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Abstract: The success of artificial intelligence depends on whether it can penetrate the boundaries of
evidence-based medicine, the lack of policies, and the resistance of medical professionals to its use.
The failure of digital health to meet expectations requires rethinking some of the challenges faced. We
discuss some of the most significant challenges faced by patients, physicians, payers, pharmaceutical
companies, and health systems in the digital world. The goal of healthcare systems is to improve
outcomes. Assisting in diagnosing, collecting data, and simplifying processes is a “nice to have” tool,
but it is not essential. Many of these systems have yet to be shown to improve outcomes. Current
outcome-based expectations and economic constraints make “nice to have,” “assists,” and “ease
processes” insufficient. Complex biological systems are defined by their inherent disorder, bounded
by dynamic boundaries, as described by the constrained disorder principle (CDP). It provides a
platform for correcting systems’ malfunctions by regulating their degree of variability. A CDP-based
second-generation artificial intelligence system provides solutions to some challenges digital health
faces. Therapeutic interventions are held to improve outcomes with these systems. In addition to
improving clinically meaningful endpoints, CDP-based second-generation algorithms ensure patient
and physician engagement and reduce the health system’s costs.
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1. Introduction

Artificial intelligence (AI) is still expected to influence healthcare delivery and the
practice of medicine [1]. Despite the hype and attention around it and the rapid growth of
digital technologies, the involvement of patients, clinicians, the insurance industry, and
medicine regulators still needs to be higher]. The Valley of Death (VoD) is a challenge
entrepreneurs, business owners, technology experts, innovators, and inventors must con-
sider [2]. It reflects a series of challenges facing many companies in the digital world as
the hype of the last decade seems to be over [2]. The “no evidence, no implementation–no
implementation, no evidence” paradox is often related to the digital health field. The lack
of evidence on how these systems may impact health outcomes, health systems efficiencies,
and cost-effectiveness of service delivery is a significant challenge [3].

Digital health systems differ from other digital systems because patients do not ap-
proach health care voluntarily but because they are forced to. The challenge of imple-
menting mandatory instead of “nice to have” systems poses a significant barrier to their
implementation. Even though people in the field are beginning to believe that digital health
has not met its expectations, that does not mean that it does not have a place; instead, it
means rethinking some of the challenges. Whether AI succeeds in medicine and healthcare
depends on its ability to penetrate the boundaries of evidence-based medicine, the lack of
policies, and the reluctance of medical professionals to use it [4–7].
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This paper discusses several challenges facing the digital field and describes using
second-generation AI systems, which can answer some of them. Our paper emphasizes the
need for mandatory platforms to improve outcomes rather than nice-to-have tools.

2. Uncertainty in the Healthcare Sector: Digital Health Has Failed to
Meet Expectations

Uncertainty underlies the healthcare sector [8,9]. Patients sense there is no easy way
to tap into the vast knowledge of healthcare services [10,11]. Healthcare is expensive, feels
impersonal and corporate, and confronts people with multiple options and choices they
need to prepare for [12]. The uncertainty is particularly pronounced in digital health, where
many solutions still need to live up to their initial promise. Despite significant investments
and efforts to implement digital technologies in healthcare, many solutions have yet to
deliver the expected results [13]. Technological challenges, organizational barriers, and
cultural resistance to change contribute to the failure of digital health to reach its expected
potential [14]. A lack of education about the capabilities of digital medicine, and the
added administrative burden that came with the early digitization of healthcare processes,
contributed to physician burnout [15–17]. There is also fear that AI may eventually replace
physicians [18]. The lack of a legal framework defining liability in adopting or rejecting
algorithm recommendations leaves doctors vulnerable to legal consequences when using
AI [19].

The healthcare community is repeatedly excited by the hope of providing better care
through effective technology adoption [7,20–24]. There is no denying that digital health
has not been delivered, and digital health has not transformed the health system. More
healthcare intelligent technology (IT) companies have gone bankrupt in the past five years
than in two decades before, and 98% of digital health startups have failed to survive [25,26].
Corporations are shutting down digital health labs, staunching investments in digital
health, and consolidating digital health conferences, and governments are re-evaluating
the funding regimes for such initiatives [27]. Digital health is yet to witness a large-scale
adoption that could match the hope created about it [28,29].

Clinically robust, more inclusive, and better-personalized services are needed, using a
marketplace model that incentivizes lower costs and better matching services with patients’
needs [30].

3. Digital Health Trends over the Last Decade: First-Generation Systems

Many digital systems aim to achieve stand-alone digital interventions. To achieve
this goal, therapeutic interventions must be integrated with digital systems, and drugs
must complement digital-first interventions. Digital solutions are often grouped based on
the potential risk to patients into solutions that improve system efficiency: measurable
patient outcome benefit; mobile systems that inform or monitor and encourage change and
self-management; and clinical decision support (CDS), and prediction models, that guide
treatment, actively monitor, diagnose, and support treatment [7,31,32].

First-generation digital health tools were expected to resolve long-standing healthcare
access and treatment inequalities in low- and middle-income countries [33]. However,
many of these expectations were not met [34,35]. Expert systems can help diagnose medical
conditions based on a patient’s symptoms and other information. As a result of the
patient’s symptoms and other factors, the system would use a knowledge base of rules
and information about different medical conditions to make a diagnosis. Moreover, they
include systems that can assist with interpreting medical images, such as X-rays and MRIs,
and systems that can analyze large amounts of data, such as electronic health records.

Monitoring is also part of the first-generation AI usage in medicine. Early detection of
atrial fibrillation was one of the first uses of AI in medicine. Smartphone-based electrocar-
diogram (ECG) monitoring and detecting atrial fibrillation are regulatory approved [36].
While wearable and portable ECG technologies have helped detect atrial fibrillation, they
have limitations, such as a high rate of false positives due to movement artifacts and
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difficulty in adoption among elderly patients at higher risk [37]. With continuous glucose
monitoring, people with diabetes can monitor their blood sugar levels in real-time. The
FDA approved the Guardian glucose monitoring system. Sugar IQ is an app that helps
users better prevent low blood sugar episodes based on repeated measurements [38], such
as seizure detection with an alarm sent to close relatives and physicians [39]. AI-driven
diagnostics perform cardiac ultrasound imaging without specialized training and systems
that assist in radiology and pathology image interpretations [40–42]. Digital systems are
proposed for improving precision medicine, such as matching genetic mutations found in
tumor samples with patterns found in genetic data and medical records of patients [43,44].
The treatment can be personalized as a result.

Wearable biosensors can detect multiple cardiovascular parameters and multianalyte
such as lactate, glucose, and electrolytes [45,46]. The application of health-tracking reward
programs by insurance companies encourages using wearable health technology [47]. Deci-
sion support systems using signal and image processing improve diagnosing diseases in
pathology and radiology [48]; telemedicine screening in ophthalmology assists in screening
for glaucoma, diabetic retinopathies, and retinopathy of prematurity [49]. Autism and
myocardial infarctions are also handled by telemedicine [50,51].

Risk stratification and prediction are also possible with this system [52,53], such
as predicting the decline of glomerular filtration rate in patients with polycystic kidney
disease [54] and risk stratification for the progression of IgA nephropathy [55]; and pre-
dicting outcomes in lower gastrointestinal bleeding [56], inflammatory bowel disease [57],
esophageal cancer [58], and metastasis in colorectal cancer [59]. They can also be used
for interpreting pulmonary function tests [60], processing images from endoscopy and
ultrasound detecting abnormal structures in colonoscopy [61], and automate tedious, labor-
intensive tasks, such as typing on keyboards and electronic records.

Telemedicine is used for follow-ups to reduce the cost of patients’ accommodation in
hospitals, providing access to doctors in rural areas [62]. It enables the implementation
of health information systems considering countries’ context, needs, vulnerabilities, and
priorities [33]. Automated tools can fill gaps in trained healthcare workforce availability,
simplify clinical workflows and assist in overcoming the lack of professionals [63]. In
low-resource rural settings, the blockchain tracks supply chains in medication deliveries
from pharmaceutical companies to hospitals and patients [64]. Thus, digital tools reduce in-
equalities in under-resourced neighborhoods, which are essential for promoting innovation
and knowledge generation in low- and middle-income countries [33,65].

Using digital systems, treatment plans can be designed, and evidence-based treatment
options provided by analyzing structured and unstructured data in medical records can be
explored [66]. AI systems combine data from medical records with clinical expertise and
research papers to suggest a treatment plan [4,67–69]. Using AI, a triage tool can identify
high-risk patients and indicate their need for critical care early [70,71]. AI systems are used
to facilitate drug development [72].

Virtual reality (VR)-based devices provide a virtual digital picture, while augmented
reality (AR) results from integrating information or graphical elements into the user’s
environment in real time [73]. Mixed reality (MR), which combines AR and VR, improves
the effectiveness of medical education and physician performance [74]. AR and VR are
used to rehabilitate post-stroke and posttraumatic stress disorder [75].

The COVID-19 pandemic provided an opportunity to improve the collection and
management of data to inform decision-making, screening, disease surveillance, and
monitoring [76,77]. Digital health-assisted healthcare systems provide means for prevention
and primary care [76,78]. Digital screening for COVID-19 decreased the number of visits to
emergency departments [79]. Telemedicine for distance consultation and health gadgets,
like pulse oximetry, were used in the COVID-19 pandemic [80,81].

Over the last decade, artificial intelligence has been used to analyze quantifiable data
and perform highly repetitive tasks in healthcare [4]. Medical records can be collected,
stored, and tracked digitally [82]. AI can improve in-person and online consultations
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using a patient’s medical history and common medical knowledge. A patient reports their
symptoms through the app, which checks them against a database of diseases using speech
recognition and offers suggestions [4,83,84]. As a virtual nurse, AI can assist patients with
monitoring their health or managing diseases between doctor visits, providing health
assistance and medication management [85]. Patients with chronic diseases can benefit
from customized follow-up care, and treatment adherence is expected to increase [4,86–88].

Several smaller countries, such as South Korea and Estonia, have implemented digital
health solutions, but their impact on the global population is small [89]. With the imple-
mentation of effective telemedicine and digital health record projects, the National Health
Service (NHS) in England and Kaiser Permanente attempt to implement digital systems on
a mass scale [90].

First-generation AI has had some success in the medical field, but its abilities are
limited, and it cannot adapt to new situations or learn from its mistakes. Modern AI
systems, including second-generation and beyond, are more flexible and can learn and
adapt over time, which could make them more useful in medicine. To provide high-quality
patient care, digital systems must provide a holistic approach that uses robust data and
personalized parameters relevant to their healthcare needs [91].

Besides the direct application of artificial intelligence to medical data, generative AI,
such as generative pre-trained transformers (GPT), is being introduced to enhance the
precision, productivity, and clinical outcomes of patients [92]. Technologies like BERT
(Bidirectional Encoder Representations from Transformers) and GPT comprise advanced
natural language processing models with remarkable capabilities in interpreting and gener-
ating human-like text. Integrating BERT and GPT into digital health strategies may assist
in information retrieval, patient–physician communication, and clinical decision-making.
By leveraging their contextual understanding, these AI models can help physicians and
patients sift through vast medical literature, decode complex terminology, and make in-
formed choices about healthcare options [93–96]. In ophthalmology and radiology, various
ways have been investigated to use ChatGPT-4 in research, medical education, and support
for clinical decision-making [97]. There are, however, some limitations and risks associated
with the current use of these systems [98]. GPT-like models are limited by the lack of
domain expertise, the need to rely on the quality of the input data, the inability to detect
errors, and the lack of understanding of ethical issues. Despite their ability to generate
coherent and grammatically correct text, GPT-like models may lack the nuance and context
that a human expert in the field would provide [98].

4. Challenges in Healthcare Systems That Need to Be Accounted for by
Digital Systems

Healthcare markets are undergoing significant changes, and uncertainty, ambigu-
ity, and complexity keeps increasing [99]. Healthcare systems worldwide are becoming
unsustainable, and technology is asked to improve them [99–101], therefore the cost of
care increases, including labor costs [102]. The staff shortage in healthcare systems is
estimated to be 18 M by 2030 [103]. Reduced numbers of physicians are expected in many
countries [104]. GPs have less than 15 min per patient, and 40% of emergency department
visits are marked unnecessary [105]. Patient expectation increases and satisfaction in health-
care have been the lowest since 1997 [106]. Treatment must be tailored to the patient, and
providers often fail to establish trust in the system.

The aging of the population means an increasing burden on healthcare services [107].
Diagnosis of several rare diseases takes 4–9 years [108]. Chronic conditions significantly
burden healthcare systems, with 50% of GP appointments being for long-term condi-
tions [109,110]. In total, 27% of health spending is on preventable illnesses [111]. There is
low trust in pharma companies and their motives [112].

Pharma companies, payers, and health providers hesitate to use digital systems [113].
Though they “talk about it,” they do not know how to implement these systems in a way
that increases profits.
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Health systems are conservative; however, the digital health world must respond
fast to these challenges [114]. Changing processes require flexibility and adaptability and
are often associated with costs [115]. Technology advances exponentially, but humans
are linear, making it difficult to adapt to new systems. The narrative must shift from e-
health/telemedicine to fitness devices, machine learning, artificial intelligence, blockchain,
and automation [62,116,117]. Most healthcare providers fail to provide whole-person care.
A patient-outcome-centered approach is more likely to succeed [118,119]. Automation
is expected to reduce errors in healthcare and increase safety, while providing equity in
care [120].

The following are a few challenges in developing a patient-tailored dynamic algorithm
for diagnosis and treatment.

4.1. Digital Health’s Data-Related Challenges with Machine Learning

Digital health relies extensively on mobile health, telemedicine, and various smart
devices to collect human health data [78]. Even so, “big data” failed to translate into
profitable products. Using machine learning (ML) in digital health poses several data-
related challenges [121–126]. To use ML effectively, data must be high quality and complete.
Nevertheless, digital health data can be challenging to collect and incomplete or noisy.
When digital health data come from multiple sources, such as electronic health records,
wearables, and mobile apps, heterogeneity and complexity can result. An ML model
requires annotation and labeling of data. Particularly in digital health, where data may
be complex and diverse, it can be time-consuming and labor-intensive. In terms of re-
sources and infrastructure, storing and managing large amounts of digital health data can
be challenging.

Potential algorithmic biases can occur if the data quality is unsatisfactory [127]. For AI
to excel at tasks, it needs access to high-quality data [4,69,128]. Over the last decade, nu-
merous systems have been associated with biases that evolve from the data type used [129].
Many current ML systems are based on existing data, not looking for relevant data [130,131].
It is common for algorithms to be trained using data from tertiary settings instead of pri-
mary care, which does not represent mild diseases well. It can have clinically significant
effects, such as inflated case fatality estimates [132]. Overfitting training datasets and
unforeseen errors from incidental variations or artifacts in input data can lead to bias
in the algorithm’s output [133]. The availability of real-world health data instead of the
momentary snapshots seen in hospitals and clinics is mandatory for reforming disease
management [134].

ML learns from historical data, and those underrepresented in these data sets may
receive inaccurate diagnoses, so real-world data validation is crucial [132]. The population
bias results from a focus on common presentations involving a solid predisposition toward
training sub-populations [127,135,136]. Most data focus on subpopulations with limited
ethnicity, such as white males, western populations with high income and literacy, and
do not apply to many other subjects [127]. Algorithms often discriminate against women,
minorities, other cultures, and ideologies. As such, algorithms learn from the data they
are fed, and AI programmers must know about the issue of bias in algorithms to actively
fight against it by tailoring them [137]. The information needs to account for differences
in conditions in healthcare systems and how people are treated [100,138]. Building equi-
table sociodemographic representation in data repositories, gender, expertise, and clinical
specialties is crucial in ameliorating health inequities [135]. There is a need to minimize
dependence on trusted third parties or data movement [139]. When designing algorithms
and introducing them into clinical practice, the principles of equity should be incorporated
to ensure that the output does not cause harm to patients [33].

The democratization of data and care are mandatory [140]. Increasing amounts of
data are being generated, which can be hard to account for, and interoperability requires
sharing data and collaboration, which can be costly and require adaptability [141]. Data
standardization, data access, overcoming biases due to limited datasets, efficient algorithm
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deployment, and the need for data collaboration while keeping costs low are all barriers to
scalable digital health [33]. More data is often unnecessary to improve its quality [142,143].
EMR (electronic medical records) are more than what may be required, and only some
data and interactions are necessary [144]. Eighty percent of data remains silent as, in
many cases, it is hard to take the data to the last mile toward the patient [145]. To provide
meaningful information, the data must be translated into precision health [91]. It is possible
for vulnerabilities, such as adversarial attacks and a lack of tools to regulate the quality of
information and cybersecurity, to affect results negatively.

Commonly used systems focus on means of single points and are less accountable
for the dynamicity of biological systems [146]. Using big data ignores the n = 1 concept,
attempting to implement individual conclusions made from large populations, which may
result in a bias that affects the treatment of patients [146–148].

4.2. Patients and Physicians Face Challenges in Using Digital Systems

Most digital systems need to engage patients or physicians. In addition, physicians are
reluctant to use ML platforms because patients ignore them [69,149]. Despite expectations,
healthcare players still needed to adopt digital strategies. Providers must convince patients
of the benefits of using a new system, so explainable AI is crucial. For most patients and
providers, the system must be relevant to the moment rather than the future. Innovations
are accepted at different levels by end users [150,151]. The challenge of attitude comes from
changing mindsets. For a system to be used for a long time, the user must want to use it.

It is possible that these systems need to be better understood or trusted, especially
if they are perceived as complex or unfamiliar. Patients and physicians may only accept
AI if they fully understand how it works and are sure about its reliability and accuracy.
With physicians already having varying technology literacy levels, frustrations may be
added as physicians learn how to incorporate and utilize AI platforms while struggling
with existing technologies such as EMR [152,153]. Physician burnout can be exacerbated
by understanding how AI algorithms work. As a result of AI, there are concerns about
the potential for errors or biases and the possibility that these systems replace human
interaction and support. It is particularly relevant for patients who may be concerned about
the accuracy and reliability of AI-based diagnoses or treatments [154,155], and how these
systems may undermine healthcare professionals’ autonomy and judgment [156].

Augmented intelligence implies the AI’s assistive role by enhancing human intel-
ligence rather than replacing it [1,157]. In addition, it refers to combining the unique
capabilities of human experts with AI to provide better care [4]. Medical professionals
make decisions using data obtained with technologies they understand [158]. An explain-
able AI is crucial to gaining trust in AI-based algorithms [158,159]. New technologies tend
to be accepted by physicians if they add to their knowledge of diagnosis and treatment,
increase income, and save time by allowing them to do more in their practice. Knowledge,
money, and time are the underlying benefits of investing in digital health [69,160,161].

Usability testing examines whether specified users can achieve their intended use
effectively and efficiently [162,163]. The VoD often occurs during the clinical translation
stage of digital tools due to issues with AI performance, generalizability, black boxes, and
explainability [33].

A patient should be involved in the highest decision-making level when designing
algorithms for medical purposes to ensure their needs and recommendations are imple-
mented [4,164]. Overall, 75% of consumers want a more personalized experience [165,166].
Balancing technology with real people is needed.

GPT and BERT models lack domain-specific medical knowledge and may generate
plausible-sounding yet medically inaccurate information. Integrating medical expertise
into these models’ training and fine-tuning processes is essential for reliable medical
applications. Furthermore, medical language is highly technical and filled with domain-
specific jargon. GPT and BERT may struggle to handle the linguistic complexity and diverse
terminology in medical literature and patient records [167].
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Patients and medical professionals need time and resources to trust AI with medical
diagnoses, support medical decision-making, or design therapies [4]. Trust is associated
with a system’s performance and ability to improve outcomes. Scaling innovations for
increasing adoption by clinician- and patient-mandate large investments is a significant
challenge [168,169].

4.3. Challenges Related to Ethics and Law

Liability needs to be resolved if AI systems cause errors or adverse outcomes. Who
is responsible for the consequences if an AI system provides an incorrect diagnosis or
treatment recommendation? Several parties are involved, including the developers of the
AI system, the healthcare providers who use the system, and the affected patients [168,169].
If an algorithm misses a diagnosis that a physician accepted, the consensus is that the
professional is liable if the tool was misused [170]. In other cases, the liability falls back
on the creators and the companies behind them [4]. With AI and ML, human doctors are
subjected to confirmation bias. The system often tends to reproduce doctors’ errors, thus
strengthening their mistakes [171,172].

Due to legal concerns, data with personal identifiers may not always be distinguishable
from fully anonymous data. If the data provider does not trust the potential recipient, they
may be reluctant to share their data. Official guidelines on data sharing may be absent or
unclear, making it difficult to determine how to balance data accessibility with the need to
protect privacy and intellectual, financial, and time investments.

GPT- or BERT-generated information might inadvertently lead to incorrect diagnoses,
inappropriate treatment recommendations, or miscommunication between healthcare
providers and patients [167,173].

Fairness in digital applications requires ethical considerations. A fair selection pro-
cess considers differences in race, gender, demographic disparities, disability, and other
factors [33]. There may also be ethical concerns, as public health agencies may disagree with
data requestors about the risks and benefits of sharing data. Additionally, data producers
may feel they need more credit or benefit in transit, where they share their data, while data
users may benefit from academic credit and career advancement [174].

It is challenging to own and access data generated by AI systems. It may need to
be clarified who owns and has access to the data. There may also be concerns about the
privacy and security of this data, as it often contains sensitive personal information [175].
The COVID-19 pandemic revealed the need for data sharing and for evaluation and ethical
aspects to be developed in the emerging field of digital healthcare, such as consent and
transparency regarding what data are collected, and which third parties can access patient
data [78,176].

In many cases, it has been proven that individual profiles can still be traced back
even if data is anonymized by institutions [177]. Ethical challenges, such as user consent,
are significant in health digitalization [178]. Data governance is another challenge, and
governments must set up policies and standards for data governance [179].

4.4. Challenges Related to Healthcare Providers and Pharmaceutical Companies

Digital solution evaluation and adoption requires collective efforts from multiple
parties, such as health authorities, healthcare providers, manufacturers, small and medium-
sized enterprises (SMEs), and multinational corporations (MNCs) [7]. More giant corpora-
tions have more resources to develop evidence, but are equally limited by time and have
much hesitancy to use digital platforms [4,180]. It can be challenging to justify investments
into expensive and time-consuming clinical studies for early stage solutions for internal
budget allocation. The evidence published today may reflect a product that has been up-
dated and refined multiple times since investigations typically take three years. Sales and
manufacturing investments are more tangible for companies, with a more predictable re-
turn on investment than clinical studies [7,181]. Researchers may not be willing to conduct
studies to evaluate digital solutions, which require different settings and capabilities and
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whose outputs involve benefits on the operational and cost level, and therefore, indirectly,
patient outcome versus a drug that improves patient outcome is a challenge [182].

4.5. Cost-Increase Challenges in Healthcare

The cost-effectiveness and sustainability of digital solutions are significant challenges
for implementing these systems [78,183,184]. AI systems pose a significant barrier to
implementation in most countries due to their burden on healthcare systems [185]. In
parallel, there is a need for value-based health care in low-income places [186].

Implementing AI systems in healthcare requires a significant initial investment, includ-
ing the costs of acquiring or developing the technology, training staff, and integrating the
systems with existing information technology infrastructure. It increases costs in the short
term [187]. AI systems require ongoing maintenance and support, which incurs additional
costs. Software updates, hardware repairs, staff training, and data storage and processing
may all be necessary to ensure the smooth operation of AI systems [188,189]. Complying
with relevant laws and regulations, such as HIPAA, involves additional costs, such as legal
fees and registration fines.

Digital platforms are asked to assist in treating more patients with the same personnel
and require readiness of local infrastructures such as clinical services, equipment, treatment
modalities, IT systems, telecommunication network, and cost of AI platforms [190,191].
Resource limitations, workforce, and infrastructure are presently significant barriers to the
translation of benefits of digital technologies to improve public health measures, particu-
larly in low- to middle-income countries [192–194]. Most payers and healthcare systems do
not justify adding costs for digital systems, which are “nice to have”.

Unlike drugs, where the evidence leads to reimbursement, reimbursement for digital
systems requires showing their value and potential in the real world, not just in clinical
trials. To receive reimbursement, digital systems must be affordable and cost-saving. Most
digital apps address problems that seem “not critical”; they do not improve survival,
making it challenging to ask health systems for reimbursement.

4.6. Regulations, Validations, and Standards Challenges

The regulatory process for medical devices includes establishment registration, listing,
and premarket notification or approval. The process is very complicated and lengthy,
and The FDA acknowledges that traditional forms of medical-device regulation are not
well suited for the faster pace of design and modification for software-based medical
devices [195].

Numerous regulations and standards are relevant to digital health solutions [7,24,196].
Regulations must provide life cycle requirements for developing medical software, such
as that found within medical devices, and communicating electronic health record (EHR)
information [197]. These instruct on the principles and requirements for privacy protection
using pseudonymization services to protect personal health information [7]. Standards and
criteria are defined in some regulations for ensuring the interoperability of components
used in applications monitoring personal health and wellness [7]. Guidelines provide frame-
works for evaluating the benefits and risks of digital solutions, guidelines on effectiveness,
and economic standards [198–200].

The challenges of interoperability, data privacy, legal frameworks, systemic acceptabil-
ity, and project financing are obstacles to large-scale digital platforms [201–205].

While the strength of evidence and study duration is mandatory for proper assessment
of the efficacy of digital systems, only a limited number of products were tested in RCT [206].
Examples of studies are patients randomly assigned to routine outpatient chemotherapy
for advanced tumors with patient-reported outcomes vs. usual care with monitoring at the
discretion of clinicians [207]; text messaging to reduce early discontinuation of aromatase
inhibitor therapy in breast cancer [208]; patients with type 2 diabetes using cell phone-
based software [209]; clinical decision support system to aid computerized orders entry of



Clin. Pract. 2023, 13 1002

chemotherapy [210]; and the use of a deep-learning framework (Med3R), which utilizes
human-like learning and reasoning process [7,211].

For evaluating digital health solutions, the pre-post design is most commonly used. It
involves pre-phase, which provides control data; a “washout” period with no interventions
implemented with a time gap of up to several months to allow familiarization and to
limit bias related to implementation and post-phase to collect data on solution effective-
ness [212]. There are differences between the evidence required for initial adopters (e.g.,
surveys and interviews, case studies) and those needed for the majority (prospective RCT
studies) [213–215].

Before implementing digital systems, RCTs are required, which is challenging and may
delay their implementation by years at a time when technology has already advanced. The
value of digital systems may be better reflected in real-world studies. Collaboration between
companies can benefit many systems, but it is difficult to implement and encourage.

5. Moving from “Nice to Have” to “Mandatory” Digital Systems

Several challenges, including those listed above, present significant obstacles to imple-
menting digital systems. While many believe time and fine-tuning of these systems can
lead to breaching everyday life, the reality is more complicated. Most digital systems are
still considered “nice to have” and are not required for care.

The purpose of healthcare systems is to improve outcomes. Diagnoses, data collection,
and simplifying processes are “nice to have” tools but not mandatory. The majority of these
systems have never been shown to improve outcomes. “Nice to have”, “assist”, and “ease
processes” do not suffice in the current outcome-based environment. Systems need to adapt
fast to changing circumstances [216]. Most current systems are not sufficiently dynamic
in response to internal and external perturbations [217]. There is a need to be both fast
and accurate, make all actions computable, and support different data types, algorithms,
and statistics for accounting for the dynamicity of biological systems [218]. A challenge for
end users, such as patients and providers, is determining a new solution’s credibility and
compliance with standards [7,33].

Unless a digital platform improves outcomes, it is unlikely to break through the
glass ceiling of everyday use in healthcare. The lack of resources makes digital systems
mandatory for improving outcomes, ensuring a high engagement rate by patients and
providers, and being reimbursed.

6. Constrained-Disorder Principle-Based Digital Systems Get Closer to Their
Biological Basis

The disorder is inherent to the function of complex systems, and variability charac-
terizes the proper operation of biological systems [219–222]. At the genome, a combina-
tion of deterministic and stochastic effects regulate processes of DNA transcription and
translation [223]. At the cellular level, dynamic instability is the hallmark of normal mi-
crotubule function [224–230]. Heart rate variability (HRV) and blood pressure variability
(BPV) are examples of an autonomic nervous system, where normal regulation of the heart
and vascular function happens [231]. Loss of HRV is associated with poor prognosis and
increased mortality [232,233]. Abnormal BPV affects the morphology and composition of
coronary plaques and the related mechanisms of inflammation and hemodynamics. Regu-
lating BPV can prevent the occurrence and development of coronary heart disease [234].

The constrained-disorder principle (CDP) defines complex systems based on the
degree of their inherent disorder, bounded by dynamic boundaries [235]. It differentiates
between living organisms characterized by a high degree of disorder and non-living
systems with a minimal degree. A system’s malfunction evolves from reducing the degree
of disorder or when disorder becomes out of bounds [235–238]

CDP-based second-generation AI systems are designed to generate therapeutic regi-
mens close to human biology, improving the response to chronic therapies, and thus clinical
outcomes [146]. By using personalized algorithms, these systems incorporate controlled



Clin. Pract. 2023, 13 1003

variability into therapeutic interventions. Chronic diseases are a significant burden on
healthcare systems, and the loss of response to chronic drugs is a significant challenge in
treating patients with common chronic diseases [239]. Patients with chronic diseases also
fail to adhere to chronic regimens because of a loss of response to therapies. In addition,
there is marked inter and intra-subject variability in response to chronic therapies [239–242].
The CDP-based second-generation AI systems provide a platform for overcoming drug
resistance and improving adherence by implementing variability-based therapeutic regi-
mens for patients with chronic diseases [76,108,242–260]. The system enables personalized
therapies based on individual variability signatures [146,239,257,261].

The CDP-based second-generation AI is a platform on which the digital pill was
developed [261]. The digital pill is any drug regulated by a second-generation AI and is
available at three levels. First, an open-loop system implements variability in drug adminis-
tration times and dosages to overcome tolerance. At the second level, a closed-loop design
personalized the variability signatures in a way that dynamically adapts the variability
to each subject’s response. At the third level, the algorithm incorporates signatures of
variability, which are relevant to the disease dynamically [245,258,261]. Examples are the
use of HRV in cardiac patients, quantifying variability in cytokines secretion in patients
with inflammatory disorders, and respiratory and gait variability parameters in patients
with pulmonary disease and neurological disorders [146,239,257,261]. With this CDP-based
digital system, patients with severe heart failure had fewer emergency room visits, fewer
hospitalizations, improved clinical performance, and improved laboratory tests.

By viewing the digital pill as part of therapy, not as a reminder, patients and physicians
are more likely to engage with the platform. It provides end users with confidence that their
outcomes will improve if they take their medications according to the app-based regimens.
When introducing digital systems, healthcare organizations, payers, and end users incur
high costs. The digital pill is based on an “Uber/Airbnb” model, where a digital system
improves the efficiency and effectiveness of existing drugs and devices [245,258,261,262].

7. Digital Health Challenges Can Be Overcome by Using CDP-Based Digital Systems

With CDP-based digital systems, patient outcomes are improved; therefore, some
challenges associated with digital health are overcome.

Since patients are the “kings of healthcare,” digital health must transform from a stand-
alone product to a service that supports clinical outcomes [76,108,217,243–260,263–267].
Unlike first-generation systems, second-generation AI systems are outcome-based, with
clinically meaningful endpoints. Healthcare players can rely on them for solutions and to
add value to their systems. Patients benefit from them because they improve their response
and reduce side effects. They focus on the patient’s essential endpoints to overcome the
challenge of technology-patient interaction. Healthcare providers ensure improved adher-
ence. Payers reduce costs by reducing admissions and the need for expensive therapies that
are not necessarily better. Pharma companies can increase revenues without developing
new expensive products or dealing with regulatory barriers using these methods [261].

These systems improved clinical and laboratory measures in patients with chronic
heart failure, reducing emergency room admissions and hospitalizations [268]. Similar
results were shown for patients with multiple sclerosis and those suffering from chronic
pain [238]. These examples support the concept that the introduction of outcome-based
digital systems can overcome many of the above-discussed challenges.

In many cases, big data can be overcome using second-generation systems, which
is of limited relevance when designing therapies for individual subjects. By generating
insightful datasets, the systems create individualized parameters associated with drug
effectiveness, adherence, and side effects [261,262].

Second-generation systems must dynamically retune biological, environmental, and
social factors [33]. They are dynamic and continuously change their output based on
internal and external perturbations. By improving outcomes, these systems are turning
“nice to have” digital algorithms into mandatory ones [262].
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Table 1 summarizes some of the challenges and the suggested methods for overcoming
them using the described system.

Table 1. Some challenges faced by digital health systems and suggested methods for overcoming
them using CDP-based systems.

Digital Health System Challenge Constrained-Disorder Principle-Based Second-Generation
Artificial Intelligence Solutions

Data “Big data” failed to translate into
improving patient outcome

Generating insightful, personalized datasets for subject-tailored
therapeutic regimens [146,236,239,261,262]

Users Lack of engagement by patients
and physicians

Outcome-based systems ensure long-term engagement as
patients view the system as part of the therapy [262].

A need for explainable systems The improved outcome is quantifiable in most cases, easing the
process of adapting to digital systems [146,261,262]

System functions Biases The system reduces biases as it is independent of the physician.
Algorithms are targeted to clinically meaningful outcomes [146].

Payers Increased costs By improving outcomes, the system reduces hospitalizations and
the need for more expensive therapies, thus saving costs [261].

Pharma companies Cannot translate digital system
to profits

Improving adherence increases sales while providing pharma
with a market disruptor [261].

Validation Difficulty in validating advantages Outcome-based endpoints are quantifiable and, in most cases, are
easily validated [238,268].

8. Summary and Conclusions

In the case of digital health, it can either be declared dead or resurrected [269,270].
To move digital platforms into everyday use, ensure high engagement by patients and
physicians, and ensure reimbursement, it is crucial to differentiate between “nice to have”
systems and mandatory systems. Any new technology needs to be pragmatic, solve
problems, reduce the cost of care delivery, and be sustainable in the long term [5,78]. As
long as it benefits players in the health system, doing so one step at a time is reasonable
as long as it does not require perfection. A CDP-based second-generation AI system is
showing promise and has the potential to overcome some of the challenges digital systems
face. As long as medical associations provide clear guidelines for implementing AI and
policymakers create policies encouraging its adoption, AI can become part of standard
care [4]. It all depends on the ability to show improved outcomes when using digital
systems, moving from “nice to have” into mandatory systems.
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158. Batko, K.; Ślęzak, A. The use of Big Data Analytics in healthcare. J. Big Data 2022, 9, 3. [CrossRef] [PubMed]
159. Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods.

Entropy 2020, 23, 18. [CrossRef] [PubMed]
160. Mosadeghrad, A.M. Factors influencing healthcare service quality. Int. J. Health Policy Manag. 2014, 3, 77–89. [CrossRef]
161. Thimbleby, H. Technology and the future of healthcare. J. Public Health Res. 2013, 2, e28. [CrossRef]
162. Hardy, A.; Wojdecka, A.; West, J.; Matthews, E.; Golby, C.; Ward, T.; Lopez, N.D.; Freeman, D.; Waller, H.; Kuipers, E. How

inclusive, user-centered design research can improve psychological therapies for psychosis: Development of SlowMo. JMIR Ment.
Health 2018, 5, e11222. [CrossRef]

163. Maramba, I.; Chatterjee, A.; Newman, C. Methods of usability testing in the development of eHealth applications: A scoping
review. Int. J. Med. Inform. 2019, 126, 95–104. [CrossRef] [PubMed]

164. Panch, T.; Mattie, H.; Celi, L.A. The “inconvenient truth” about AI in healthcare. NPJ Digit. Med. 2019, 2, 77. [CrossRef]
165. Chandra, S.; Verma, S.; Lim, W.M.; Kumar, S.; Donthu, N. Personalization in personalized marketing: Trends and ways forward.

Psychol. Mark. 2022, 39, 1529–1562. [CrossRef]

https://doi.org/10.1371/journal.pdig.0000022
https://doi.org/10.2196/16513
https://www.ncbi.nlm.nih.gov/pubmed/31850849
https://doi.org/10.1038/s41746-020-0276-9
https://doi.org/10.2196/11254
https://doi.org/10.3390/jpm12091380
https://doi.org/10.1038/s43856-022-00148-x
https://www.ncbi.nlm.nih.gov/pubmed/35865358
https://doi.org/10.2196/14512
https://doi.org/10.3389/fmed.2021.647897
https://www.ncbi.nlm.nih.gov/pubmed/34307394
https://doi.org/10.1186/s12874-021-01416-5
https://www.ncbi.nlm.nih.gov/pubmed/34706667
https://doi.org/10.1016/j.amjmed.2020.06.033
https://doi.org/10.3389/fdgth.2020.569178
https://doi.org/10.1186/s12913-022-08167-z
https://doi.org/10.3389/fpubh.2018.00068
https://doi.org/10.1016/j.ijin.2022.05.002
https://doi.org/10.2196/jmir.5253
https://www.ncbi.nlm.nih.gov/pubmed/27143097
https://doi.org/10.2147/CIA.S72399
https://www.ncbi.nlm.nih.gov/pubmed/25624752
https://doi.org/10.1167/tvst.9.2.45
https://doi.org/10.1093/bmb/ldab016
https://www.ncbi.nlm.nih.gov/pubmed/34405854
https://doi.org/10.1136/medethics-2018-105281
https://www.ncbi.nlm.nih.gov/pubmed/31227547
https://doi.org/10.2139/ssrn.3932277
https://doi.org/10.1017/S0963180119000847
https://doi.org/10.4103/iju.IJU_74_19
https://doi.org/10.1186/s40537-021-00553-4
https://www.ncbi.nlm.nih.gov/pubmed/35013701
https://doi.org/10.3390/e23010018
https://www.ncbi.nlm.nih.gov/pubmed/33375658
https://doi.org/10.15171/ijhpm.2014.65
https://doi.org/10.4081/jphr.2013.e28
https://doi.org/10.2196/11222
https://doi.org/10.1016/j.ijmedinf.2019.03.018
https://www.ncbi.nlm.nih.gov/pubmed/31029270
https://doi.org/10.1038/s41746-019-0155-4
https://doi.org/10.1002/mar.21670


Clin. Pract. 2023, 13 1011

166. O’Connor, S.; Hanlon, P.; O’Donnell, C.A.; Garcia, S.; Glanville, J.; Mair, F.S. Understanding factors affecting patient and public
engagement and recruitment to digital health interventions: A systematic review of qualitative studies. BMC Med. Inform. Decis.
Mak. 2016, 16, 120. [CrossRef]

167. Johnson, D.; Goodman, R.; Patrinely, J.; Stone, C.; Zimmerman, E.; Donald, R.; Chang, S.; Berkowitz, S.; Finn, A.; Jahangir, E.
Assessing the accuracy and reliability of AI-generated medical responses: An evaluation of the Chat-GPT model. Res. Sq. 2023,
preprint. [CrossRef]

168. Greenhalgh, T.; Wherton, J.; Papoutsi, C.; Lynch, J.; Hughes, G.; A’Court, C.; Hinder, S.; Fahy, N.; Procter, R.; Shaw, S. Beyond
Adoption: A New Framework for Theorizing and Evaluating Nonadoption, Abandonment, and Challenges to the Scale-Up,
Spread, and Sustainability of Health and Care Technologies. J. Med. Internet Res. 2017, 19, e367. [CrossRef]

169. Malcarney, M.B.; Horton, K.; Seiler, N.; Hastings, D. Advancing the Public’s Health by Scaling Innovations in Clinical Quality.
Public Health Rep. 2017, 132, 512–517. [CrossRef]

170. Tobia, K.; Nielsen, A.; Stremitzer, A. When Does Physician Use of AI Increase Liability? J. Nucl. Med. Off. Publ. Soc. Nucl. Med.
2021, 62, 17–21. [CrossRef]

171. Modgil, S.; Singh, R.K.; Gupta, S.; Dennehy, D. A Confirmation Bias View on Social Media Induced Polarisation During COVID-19.
Inf. Syst. Front. J. Res. Innov. 2021, 1–25. [CrossRef] [PubMed]

172. Thornhill, C.; Meeus, Q.; Peperkamp, J.; Berendt, B. A Digital Nudge to Counter Confirmation Bias. Front. Big Data 2019, 2, 11.
[CrossRef] [PubMed]

173. Waisberg, E.; Ong, J.; Masalkhi, M.; Kamran, S.A.; Zaman, N.; Sarker, P.; Lee, A.G.; Tavakkoli, A. GPT-4: A new era of artificial
intelligence in medicine. Irish J. Med. Sci. 2023, 1–4. [CrossRef] [PubMed]

174. van Panhuis, W.G.; Paul, P.; Emerson, C.; Grefenstette, J.; Wilder, R.; Herbst, A.J.; Heymann, D.; Burke, D.S. A systematic review
of barriers to data sharing in public health. BMC Public Health 2014, 14, 1144. [CrossRef]

175. Ahmad, O.F.; Stoyanov, D.; Lovat, L.B. Barriers and pitfalls for artificial intelligence in gastroenterology: Ethical and regulatory
issues. Tech. Innov. Gastrointest. Endosc. 2020, 22, 80–84. [CrossRef]

176. Madore, C.; Yin, Z.; Leibowitz, J.; Butovsky, O. Microglia, Lifestyle Stress, and Neurodegeneration. Immunity 2020, 52, 222–240.
[CrossRef]

177. Chevrier, R.; Foufi, V.; Gaudet-Blavignac, C.; Robert, A.; Lovis, C. Use and Understanding of Anonymization and De-Identification
in the Biomedical Literature: Scoping Review. J. Med. Internet Res. 2019, 21, e13484. [CrossRef]

178. Vayena, E.; Mastroianni, A.; Kahn, J. Caught in the web: Informed consent for online health research. Sci. Transl. Med. 2013,
5, 173fs176. [CrossRef]

179. World Health Organization. Global Diffusion of eHealth: Making Universal Health Coverage Achievable: Report of the Third Global
Survey on eHealth; World Health Organization: Geneva, Switzerland, 2017.

180. Nguyen, G.; Dlugolinsky, S.; Bobák, M.; Tran, V.; López García, Á.; Heredia, I.; Malík, P.; Hluchý, L. Machine Learning and Deep
Learning frameworks and libraries for large-scale data mining: A survey. Artif. Intell. Rev. 2019, 52, 77–124. [CrossRef]

181. Schäferhoff, M.; Zimmerman, A.; Diab, M.M.; Mao, W.; Chowdhary, V.; Gill, D.; Karanja, R.; Madikizela, M.; Ogbuoji, O.; Yamey,
G. Investing in late-stage clinical trials and manufacturing of product candidates for five major infectious diseases: A modelling
study of the benefits and costs of investment in three middle-income countries. Lancet Glob. Health 2022, 10, e1045–e1052.
[CrossRef]

182. Macdonald, J.C.; Isom, D.C.; Evans, D.D.; Page, K.J. Digital Innovation in Medicinal Product Regulatory Submission, Review, and
Approvals to Create a Dynamic Regulatory Ecosystem-Are We Ready for a Revolution? Front. Med. 2021, 8, 660808. [CrossRef]

183. McPhail, S.M. Multimorbidity in chronic disease: Impact on health care resources and costs. Risk Manag. Healthc. Policy 2016,
9, 143–156. [CrossRef] [PubMed]

184. Swartz, A.; LeFevre, A.E.; Perera, S.; Kinney, M.V.; George, A.S. Multiple pathways to scaling up and sustainability: An exploration
of digital health solutions in South Africa. Glob. Health 2021, 17, 77. [CrossRef]

185. Kwee, A.; Teo, Z.L.; Ting, D.S.W. Digital health in medicine: Important considerations in evaluating health economic analysis.
Lancet Reg. Health. West. Pac. 2022, 23, 100476. [CrossRef]

186. Teisberg, E.; Wallace, S.; O’Hara, S. Defining and Implementing Value-Based Health Care: A Strategic Framework. Acad. Med.
2020, 95, 682–685. [CrossRef] [PubMed]

187. Adir, O.; Poley, M.; Chen, G.; Froim, S.; Krinsky, N.; Shklover, J.; Shainsky-Roitman, J.; Lammers, T.; Schroeder, A. Integrating
Artificial Intelligence and Nanotechnology for Precision Cancer Medicine. Adv. Mater. 2020, 32, 1901989. [CrossRef]

188. Gomez Rossi, J.; Feldberg, B.; Krois, J.; Schwendicke, F. Evaluation of the Clinical, Technical, and Financial Aspects of Cost-
Effectiveness Analysis of Artificial Intelligence in Medicine: Scoping Review and Framework of Analysis. JMIR Med. Inf. 2022,
10, e33703. [CrossRef] [PubMed]

189. Sloane, E.B.; Silva, R.J. Chapter 83—Artificial intelligence in medical devices and clinical decision support systems. In Clinical
Engineering Handbook, 2nd ed.; Iadanza, E., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 556–568.

190. Mbunge, E.; Batani, J.; Gaobotse, G.; Muchemwa, B. Virtual healthcare services and digital health technologies deployed during
coronavirus disease 2019 (COVID-19) pandemic in South Africa: A systematic review. Glob. Health J. 2022, 6, 102–113. [CrossRef]

191. Dorsey, E.R. The new platforms of health care. NPJ Digit. Med. 2021, 4, 112. [CrossRef]

https://doi.org/10.1186/s12911-016-0359-3
https://doi.org/10.21203/rs.3.rs-2566942/v1
https://doi.org/10.2196/jmir.8775
https://doi.org/10.1177/0033354917709982
https://doi.org/10.2967/jnumed.120.256032
https://doi.org/10.1007/s10796-021-10222-9
https://www.ncbi.nlm.nih.gov/pubmed/34840520
https://doi.org/10.3389/fdata.2019.00011
https://www.ncbi.nlm.nih.gov/pubmed/33693334
https://doi.org/10.1007/s11845-023-03377-8
https://www.ncbi.nlm.nih.gov/pubmed/37076707
https://doi.org/10.1186/1471-2458-14-1144
https://doi.org/10.1016/j.tgie.2019.150636
https://doi.org/10.1016/j.immuni.2019.12.003
https://doi.org/10.2196/13484
https://doi.org/10.1126/scitranslmed.3004798
https://doi.org/10.1007/s10462-018-09679-z
https://doi.org/10.1016/S2214-109X(22)00206-6
https://doi.org/10.3389/fmed.2021.660808
https://doi.org/10.2147/RMHP.S97248
https://www.ncbi.nlm.nih.gov/pubmed/27462182
https://doi.org/10.1186/s12992-021-00716-1
https://doi.org/10.1016/j.lanwpc.2022.100476
https://doi.org/10.1097/ACM.0000000000003122
https://www.ncbi.nlm.nih.gov/pubmed/31833857
https://doi.org/10.1002/adma.201901989
https://doi.org/10.2196/33703
https://www.ncbi.nlm.nih.gov/pubmed/35969458
https://doi.org/10.1016/j.glohj.2022.03.001
https://doi.org/10.1038/s41746-021-00478-5


Clin. Pract. 2023, 13 1012

192. Iyamu, I.; Gómez-Ramírez, O.; Xu, A.X.; Chang, H.J.; Watt, S.; McKee, G.; Gilbert, M. Challenges in the development of digital
public health interventions and mapped solutions: Findings from a scoping review. Digit. Health 2022, 8, 20552076221102255.
[CrossRef] [PubMed]

193. Thomford, N.E.; Bope, C.D.; Agamah, F.E.; Dzobo, K.; Owusu Ateko, R.; Chimusa, E.; Mazandu, G.K.; Ntumba, S.B.; Dandara, C.;
Wonkam, A. Implementing Artificial Intelligence and Digital Health in Resource-Limited Settings? Top 10 Lessons We Learned in
Congenital Heart Defects and Cardiology. Omics A J. Integr. Biol. 2020, 24, 264–277. [CrossRef]

194. Kumar, Y.; Koul, A.; Singla, R.; Ijaz, M.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing
framework and future research agenda. J. Ambient Intell. Humaniz. Comput. 2022, 14, 8459–8486. [CrossRef]

195. He, J.; Baxter, S.L.; Xu, J.; Xu, J.; Zhou, X.; Zhang, K. The practical implementation of artificial intelligence technologies in
medicine. Nat. Med. 2019, 25, 30–36. [CrossRef]

196. Shuren, J.; Patel, B.; Gottlieb, S. FDA Regulation of Mobile Medical Apps. JAMA 2018, 320, 337–338. [CrossRef]
197. Aguirre, R.R.; Suarez, O.; Fuentes, M.; Sanchez-Gonzalez, M.A. Electronic Health Record Implementation: A Review of Resources

and Tools. Cureus 2019, 11, e5649. [CrossRef] [PubMed]
198. Murray, E.; Hekler, E.B.; Andersson, G.; Collins, L.M.; Doherty, A.; Hollis, C.; Rivera, D.E.; West, R.; Wyatt, J.C. Evaluating Digital

Health Interventions: Key Questions and Approaches. Am. J. Prev. Med. 2016, 51, 843–851. [CrossRef] [PubMed]
199. Yoon, J.; Lee, M.; Ahn, J.S.; Oh, D.; Shin, S.Y.; Chang, Y.J.; Cho, J. Development and Validation of Digital Health Technology

Literacy Assessment Questionnaire. J. Med. Syst. 2022, 46, 13. [CrossRef]
200. Hayden, J.; van der Windt, D.; Cartwright, J.; Côté, P.; Bombardier, C. Assessing Bias in Studies of Prognostic Factors. Ann. Intern.

Med. 2013, 158, 280–286. [CrossRef]
201. Richter, P.; Harst, L. Tackling the scaling-up problem of digital health applications. J. Public Health 2022, 30, 1–3. [CrossRef]
202. Shrivastava, U.; Song, J.; Han, B.T.; Dietzman, D. Do data security measures, privacy regulations, and communication standards

impact the interoperability of patient health information? A cross-country investigation. Int. J. Med. Inform. 2021, 148, 104401.
[CrossRef] [PubMed]

203. Lam, L.; Fadrique, L.; Bin Noon, G.; Shah, A.; Morita, P.P. Evaluating Challenges and Adoption Factors for Active Assisted Living
Smart Environments. Front. Digit. Health 2022, 4, 891634. [CrossRef]

204. Nazeha, N.; Pavagadhi, D.; Kyaw, B.M.; Car, J.; Jimenez, G.; Tudor Car, L. A Digitally Competent Health Workforce: Scoping
Review of Educational Frameworks. J. Med. Internet Res. 2020, 22, e22706. [CrossRef]

205. Kruk, M.E.; Gage, A.D.; Arsenault, C.; Jordan, K.; Leslie, H.H.; Roder-DeWan, S.; Adeyi, O.; Barker, P.; Daelmans, B.; Doubova,
S.V.; et al. High-quality health systems in the Sustainable Development Goals era: Time for a revolution. Lancet Glob. Health 2018,
6, e1196–e1252. [CrossRef] [PubMed]

206. Pawloski, P.A.; Brooks, G.A.; Nielsen, M.E.; Olson-Bullis, B.A. A systematic review of clinical decision support systems for clinical
oncology practice. J. Natl. Compr. Cancer Netw. 2019, 17, 331–338. [CrossRef]

207. Billingy, N.E.; Tromp, V.; Veldhuijzen, E.; Belderbos, J.; Aaronson, N.K.; Feldman, E.; Hoek, R.; Bogaard, H.J.; Onwuteaka-
Philipsen, B.D.; van de Poll-Franse, L.; et al. SYMptom monitoring with Patient-Reported Outcomes using a web application
among patients with Lung cancer in the Netherlands (SYMPRO-Lung): Study protocol for a stepped-wedge randomised
controlled trial. BMJ Open 2021, 11, e052494. [CrossRef] [PubMed]

208. Hershman, D.L.; Unger, J.M.; Hillyer, G.C.; Moseley, A.; Arnold, K.B.; Dakhil, S.R.; Esparaz, B.T.; Kuan, M.C.; Graham, M.L., 2nd;
Lackowski, D.M.; et al. Randomized Trial of Text Messaging to Reduce Early Discontinuation of Adjuvant Aromatase Inhibitor
Therapy in Women With Early-Stage Breast Cancer: SWOG S1105. J. Clin. Oncol. 2020, 38, 2122–2129. [CrossRef]

209. Yang, Y.; Lee, E.Y.; Kim, H.S.; Lee, S.H.; Yoon, K.H.; Cho, J.H. Effect of a Mobile Phone-Based Glucose-Monitoring and Feedback
System for Type 2 Diabetes Management in Multiple Primary Care Clinic Settings: Cluster Randomized Controlled Trial. JMIR
Mhealth Uhealth 2020, 8, e16266. [CrossRef]

210. Rahimi, R.; Kazemi, A.; Moghaddasi, H.; Arjmandi Rafsanjani, K.; Bahoush, G. Specifications of Computerized Provider Order
Entry and Clinical Decision Support Systems for Cancer Patients Undergoing Chemotherapy: A Systematic Review. Chemotherapy
2018, 63, 162–171. [CrossRef]

211. Zhu, C.Y.; Wang, Y.K.; Chen, H.P.; Gao, K.L.; Shu, C.; Wang, J.C.; Yan, L.F.; Yang, Y.G.; Xie, F.Y.; Liu, J. A Deep Learning Based
Framework for Diagnosing Multiple Skin Diseases in a Clinical Environment. Front. Med. 2021, 8, 626369. [CrossRef] [PubMed]

212. Bowen, D.J.; Kreuter, M.; Spring, B.; Cofta-Woerpel, L.; Linnan, L.; Weiner, D.; Bakken, S.; Kaplan, C.P.; Squiers, L.; Fabrizio, C.
How we design feasibility studies. Am. J. Prev. Med. 2009, 36, 452–457. [CrossRef] [PubMed]

213. Mentz, R.J.; Hernandez, A.F.; Berdan, L.G.; Rorick, T.; O’Brien, E.C.; Ibarra, J.C.; Curtis, L.H.; Peterson, E.D. Good clinical practice
guidance and pragmatic clinical trials: Balancing the best of both worlds. Circulation 2016, 133, 872–880. [CrossRef] [PubMed]

214. Cunanan, K.M.; Iasonos, A.; Shen, R.; Begg, C.B.; Gönen, M. An efficient basket trial design. Stat. Med. 2017, 36, 1568–1579.
[CrossRef] [PubMed]

215. Ford, I.; Norrie, J. Pragmatic trials. N. Engl. J. Med. 2016, 375, 454–463. [CrossRef] [PubMed]
216. Hospodková, P.; Berežná, J.; Barták, M.; Rogalewicz, V.; Severová, L.; Svoboda, R. Change Management and Digital Innovations

in Hospitals of Five European Countries. Healthcare 2021, 9, 1508. [CrossRef]
217. Marwaha, J.S.; Landman, A.B.; Brat, G.A.; Dunn, T.; Gordon, W.J. Deploying digital health tools within large, complex health

systems: Key considerations for adoption and implementation. NPJ Digit. Med. 2022, 5, 13. [CrossRef] [PubMed]

https://doi.org/10.1177/20552076221102255
https://www.ncbi.nlm.nih.gov/pubmed/35656283
https://doi.org/10.1089/omi.2019.0142
https://doi.org/10.1007/s12652-021-03612-z
https://doi.org/10.1038/s41591-018-0307-0
https://doi.org/10.1001/jama.2018.8832
https://doi.org/10.7759/cureus.5649
https://www.ncbi.nlm.nih.gov/pubmed/31700751
https://doi.org/10.1016/j.amepre.2016.06.008
https://www.ncbi.nlm.nih.gov/pubmed/27745684
https://doi.org/10.1007/s10916-022-01800-8
https://doi.org/10.7326/0003-4819-158-4-201302190-00009
https://doi.org/10.1007/s10389-021-01599-7
https://doi.org/10.1016/j.ijmedinf.2021.104401
https://www.ncbi.nlm.nih.gov/pubmed/33571743
https://doi.org/10.3389/fdgth.2022.891634
https://doi.org/10.2196/22706
https://doi.org/10.1016/s2214-109x(18)30386-3
https://www.ncbi.nlm.nih.gov/pubmed/30196093
https://doi.org/10.6004/jnccn.2018.7104
https://doi.org/10.1136/bmjopen-2021-052494
https://www.ncbi.nlm.nih.gov/pubmed/34518276
https://doi.org/10.1200/JCO.19.02699
https://doi.org/10.2196/16266
https://doi.org/10.1159/000489503
https://doi.org/10.3389/fmed.2021.626369
https://www.ncbi.nlm.nih.gov/pubmed/33937279
https://doi.org/10.1016/j.amepre.2009.02.002
https://www.ncbi.nlm.nih.gov/pubmed/19362699
https://doi.org/10.1161/CIRCULATIONAHA.115.019902
https://www.ncbi.nlm.nih.gov/pubmed/26927005
https://doi.org/10.1002/sim.7227
https://www.ncbi.nlm.nih.gov/pubmed/28098411
https://doi.org/10.1056/NEJMra1510059
https://www.ncbi.nlm.nih.gov/pubmed/27518663
https://doi.org/10.3390/healthcare9111508
https://doi.org/10.1038/s41746-022-00557-1
https://www.ncbi.nlm.nih.gov/pubmed/35087160


Clin. Pract. 2023, 13 1013

218. Loftus, T.J.; Tighe, P.J.; Ozrazgat-Baslanti, T.; Davis, J.P.; Ruppert, M.M.; Ren, Y.; Shickel, B.; Kamaleswaran, R.; Hogan, W.R.;
Moorman, J.R.; et al. Ideal algorithms in healthcare: Explainable, dynamic, precise, autonomous, fair, and reproducible. PLoS
Digit. Health 2022, 1, e0000006. [CrossRef]

219. Ilan, Y. Overcoming randomness does not rule out the importance of inherent randomness for functionality. J. Biosci. 2019, 44, 132.
[CrossRef]

220. Ilan, Y. Generating randomness: Making the most out of disordering a false order into a real one. J. Transl. Med. 2019, 17, 49.
[CrossRef]

221. Ilan, Y. Advanced Tailored Randomness: A Novel Approach for Improving the Efficacy of Biological Systems. J. Comput. Biol.
2020, 27, 20–29. [CrossRef] [PubMed]

222. Ilan, Y. Order Through Disorder: The Characteristic Variability of Systems. Front. Cell Dev. Biol. 2020, 8, 186. [CrossRef] [PubMed]
223. Finn, E.H.; Misteli, T. Molecular basis and biological function of variability in spatial genome organization. Science 2019, 365,

eaaw9498. [CrossRef] [PubMed]
224. Ilan, Y. Randomness in microtubule dynamics: An error that requires correction or an inherent plasticity required for normal

cellular function? Cell Biol. Int. 2019, 43, 739–748. [CrossRef]
225. Ilan, Y. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. J. Cell. Physiol. 2019,

234, 7923–7937. [CrossRef] [PubMed]
226. Ilan-Ber, T.; Ilan, Y. The role of microtubules in the immune system and as potential targets for gut-based immunotherapy. Mol.

Immunol. 2019, 111, 73–82. [CrossRef]
227. Forkosh, E.; Kenig, A.; Ilan, Y. Introducing variability in targeting the microtubules: Review of current mechanisms and future

directions in colchicine therapy. Pharmacol. Res. Perspect. 2020, 8, e00616. [CrossRef]
228. Ilan, Y. Microtubules as a potential platform for energy transfer in biological systems: A target for implementing individualized,

dynamic variability patterns to improve organ function. Mol. Cell. Biochem. 2022, 478, 375–392. [CrossRef]
229. Mitchison, T.; Kirschner, M. Dynamic instability of microtubule growth. Nature 1984, 312, 237–242. [CrossRef]
230. Kirschner, M.W.; Mitchison, T. Microtubule dynamics. Nature 1986, 324, 621. [CrossRef]
231. Turana, Y.; Shen, R.; Nathaniel, M.; Chia, Y.C.; Li, Y.; Kario, K. Neurodegenerative diseases and blood pressure variability: A

comprehensive review from HOPE Asia. J. Clin. Hypertens. 2022, 24, 1204–1217. [CrossRef] [PubMed]
232. Chiera, M.; Cerritelli, F.; Casini, A.; Barsotti, N.; Boschiero, D.; Cavigioli, F.; Corti, C.G.; Manzotti, A. Heart Rate Variability in the

Perinatal Period: A Critical and Conceptual Review. Front. Neurosci. 2020, 14, 561186. [CrossRef] [PubMed]
233. Forte, G.; Favieri, F.; Casagrande, M. Heart Rate Variability and Cognitive Function: A Systematic Review. Front. Neurosci. 2019,

13, 710. [CrossRef]
234. Liu, Y.; Luo, X.; Jia, H.; Yu, B. The Effect of Blood Pressure Variability on Coronary Atherosclerosis Plaques. Front. Cardiovasc.

Med. 2022, 9, 803810. [CrossRef] [PubMed]
235. Ilan, Y. The constrained disorder principle defines living organisms and provides a method for correcting disturbed biological

systems. Comput. Struct. Biotechnol. J. 2022, 20, 6087–6096. [CrossRef] [PubMed]
236. Ilan, Y. Making use of noise in biological systems. Prog. Biophys. Mol. Biol. 2023, 178, 83–90. [CrossRef]
237. Ilan, Y. Constrained disorder principle-based variability is fundamental for biological processes: Beyond biological relativity and

physiological regulatory networks. Prog. Biophys. Mol. Biol. 2023, 180–181, 37–48. [CrossRef]
238. Sigawi, T.; Lehmann, H.; Hurvitz, N.; Ilan, Y. Constrained Disorder Principle-Based Second-Generation Algorithms Implement

Quantified Variability Signatures to Improve the Function of Complex Systems. J. Bioinform. Syst. Biol. 2023, 6, 82–89. [CrossRef]
239. Ilan, Y. Overcoming Compensatory Mechanisms toward Chronic Drug Administration to Ensure Long-Term, Sustainable

Beneficial Effects. Mol. Ther. Methods Clin. Dev. 2020, 18, 335–344. [CrossRef]
240. Shabat, Y.; Lichtenstein, Y.; Ilan, Y. Short-Term Cohousing of Sick with Healthy or Treated Mice Alleviates the Inflammatory

Response and Liver Damage. Inflammation 2021, 44, 518–525. [CrossRef]
241. El-Haj, M.; Kanovitch, D.; Ilan, Y. Personalized inherent randomness of the immune system is manifested by an individualized

response to immune triggers and immunomodulatory therapies: A novel platform for designing personalized immunotherapies.
Immunol. Res. 2019, 67, 337–347. [CrossRef] [PubMed]

242. Ilan, Y. beta-Glycosphingolipids as Mediators of Both Inflammation and Immune Tolerance: A Manifestation of Randomness in
Biological Systems. Front. Immunol. 2019, 10, 1143. [CrossRef]

243. Kessler, A.; Weksler-Zangen, S.; Ilan, Y. Role of the Immune System and the Circadian Rhythm in the Pathogenesis of Chronic
Pancreatitis: Establishing a Personalized Signature for Improving the Effect of Immunotherapies for Chronic Pancreatitis. Pancreas
2020, 49, 1024–1032. [CrossRef]

244. Ishay, Y.; Kolben, Y.; Kessler, A.; Ilan, Y. Role of circadian rhythm and autonomic nervous system in liver function: A hypothetical
basis for improving the management of hepatic encephalopathy. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 321, G400–G412.
[CrossRef]

245. Kolben, Y.; Weksler-Zangen, S.; Ilan, Y. Adropin as a potential mediator of the metabolic system-autonomic nervous system-
chronobiology axis: Implementing a personalized signature-based platform for chronotherapy. Obes. Rev. 2021, 22, e13108.
[CrossRef]

246. Kenig, A.; Kolben, Y.; Asleh, R.; Amir, O.; Ilan, Y. Improving Diuretic Response in Heart Failure by Implementing a Patient-Tailored
Variability and Chronotherapy-Guided Algorithm. Front. Cardiovasc. Med. 2021, 8, 695547. [CrossRef] [PubMed]

https://doi.org/10.1371/journal.pdig.0000006
https://doi.org/10.1007/s12038-019-9958-3
https://doi.org/10.1186/s12967-019-1798-2
https://doi.org/10.1089/cmb.2019.0231
https://www.ncbi.nlm.nih.gov/pubmed/31424268
https://doi.org/10.3389/fcell.2020.00186
https://www.ncbi.nlm.nih.gov/pubmed/32266266
https://doi.org/10.1126/science.aaw9498
https://www.ncbi.nlm.nih.gov/pubmed/31488662
https://doi.org/10.1002/cbin.11157
https://doi.org/10.1002/jcp.27978
https://www.ncbi.nlm.nih.gov/pubmed/30536951
https://doi.org/10.1016/j.molimm.2019.04.014
https://doi.org/10.1002/prp2.616
https://doi.org/10.1007/s11010-022-04513-1
https://doi.org/10.1038/312237a0
https://doi.org/10.1038/324621a0
https://doi.org/10.1111/jch.14559
https://www.ncbi.nlm.nih.gov/pubmed/36196471
https://doi.org/10.3389/fnins.2020.561186
https://www.ncbi.nlm.nih.gov/pubmed/33071738
https://doi.org/10.3389/fnins.2019.00710
https://doi.org/10.3389/fcvm.2022.803810
https://www.ncbi.nlm.nih.gov/pubmed/35369353
https://doi.org/10.1016/j.csbj.2022.11.015
https://www.ncbi.nlm.nih.gov/pubmed/36420157
https://doi.org/10.1016/j.pbiomolbio.2023.01.001
https://doi.org/10.1016/j.pbiomolbio.2023.04.003
https://doi.org/10.26502/jbsb.5107051
https://doi.org/10.1016/j.omtm.2020.06.006
https://doi.org/10.1007/s10753-020-01348-0
https://doi.org/10.1007/s12026-019-09101-y
https://www.ncbi.nlm.nih.gov/pubmed/31754971
https://doi.org/10.3389/fimmu.2019.01143
https://doi.org/10.1097/MPA.0000000000001626
https://doi.org/10.1152/ajpgi.00186.2021
https://doi.org/10.1111/obr.13108
https://doi.org/10.3389/fcvm.2021.695547
https://www.ncbi.nlm.nih.gov/pubmed/34458334


Clin. Pract. 2023, 13 1014

247. Azmanov, H.; Ross, E.L.; Ilan, Y. Establishment of an Individualized Chronotherapy, Autonomic Nervous System, and Variability-
Based Dynamic Platform for Overcoming the Loss of Response to Analgesics. Pain Physician 2021, 24, 243–252.

248. Potruch, A.; Khoury, S.T.; Ilan, Y. The role of chronobiology in drug-resistance epilepsy: The potential use of a variability
and chronotherapy-based individualized platform for improving the response to anti-seizure drugs. Seizure 2020, 80, 201–211.
[CrossRef]

249. Isahy, Y.; Ilan, Y. Improving the long-term response to antidepressants by establishing an individualized platform based on
variability and chronotherapy. Int. J. Clin. Pharmacol. Ther. 2021, 59, 768–774. [CrossRef] [PubMed]

250. Khoury, T.; Ilan, Y. Introducing Patterns of Variability for Overcoming Compensatory Adaptation of the Immune System to
Immunomodulatory Agents: A Novel Method for Improving Clinical Response to Anti-TNF Therapies. Front. Immunol. 2019,
10, 2726. [CrossRef]

251. Khoury, T.; Ilan, Y. Platform introducing individually tailored variability in nerve stimulations and dietary regimen to prevent
weight regain following weight loss in patients with obesity. Obes. Res. Clin. Pract. 2021, 15, 114–123. [CrossRef] [PubMed]

252. Kenig, A.; Ilan, Y. A Personalized Signature and Chronotherapy-Based Platform for Improving the Efficacy of Sepsis Treatment.
Front. Physiol. 2019, 10, 1542. [CrossRef] [PubMed]

253. Ilan, Y. Why targeting the microbiome is not so successful: Can randomness overcome the adaptation that occurs following gut
manipulation? Clin. Exp. Gastroenterol. 2019, 12, 209–217. [CrossRef] [PubMed]

254. Gelman, R.; Bayatra, A.; Kessler, A.; Schwartz, A.; Ilan, Y. Targeting SARS-CoV-2 receptors as a means for reducing infectivity and
improving antiviral and immune response: An algorithm-based method for overcoming resistance to antiviral agents. Emerg.
Microbes Infect. 2020, 9, 1397–1406. [CrossRef]

255. Ilan, Y.; Spigelman, Z. Establishing patient-tailored variability-based paradigms for anti-cancer therapy: Using the inherent
trajectories which underlie cancer for overcoming drug resistance. Cancer Treat. Res. Commun. 2020, 25, 100240. [CrossRef]

256. Ilan, Y. Digital Medical Cannabis as Market Differentiator: Second-Generation Artificial Intelligence Systems to Improve Response.
Front. Med. 2021, 8, 788777. [CrossRef]

257. Gelman, R.; Berg, M.; Ilan, Y. A Subject-Tailored Variability-Based Platform for Overcoming the Plateau Effect in Sports Training:
A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 1722. [CrossRef]

258. Azmanov, H.; Bayatra, A.; Ilan, Y. Digital Analgesic Comprising a Second-Generation Digital Health System: Increasing
Effectiveness by Optimizing the Dosing and Minimizing Side Effects. J. Pain Res. 2022, 15, 1051–1060. [CrossRef]

259. Hurvitz, N.; Elkhateeb, N.; Sigawi, T.; Rinsky-Halivni, L.; Ilan, Y. Improving the effectiveness of anti-aging modalities by using
the constrained disorder principle-based management algorithms. Front. Aging 2022, 3, 1044038. [CrossRef]

260. Kolben, Y.; Azmanov, H.; Gelman, R.; Dror, D.; Ilan, Y. Using chronobiology-based second-generation artificial intelligence digital
system for overcoming antimicrobial drug resistance in chronic infections. Ann. Med. 2023, 55, 311–318. [CrossRef]

261. Ilan, Y. Improving Global Healthcare and Reducing Costs Using Second-Generation Artificial Intelligence-Based Digital Pills: A
Market Disruptor. Int. J. Environ. Res. Public Health 2021, 18, 811. [CrossRef] [PubMed]

262. Ilan, Y. Next-Generation Personalized Medicine: Implementation of Variability Patterns for Overcoming Drug Resistance in
Chronic Diseases. J. Pers. Med. 2022, 12, 1303. [CrossRef]

263. Patel, D.; Konstantinidou, H. Prescribing in personality disorder: Patients’ perspectives on their encounters with GPs and
psychiatrists. Fam. Med. Community Health 2020, 8, e000458. [CrossRef] [PubMed]

264. Fernandes, L.; FitzPatrick, M.E.; Roycroft, M. The role of the future physician: Building on shifting sands. Clin. Med. 2020,
20, 285–289. [CrossRef] [PubMed]

265. Baltaxe, E.; Czypionka, T.; Kraus, M.; Reiss, M.; Askildsen, J.E.; Grenkovic, R.; Lindén, T.S.; Pitter, J.G.; Rutten-van Molken,
M.; Solans, O.; et al. Digital Health Transformation of Integrated Care in Europe: Overarching Analysis of 17 Integrated Care
Programs. J. Med. Internet Res. 2019, 21, e14956. [CrossRef] [PubMed]

266. Warraich, H.J.; Califf, R.M.; Krumholz, H.M. The digital transformation of medicine can revitalize the patient-clinician relationship.
NPJ Digit. Med. 2018, 1, 49. [CrossRef]

267. Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An overview of clinical decision support
systems: Benefits, risks, and strategies for success. NPJ Digit. Med. 2020, 3, 17. [CrossRef]

268. Gelman, R.; Hurvitz, N.; Nesserat, R.; Kolben, Y.; Nachman, D.; Jamil, K.; Agus, S.; Asleh, R.; Amir, O.; Berg, M.; et al. A
second-generation artificial intelligence-based therapeutic regimen improves diuretic resistance in heart failure: Results of a
feasibility open-labeled clinical trial. Biomed. Pharmacother. 2023, 161, 114334. [CrossRef] [PubMed]

269. Park, J.I.; Lee, H.Y.; Kim, H.; Lee, J.; Shinn, J.; Kim, H.S. Lack of Acceptance of Digital Healthcare in the Medical Market:
Addressing Old Problems Raised by Various Clinical Professionals and Developing Possible Solutions. J. Korean Med. Sci. 2021,
36, e253. [CrossRef]

270. Mathews, S.C.; McShea, M.J.; Hanley, C.L.; Ravitz, A.; Labrique, A.B.; Cohen, A.B. Digital health: A path to validation. NPJ Digit.
Med. 2019, 2, 38. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.seizure.2020.06.032
https://doi.org/10.5414/CP204000
https://www.ncbi.nlm.nih.gov/pubmed/34647865
https://doi.org/10.3389/fimmu.2019.02726
https://doi.org/10.1016/j.orcp.2021.02.003
https://www.ncbi.nlm.nih.gov/pubmed/33653665
https://doi.org/10.3389/fphys.2019.01542
https://www.ncbi.nlm.nih.gov/pubmed/31920730
https://doi.org/10.2147/CEG.S203823
https://www.ncbi.nlm.nih.gov/pubmed/31190948
https://doi.org/10.1080/22221751.2020.1776161
https://doi.org/10.1016/j.ctarc.2020.100240
https://doi.org/10.3389/fmed.2021.788777
https://doi.org/10.3390/ijerph19031722
https://doi.org/10.2147/JPR.S356319
https://doi.org/10.3389/fragi.2022.1044038
https://doi.org/10.1080/07853890.2022.2163053
https://doi.org/10.3390/ijerph18020811
https://www.ncbi.nlm.nih.gov/pubmed/33477865
https://doi.org/10.3390/jpm12081303
https://doi.org/10.1136/fmch-2020-000458
https://www.ncbi.nlm.nih.gov/pubmed/32958520
https://doi.org/10.7861/clinmed.2020-0030
https://www.ncbi.nlm.nih.gov/pubmed/32303498
https://doi.org/10.2196/14956
https://www.ncbi.nlm.nih.gov/pubmed/31573914
https://doi.org/10.1038/s41746-018-0060-2
https://doi.org/10.1038/s41746-020-0221-y
https://doi.org/10.1016/j.biopha.2023.114334
https://www.ncbi.nlm.nih.gov/pubmed/36905809
https://doi.org/10.3346/jkms.2021.36.e253
https://doi.org/10.1038/s41746-019-0111-3
https://www.ncbi.nlm.nih.gov/pubmed/31304384

	Introduction 
	Uncertainty in the Healthcare Sector: Digital Health Has Failed toMeet Expectations 
	Digital Health Trends over the Last Decade: First-Generation Systems 
	Challenges in Healthcare Systems That Need to Be Accounted for byDigital Systems 
	Digital Health’s Data-Related Challenges with Machine Learning 
	Patients and Physicians Face Challenges in Using Digital Systems 
	Challenges Related to Ethics and Law 
	Challenges Related to Healthcare Providers and Pharmaceutical Companies 
	Cost-Increase Challenges in Healthcare 
	Regulations, Validations, and Standards Challenges 

	Moving from “Nice to Have” to “Mandatory” Digital Systems 
	Constrained-Disorder Principle-Based Digital Systems Get Closer to Their Biological Basis 
	Digital Health Challenges Can Be Overcome by Using CDP-Based Digital Systems 
	Summary and Conclusions 
	References

