strategy,
adopted by the World Health Assembly in 2014, aims to decrease TB incidence by 80%
by 2023. However, the undiagnosed TB cases as well as a rise in drug resistant TB cases
complicates this goal.

The current regime for TB treatment includes combinations of rifampicin, isoniazid,
pyrazinamide, and ethambutol; however, medication adherence is complicated by long
durations of treatment varying from 3 months to 9 months [4–6]. TB program campaigns
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additionally face difficulties with inadequate human resources, disease monitoring, case
reporting, and drug supplies [6]. Multi-drug resistant (MDR) and extensively drug resistant
(XDR) TB strains pose an added threat, with a 6.4% increase in MDR/XDR-TB cases between
2020 to 2021 [1]. Drug resistance expectantly impacts treatment success; in 2019, treatment
success for drug resistant strains was 60%, which pales in comparison to an overall TB
treatment success rate of 86% [1]. There is currently only one licensed vaccine for TB disease
prevention, the Bacillus Calmette-Guérin (BCG) vaccine. However, the BCG vaccine is
generally used and recommended only in children; therefore, there is no licensed TB vaccine
for adults [1].

TB currently ranks among the top three threats to global public health alongside
malaria and AIDS [7]. With the growing number of TB cases and fatalities, drug resistant
strains, and barriers to treatment programs, more research is needed in available and
sustainable treatment options as well as preventative medicine [7]. Therapies targeting the
human microbiome may present as a potential avenue to attenuating TB mortality as the
gut microbiome can modulate the host immune system both locally and systemically [8].

2. Host Immune Response against Mycobacterium tuberculosis

To further understand how the microbiome can impact TB progression, we must first
review the pathogenesis of and host immune response against Mtb. The pathogenesis
begins when respiratory droplets from an individual with active TB are transmitted via
inhalation of airborne particles that travel down the respiratory tract and enter the lung
alveoli. Mtb bacilli are then phagocytosed by alveolar macrophages and are able to multiply
intracellularly, evading the innate immune response. The alveolar macrophages then die
and the bacteria are released. This dissemination of Mtb elicits a host adaptive immune
response [9]. In a study by Lu et al., CD8+ T cells from lung samples of Mtb-infected major
histocompatibility complex (MHC)-II knockout (KO) mice and Mtb-infected wildtype (WT)
mice were analyzed [10]. MHC-II KO mice displayed higher Mtb burden in the lungs and
died shortly after infection compared to their controls [10]. In addition to demonstrating
how compromised CD8+ T cell function contributes to decreased immunity, Lu et al. also
showed that CD4+ T cells are imperative in controlling Mtb infection and promoting host
survival by enhancing the function of CD8+ T cells [10]. Additionally, other studies have
illustrated that the cytokines IFN-γ and TNF-α produced by T lymphocytes are crucial in
controlling Mtb infection by inducing pathogen uptake by macrophages and killing via
reactive nitrogen intermediates [11,12]. However, the activation of other cytokines such as
IFN-α, IFN-β, IL-1β, IL-6, and IL-12 may contribute to the inflammation and destruction of
lung tissue that is seen in TB patients [13,14].

One of the hallmarks of pulmonary TB in humans is the formation of a granuloma, a
defensive inflammatory mechanism by which the body can sequester pathogens (Figure 1).
The formation of a granuloma in addition to the surrounding influx of macrophages and
other immune cells such as T lymphocytes, B lymphocytes, neutrophils, dendritic cells,
and fibroblasts occur shortly after initial Mtb infection to help fight off the pathogen [15].
Additionally, T helper (Th)17 cells play a protective role through secreting IL-17, signaling
for further chemokine secretion, and recruiting neutrophil to the infection site [16,17]. Pre-
vious research has shown that mice deficient in IL-17 were unable to progress granulomas
from nascent to mature [18]. This suggests that IL-17 plays a crucial role in granuloma
maturation and defending against mycobacterial infections as granulomas play a critical
role in preventing the lymphatic and vascular dissemination of Mtb to nearby pulmonary
lymph nodes and other extrapulmonary tissues [18,19]. However, although the alveolar
macrophages and granulomas work to protect the host from Mtb, the containment of
dormant bacteria within intracellular compartments allow Mtb to persist in the latent stage
of infection for decades [20,21].
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Figure 1. A granuloma, the hallmark of TB, is an aggregation of fibroblasts, macrophages, lympho-
cytes, and other immune cells that limits spread of Mycobacterium tuberculosis and provides an acidic 
environment optimal for proliferation. 

Primary TB is defined as the clinical manifestations upon initial contact with the Mtb 
organism. Before entering the latent stage of infection, primary TB is characterized by the 
formation of a Ghon complex localized to the middle portion of the lungs. Latent TB arises 
when the Ghon complex progresses into a latent stage [22]. In latent TB infection, the af-
fected individual is a carrier of Mtb antigens within their system; however, there is no 
manifestation of clinical symptoms [23]. In active TB, the most common physical findings 
are a chronic cough, hemoptysis, weight loss, low-grade fever, and night sweats [22]. 
Whether secondary TB is caused by reinfection or by reactivation, the clinical presentation 
is more severe than primary TB in the degree of tissue reaction and hypersensitivity [24]. 

Active TB may develop from reinfection with Mtb or from reactivation of a latent TB 
infection [9,25]. In reactivated TB, host immune cells fail to suppress the active replication 
of Mtb, and the disease manifests as host tissue becomes damaged by excessive inflam-
matory responses that cause necrosis and cavitation [26,27]. There are many risk factors 
that promote the occurrence of reactivated TB, including older age, malnutrition, and un-
derlying medical conditions that compromise the host immune system. Cancer, diabetes 
mellitus (DM), and immunosuppressive therapies are all conditions that lead to an im-
munocompromised host [25,28]. Among all risk factors, human immunodeficiency virus 
(HIV) infection is the most prominent condition leading to reactivated TB due to depletion 
of CD4+ T cells and their protective effects [29]. In a study of patients with active TB, pa-
tients with latent TB, patients who had previously recovered from TB, and healthy con-
trols, it was discovered that there were significantly decreased levels of T lymphocytes in 
patients with active TB [30]. This suggests that depleted T cells lead to a more vulnerable 
host and progressing TB disease course. 

Because immune function is pliable and susceptible to changes by the human micro-
biota, insight into the effects of dysbiosis and inflammatory processes can help to develop 
more effective Mtb treatments and therapies in the future. 

3. The Human Microbiome 
The gut microbiota is a complex system that consists of trillions of commensal micro-

organisms that mainly reside in the large intestine of the gastrointestinal tract [31]. The 
collective genes of the microorganisms, which include fungi, archaea, parasites, viruses, 
bacteria, etc., are referred to as the ‘microbiome’. More specifically, the gut bacterial flora 
is composed of species from seven main different phyla: Bacteroidetes, Firmicutes, Ac-
tinobacteria, Fusobacteria, Verrucomicrobia, Cyanobacteria, and Proteobacteria. How-
ever, a vast majority of these bacteria belong to the Bacteroidetes and Firmicutes phyla, 

Figure 1. A granuloma, the hallmark of TB, is an aggregation of fibroblasts, macrophages, lympho-
cytes, and other immune cells that limits spread of Mycobacterium tuberculosis and provides an acidic
environment optimal for proliferation.

Primary TB is defined as the clinical manifestations upon initial contact with the Mtb
organism. Before entering the latent stage of infection, primary TB is characterized by
the formation of a Ghon complex localized to the middle portion of the lungs. Latent TB
arises when the Ghon complex progresses into a latent stage [22]. In latent TB infection, the
affected individual is a carrier of Mtb antigens within their system; however, there is no
manifestation of clinical symptoms [23]. In active TB, the most common physical findings
are a chronic cough, hemoptysis, weight loss, low-grade fever, and night sweats [22].
Whether secondary TB is caused by reinfection or by reactivation, the clinical presentation
is more severe than primary TB in the degree of tissue reaction and hypersensitivity [24].

Active TB may develop from reinfection with Mtb or from reactivation of a latent
TB infection [9,25]. In reactivated TB, host immune cells fail to suppress the active repli-
cation of Mtb, and the disease manifests as host tissue becomes damaged by excessive
inflammatory responses that cause necrosis and cavitation [26,27]. There are many risk
factors that promote the occurrence of reactivated TB, including older age, malnutrition,
and underlying medical conditions that compromise the host immune system. Cancer,
diabetes mellitus (DM), and immunosuppressive therapies are all conditions that lead to
an immunocompromised host [25,28]. Among all risk factors, human immunodeficiency
virus (HIV) infection is the most prominent condition leading to reactivated TB due to
depletion of CD4+ T cells and their protective effects [29]. In a study of patients with active
TB, patients with latent TB, patients who had previously recovered from TB, and healthy
controls, it was discovered that there were significantly decreased levels of T lymphocytes
in patients with active TB [30]. This suggests that depleted T cells lead to a more vulnerable
host and progressing TB disease course.

Because immune function is pliable and susceptible to changes by the human micro-
biota, insight into the effects of dysbiosis and inflammatory processes can help to develop
more effective Mtb treatments and therapies in the future.

3. The Human Microbiome

The gut microbiota is a complex system that consists of trillions of commensal mi-
croorganisms that mainly reside in the large intestine of the gastrointestinal tract [31]. The
collective genes of the microorganisms, which include fungi, archaea, parasites, viruses,
bacteria, etc., are referred to as the ‘microbiome’. More specifically, the gut bacterial flora is
composed of species from seven main different phyla: Bacteroidetes, Firmicutes, Actinobac-
teria, Fusobacteria, Verrucomicrobia, Cyanobacteria, and Proteobacteria. However, a vast
majority of these bacteria belong to the Bacteroidetes and Firmicutes phyla, which emerging
studies have considered as a positive predictive marker for health and disease [31–35].
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Recent studies suggest that the intestinal microbiome evolves in parallel with the
host throughout life, with most changes occurring in the first few years of life [36]. This
instability in gut diversity eventually subsides and resembles an adult’s microbiome after
3–5 years of age [31]. These compositional changes remain the same throughout adulthood
unless influenced by genetic and environmental factors such as long-term dietary habits,
living environment, antibiotic use, etc. (Figure 2) [35,36]. Therefore, the human microbiome
is susceptible to both beneficial and harmful changes throughout life.
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Figure 2. The human microbiome is dynamic and influenced by factors such as stress, infection,
hygiene, age, genetics, geographics, etc.

Current data in gut microbiome science has now determined that diet is the primary
driver of microbial diversity, which has direct impacts on adaptive and innate immunities
of the host [35–37]. Poor diet leads to imbalances in the microbiome, or dysbiosis, which can
lead to increased susceptibility to opportunistic infections and non-communicable chronic
diseases (NCCDs) [37,38]. Dysbiosis compromises the host’s immune system due to the
microbiome’s involvement in mechanisms that include nutrient absorption and processing,
inflammatory pathways, and metabolite production [37–39].

The immunomodulatory effects of gut microbiota can occur locally and can also be
disseminated to other organs, including the lungs. There is increased evidence that there
is a microbial interaction between the respiratory and gastrointestinal tracts, which is
now referred to as the ‘gut-lung axis’ [35,36,40]. This axis is a bi-directional system where
changes in intestinal microbiota can cause greater susceptibility to pulmonary infections,
and pulmonary infections have been seen to modulate microbial diversity [35,36,40]. Here,
we will discuss the scientific evidence that shows possible associations between gut micro-
biota homeostasis and Mtb pathogenesis, therapy, health outcomes, and post-treatment
outcomes.

Studies have found that (1) Mtb infection shifts and lowers microbial diversity, result-
ing in decreased Firmicutes, Bacteroidetes, and short-chain fatty acid (SCFA) producing
bacteria as well as increased Actinobacteria and Proteobacteria [41–45]; (2) there is in-
creased susceptibility to re-infection of Mtb due to depleted antigens for T cells in the gut
microbiota [41,46,47]; and (3) prolonged antibiotic treatment disrupts microbiota composi-
tion [40,41,48,49].

4. The Microbiome on Immunity

The microbiome plays a critical role in constructing the host immune system. Uncon-
ventional T cells, such as mucosal-associated invariant T cells (MAIT), that are present in
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mucosal tissue in the lungs and gut play a role in the defense and control of Mtb infec-
tion [43,46]. The development and maturation of these unconventional T cells depend on
the presence of the host microbiota [43,46]. Mice with antibiotic-altered microbiota as well
as controlled mice without antibiotic alterations were infected by Mtb in a study conducted
by Dumas et al. and a decline in MAIT cell quantity and a consequent decrease in IL-17A
production were observed in mice with antibiotic-altered microbiota [46]. IL-17 secretion
during mycobacterial infections has been associated with anti-Mtb immunity due to sig-
naling for further chemokine secretion, recruiting neutrophils to the site of infection, and
assisting in granuloma maturation to control mycobacterial infection [16–18]. It was found
that early Mtb lung colonization in mice was linked to impaired MAIT cell functions and
microbiota dysbiosis [46]. However, dysbiosis attenuation through inoculating microbiota
in the antibiotic-treated mice positively affected MAIT cell proliferation [46]. This highlights
the importance of a healthy microbiota and the role for potential microbial-altering thera-
pies for proper pulmonary MAIT cell function and early control of Mtb growth in the lungs
through IL-17A production [46]. It has also been shown that induction of MAIT cell ex-
pression through the administration of 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil
(5-OP-RU), a microbial riboflavin-derived antigen, reduces Mtb loads during chronic pul-
monary infection, reinforcing the importance of MAIT cells in and suggesting an additional
potential strategy for TB control [43]. However, Th17 and IL-17 may only be effective in an
initial response to Mtb as their long-term presence is correlated with inducing autoimmune
disorders [16]. Thus, further research in this area is needed to understand the role of specific
microbiota species in mediating the protection against Mtb infection through MAIT cells, to
examine if the prolonged production of IL-17 has any effect on the susceptibility of patients
to Mtb, and to determine to what extent does this response begin to negatively impact the
disease process rather than control it.

Furthermore, Dumas et al. showed that the dysbiosis of mice with early Mtb lung
colonization was characterized by reduced Bacteroidetes and Firmicutes and increased
Proteobacteria [46]. Cytophaga-flavobacter-bacteriodetes bacteria (CFB) is associated with
the differentiation of Th17 cells and favors this process in the small intestines more than
in other parts of the GI system. Antibiotic treatments can inhibit the growth of CFBs and
potentially confer Mtb susceptibility [50]. A study conducted by Yang et al. explores the
role of Bacteroides fragilis, which was found to be decreased in mice infected with Mtb,
in influencing expression of a type of non-coding RNA (ncRNA) called long non-coding
RNA (lncRNA) [51]. Non-coding RNAs have been implicated in modulating host-microbe
interaction and related pathologies like obesity [52]. Various lncRNAs were described as
having roles in regulating inflammatory mediators [53], and it was found by Yang et al. that
gut dysbiosis disturbed proper immune functioning, leading to repressed cytokines such
as IFN-γ [51]. Additionally, B. fragilis induces increased levels of lncRNA, which in turn
increases the expression of IFN-γ, a crucial cytokine in Mtb resistance [51]. Furthermore,
B. fragilis plays a role in the regulation of Th1 and Th2 balance, another major component
of the immune response to Mtb infection [54]. In mice treated with orally administered
B. fragilis, there was a decrease in tissue pathology and bacterial load in lungs, further
highlighting the protective effects of increased lncRNA induced by B. fragilis [51]. B. fragilis
can therefore positively influence host immune function to protect against Mtb.

Additionally, evidence suggests that Heliobacter pylori infection in humans and non-
human primates is associated with immune protection against Mtb [55]. In an analysis
conducted by Perry et al. of 339 human subjects, individuals with concurrent infection of
latent TB and H. pylori had one and a half times higher production of IFN-γ than individuals
with latent TB alone [55]. H. pylori may offer further protection by increasing immune
Th1 response, which is recruited in response to Mtb infection [55,56]. Furthermore, Perry
et al. evaluated cynomolgus macaques and found H. pylori-infected macaques showed a
lower likelihood of progression to active TB than those not infected with H. pylori [55]. In
humans, latent to active TB progression was less likely in H. pylori-infected individuals
than in non-H. pylori-infected individuals within two years of exposure [55]. More research



Clin. Pract. 2024, 14 203

is therefore needed into how H. pylori attenuates TB progression and its potential role as a
therapeutic remedy. The gut bacterial flora plays an important role in modulating immune
function, and insight into the effects of dysbiosis on inflammatory processes can help to
develop more effective Mtb treatments in the future.

5. Short-Chain Fatty Acids (SCFA)

SCFAs, particularly acetate, propionate, and butyrate, are major products of gut
microbial fermentation [57]. SCFAs are transported into host cells and bind to G-protein
coupled receptors (GPCR) on epithelial and immune cells and produce anti-inflammatory
cytokines [31,37,58,59]. Butyrate, which can act in the lungs by increasing the phagocytic
function of dendritic cells, has been associated with anti-inflammatory properties during
Mtb infections by causing a decrease in the proinflammatory cytokines and inhibiting host
response to the infection [60–63]. Butyrate may also be converted to Phenylbutyrate (PBA),
which has a synergistic effect with vitamin D to inhibit Mtb growth [64]. This synergistic
relationship upregulates LL-37, an antimicrobial peptide that increases the autophagy
and intracellular killing of Mtb in host macrophages [62,65,66]. A study by Koh et al.
hypothesizes the important regulatory role of SCFAs in T cell differentiation and function
due to the high expression of SCFA receptors in immune cells; however, more research is
required to determine the specific mechanism and role of SCFAs in TB therapy [59].

Interestingly, one study performed by Hu et al. analyzing stool samples of 46 TB
patients and 31 healthy controls found that 9 out of 23 bacterial species enriched in healthy
controls compared to TB patients were SCFA-producing bacteria such as Roseburia in-
ulinivorans, Bifidobacterium adolescentis, Ruminococcus obeum, etc. [45,67]. Additionally, the
butyrate-producing Lachnospiraceae and Ruminococcaceae families of the Firmicutes phylum
were found to be decreased in individuals infected with Mtb [62]. Overall, TB patients
saw a decrease in SCFA-producing bacteria in five pathways related to SFCA fermentation,
thereby affecting inflammatory response and intestinal epithelial barrier strength [45,67].
Conversely, a study of fecal samples from TB patients by Maji et al. found SCFA-producers
to increase in Mtb patients [68]. Given the anti-inflammatory roles of SCFAs and the poten-
tial for disease attenuation, additional research is needed to elucidate the impact of Mtb on
SCFA-producers to better predict disease course and guide therapeutic regimens.

Furthermore, it is well established that DM is associated with an increased risk of
Mtb infection [69]. High fat content diets and obesity, which can contribute to the pro-
gression of Type 2 DM, are associated with a decrease in Firmicutes and an increase in
Bacteroidetes [61,70]. Many Firmicutes are involved in the production of SFCAs from
the fermentation of insoluble fibers. In patients with Type 2 DM, SCFA-producing firmi-
cutes such as Faecalibacterium prausnitzii are decreased [60]. The absence of these species
was found to be associated with an increased incidence of low-grade inflammation in pa-
tients [60]. Additionally, the lack of Lactobacillaceae from high fat content diets is correlated
with a strong inflammatory response [70]. The increased susceptibility to Mtb infection in
patients with Type 2 DM may therefore be attributed to decreases in Firmicutes and the
resultant decreases in SCFAs and increases in inflammation. Microbial alterations may
therefore prove to be a reliable treatment option through enriching bacteria that amplify
SCFA production and attenuate inflammatory processes to ease susceptibility in this patient
population.

6. Effects of Mycobacterium tuberculosis on Bacterial Flora Composition

The microbiome can be altered by age, diet, antibiotics, disease, etc. [32,41,71–74].
Evidence suggests that upon infection by Mtb, the microbiomes in animal models and
humans are susceptible to changes such as decreases in bacterial diversity as compared to
healthy non-infected controls [33,41,44,45,54,67,71]. This change in bacterial composition
could be attributed to physiological changes in the gut landscape such as inflammation
and pH shifts, which may drive the out-competition of commensal strains by pathogenic
strains [75,76]. This will subsequently alter metabolite production and immune func-
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tion, which may further drive bacterial imbalance through enhancing inflammation and
pathogenic growths (Figure 3) [77,78].
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producing bacteria, and commensals and symbionts. In Mycobacterium tuberculosis infected diseased
lungs, there is a decreased immune response, increased pathogens and inflammation, and overall
dysbiosis.

6.1. The Gut

In a study conducted by Luo et al., stool samples from 37 pulmonary TB patients
and 20 healthy controls were obtained [41]. New TB patients were defined as subjects
with newly developed pulmonary TB receiving less than or equal to one week of anti-TB
treatment; recurrent TB patients were defined as subjects who had been previously treated
and declared as clear prior to becoming bacteriologically positive again [41]. Individuals
with a history of probiotic or antibiotic treatment for more than one week in the previous
eight weeks were excluded [41]. Analysis of stool samples from all experimental groups
demonstrated a decrease in the relative abundance of Bacteroidetes and to a lesser extent,
Firmicutes, in TB patients as compared to healthy controls. TB patients also had an increase
in Proteobacteria and Actinobacteria as compared to controls [41–45]. However, a greater
increase in gut Proteobacteria was observed in new TB patients compared to recurrent TB
patients [41]. This difference connects to studies from Sommer and Mori, who established
that if the epithelial barrier is disturbed, the lipopolysaccharide component of the cell wall
of the phylum Proteobacteria leads to activation of pro-inflammatory macrophages that
trigger an inflammatory response both locally and at distant sites [71,79]. Additionally,
evidence from animal models have shown that mice with gut colonization by Helicobacter
hepaticus show difficulty controlling pulmonary mycobacterial growth when compared to
non-infected mice [80].

In various studies, observed decreases were also seen in Prevotella, Bacteriodes, and the
order of Clostridiales while significant increases were observed in Escherichia and Strepto-
coccus in Mtb groups as compared to healthy controls [41–45,68]. Luo et al. additionally
demonstrated that in individuals with recurrent Mtb infections, decreased Prevotella was
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linked to decreased CD4+ cells; in contrast, individuals with new Mtb infections had an
increase in Prevotella that was positively associated with increased CD4+ cells [41].

Overall, Mtb induces a shift in the human bacterial profile, with notable decreases
in Bacteroidetes and Firmicutes and increases in Proteobacteria. In order to develop
microbiome-targeted therapies, more research is needed to elucidate additional relation-
ships between Mtb and specific changes in bacterial composition as well as the roles of
these changes in disease pathogenesis or attenuation.

6.2. The Lungs

Furthermore, recent evidence has shown that the lungs, once thought to be a sterile
environment, is indeed an environment home to its own microbiome with differing micro-
bial populations dependent upon location within the lungs and microbial immigration and
elimination [74,81].

In healthy individuals, airways are predominantly populated by the phyla Firmi-
cutes, Bacteroidetes, Actinobacteria, and Proteobacteria, with the common genera being
Prevotella, Streptococcus, Fusobacteria, Haemophilus, and Veillonella [34,43,82–86]. In a study
by Vázquez-Pérez et al. which utilized bronchoalveolar lavage (BAL) to compare the
microbiota of six patients with active TB, six with pneumonia, and ten healthy controls,
TB and pneumonia patients were found to have decreased diversity [85]. This study, in
addition to others, found that in TB patients compared to healthy controls, bacterial taxa
in the Actinobacteria phylum were found to be increased while taxa in the Firmicutes
and Bacteroidetes phyla were found to be decreased [81,83,85,86]. Proteobacteria were
also found to be increased in TB patients [85,87]; however, the opposite was observed as
well [86]. In contrast, recent studies involving a meta-analysis and a multicenter analysis
found no significant difference in diversity between pulmonary TB patients and healthy
controls in the lower respiratory tract [81,83,88]. These discrepancies may be due to the
lower biomass of the lung microbiome, which presents as a barrier to its accurate anal-
ysis [42,43], as well as limitations in data collection due to possible contamination with
oropharyngeal flora [34,36,74,84,85,89–93]. More research is therefore needed to elucidate
the changes Mtb imposes on microbial diversity.

Human studies of lung microbiomes using BAL have found that the dominant genus
in TB patients was Cupriavidus compared to Streptococcus in healthy controls [85,89,94].
Studies using BAL fluid analysis show reduced microbial diversity and richness in TB
patients compared to controls with unique genera found in each group [85,95]. A human
study performed by Hu et al. analyzing BAL fluid found decreased alpha diversity in TB
patients as well as significant differences in beta diversity between TB patients and healthy
controls [96]. Mtb negative patients were observed to have enriched Streptococcus, Prevotella,
Nesseria, Bifidobacterium, and Selenomonas compared to Mtb positive patients, which mirrors
a healthy lung composition [96]. Lung microbiota containing oral commensals such as
Prevotella, Veillonella, and Streptococcus lead to higher concentrations of metabolites such as
arachidonic acid and pro-inflammatory phenotype characterized by the upregulation of
IL-17 producing Th17 lymphocytes [97]. Thus, decreased microbial flora diversity in TB
patients may be associated with altered and impaired immunity.

There is a growing body of evidence demonstrating the bidirectional interplay between
the gut microbiome and lung microbiome, termed the gut-lung axis [32,34,43,98], and it is
clear that Mtb infection has a dynamic impact on the microbiome. However, improvements
in sampling technology and additional human studies must be performed to reliably
elucidate the changes that occur within the human microbiome.

While the composition of the microbiome can contribute to disease alleviation, it
can also potentially increase the risk of Mtb infection and hinder an individual’s ability
to combat the disease effectively. It is widely acknowledged that the microbiota of TB
patients differs from that of healthy individuals in terms of diversity, evenness, and abun-
dance [99,100]. However, more research is necessary to comprehensively comprehend the
modifications that can be made to the microbiome through various treatment regimens or
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dietary changes. These adjustments could potentially influence the growth of beneficial
bacterial populations, reducing the risk of infection or aiding in the recovery from Mtb.

7. Antibiotic Treatments on Microbiome

Long-term use of antibiotics can cause dysbiosis of the gut microbiota through de-
stroying both beneficial and pathogenic bacterial flora and by altering competition between
species [48,101]. This microbial shift, which can last for up to three months or more after
treatment course depending on medication type and duration, can confer susceptibility to
Mtb and influence TB disease course by impairing host immune function [48].

In a study by Khan et al., mice were pre-treated with antibiotics and afterwards infected
with Mtb while another group of mice was infected with Mtb and then post-treated with
the same antibiotics; plus there was also a healthy control group and a group with Mtb-
infection but no antibiotic treatment [47]. It was found that both groups of mice that received
antibiotics experienced a higher Mtb burden in the lungs than the healthy and Mtb-without-
antibiotics groups [47]. After five days, mice were more susceptible to Mtb infection after
having antibiotics administered due to suppression of Th1 immunity [47]. Additionally,
mice pre- and post- treated with antibiotics had larger and more numerous granulomas as
compared to the Mtb-without-antibiotics mice group [47]. Before being sacrificed, some
mice from both antibiotic treatment groups were given therapeutic fecal transplantation
(FT) orally [47]. It was found that these mice with FT treatment had significantly less
bacterial load in the lungs than their counterparts who did not receive FT [47]. Furthermore,
according to a different study by Yang et al., the use of broad-spectrum antibiotic treatment
increased susceptibility to Mtb and increased pulmonary inflammatory responses in Mtb-
infected mice due to decreased B. Fragilis and lncRNA downregulation [49]. These studies
suggest that microbial dysbiosis induced by antibiotics negatively impacts Mtb infection
and TB disease course; however, partial microbial restoration with FT may present as a
potential therapeutic option to aid in the fight against TB.

In a study conducted by Wipperman et al., individuals with Mtb treated for 6 months
with isoniazid, rifampin, pyrazinamide, and ethambutol had significant decreases in the
species Ruminococcus, Eubacterium, Lactobacillus, and Bacteroides, as well as an increase in
Erysipeloclostridium and Prevotella. The Ruminococcus species plays a role in peripheral
cytokine production, which includes IL-1 and IFN-γ. The Bifidobacterium species, a sym-
biotic bacteria found in the lamina propria of the small intestines, is found to increase
Th17 response [48,102,103]. This suggests that the perturbations caused by Mtb treatment
antibiotics have significant and long-lasting effects on immune responses [48].

Additionally, patients previously infected with Mtb are at an increased risk of re-
infection than patients who have never been infected, as described in a study by Verver
et al. [104]. In total, 612 patients who were reported TB positive between 1993–1998 were
followed until 2021, and it was found that TB incidence in individuals previously success-
fully treated for TB was four times that of new TB cases. This could possibly be attributed
to changes in gut bacterial composition and the resultant impact on host immune function.
In a study by Luo et al., patients with recurring Mtb infections were found to have a
significant difference in microbiota diversity than in patients with a new Mtb infection [41].
This alteration, potentially attributable to antibiotic treatment-induced bacterial shifts,
could therefore impact and disturb peripheral immunity, increasing likelihood for rein-
fection [48]. Wu et al. conducted an analysis of sputum samples and throat swabs from
25 patients with new TB infections, including 20 who were cured after therapy, 30 recurrent
TB patients who were declared cured prior to becoming bacteriologically positive again,
20 treatment failure patients who were smear positive after 5 months or more of treatment,
and 20 healthy controls [105]. This study describes the abundance of the Pseudomonas
genus in recurrent and treatment failure TB patients compared to new TB patients and
healthy controls [105]. Pseudomonas is established to have a role in negatively contributing
to disease processes in conditions such as cystic fibrosis and chronic obstructive pulmonary
disease (COPD) [106,107]. The genera Treponema and Atopobium were also less abundant
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in recurrent TB patients than new TB patients and healthy controls [105]. Additionally,
patients with recurrent TB infection had lower abundance of Prevotella compared to the
other groups [41,105]. As described previously, Prevotella positively impacts metabolite
concentration and immune function; therefore, its lesser abundance may contribute to
compromised immunological function [41,97]. This implies that disruption in a balanced
bacterial flora composition may pose as a risk factor for recurring TB infection.

There is sufficient evidence to suggest antibiotic treatments and previous Mtb infection
lead to dysbiosis and susceptibility to Mtb, but further research into what particular changes
in bacterial composition predisposes to Mtb reinfection is important for preventing and
developing new treatment options for long-lasting protection against Mtb.

8. Future Therapies with Mycobacterium tuberculosis

Traditional medicine aims to alter a biochemical pathway involved in disease processes
to restore normal function. Medical advances are opening the horizon for new and innova-
tive treatment methods that might have been overlooked simply due to a lack of proper
technology. Microbiome alteration and modification is one of many promising treatment
options for chronic diseases, aging, neurodegenerative diseases, TB, and many more.

The microbiome itself, through FT and diet alterations, can represent potential inter-
ventions to improve TB management and treatment. A longitudinal study performed by
Wastyk et al. (2021) monitored microbiome diversity and immune status among healthy
subjects who consumed either high-fiber or high-fermented foods for 10 weeks. Participants
with the high-fermented food diet displayed increased species diversity and decreased in-
flammatory markers [37]. Additionally, Khan et al. notes how FT resulted in lower bacterial
load in Mtb-infected mice that were treated with antibiotics compared to Mtb-infected mice
that were not treated with antibiotics [47]. Recalling the gut-lung axis, high-fermented diets
and FT offer potential avenues for TB therapy through increasing gut-protective bacteria
abundance and anti-inflammatory mediators. This may therefore help restore the balance
of commensal and pathogenic bacteria and positively influence metabolite production as
well as host immune function (Figure 4). Furthermore, Yang et al. found that B. fragilis oral
administration enhanced the expression of lncRNA-CGB which in turn promoted anti-TB
immunity. This suggests that medically induced promotion of protective bacteria in the
colon presents a promising venture for the development of Mtb-resistant hosts. The gut-
lung axis has been implicated as a potential therapeutic target in disease courses; however,
the underlying mechanism by which microbiota may impact TB outcomes is not clear [49].
More research is thus needed to elucidate the relationship between the microbiome and
Mtb disease progression and immunity.

Targeting the microbiome may also provide relief and management for a variety of
other diseases. Aging and neurodegenerative diseases are conditions that have potential
to be addressed using microbiome-targeted therapies. Gut microbes may accelerate the
development of neurodegenerative diseases by eliciting autoimmunity and producing
metabolites; hence, gut microbes can be modulated to alleviate neurodegenerative dis-
eases [108]. Based on available research, SCFAs may affect the brain through direct humoral
effects, indirect hormonal effects, immune pathways, and neural pathways, and many
psychological functions through interaction with G-protein coupled receptors or histone
deacetylation [109]. According to Ho et al., in vitro selected SCFAs including butyric acid,
valeric acid, and propionic acid inhibited amyloid beta aggregations, suggesting the po-
tential use of SCFAs for treating Alzheimer’s Disease patients. Further studies need to be
conducted to discern the effects of SCFAs on other neurodegenerative diseases including
Parkinson’s and Huntington’s Disease [108]. Future studies need to focus on the utility of
gut microbiome modification as a potential source of aging and neurodegenerative disease
modification.
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However, altering the gut microbiota as a therapeutic remedy is not without con-
sequences. In a case study described by DeFilipp et al., the death of a patient through
acquiring drug resistant Escherichia coli from FT therapy was described, and other com-
plications such as ulcerative colitis flares and bacteremia have been reported [110–112].
Additionally, the use of probiotics and FT may result in abdominal bloating, abdominal
distension, diarrhea, gas, and even brain fog [112,113]. Probiotics, in particular, are consid-
ered as foods or as dietary supplements rather than as drugs and are therefore subject to
less stringent regulations. Lack of cohesiveness in safety, efficacy, and quality may pose as
an additional hurdle to treatment success [114]. More consideration and caution should
also be taken in certain populations prior to therapy initiation, notably in the immuno-
compromised and newborns because they may be at higher risk of developing adverse
effects due to reduced abilities to clear microbiota [114]. Although this does not cover
the full breadth of risks associated with microbe-altering treatments, the advantages and
disadvantages must be further explored to minimize hazards and maximize safety while
offering long-lasting protection against Mtb.

Considerable efforts are currently focused on understanding the nature of microbiome
development and its effects on human health outcomes, most importantly the microbiome-
molecular interactions and its complex mechanism of altering human pathophysiology.
With technological advancements, additional calcification will be offered on the nature
of human microbiome-pathophysiology interactions. Interventions focused on altering
molecular-microbiome interactions will open new horizons and adventures in the field of
medicine.
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