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Abstract: Oral cancers (OC) are among the most frequent malignancies encountered in Southeast
Asia, primarily due to the prevalent habit of betel quid (BQ) and smokeless tobacco use in this
region. Areca nut (AN), the primary ingredient in BQ, contains several alkaloids, including arecoline,
arecaidine, guvacoline, and guvacine. These have been associated with both the AN abuse liability
and carcinogenicity. Additionally, variations in AN alkaloid levels could lead to differences in the
addictiveness and carcinogenic potential across various AN-containing products. Recent studies
based on animal models and in vitro experiments show cellular and molecular effects induced by AN.
These comprise promoting epithelial-mesenchymal transition, autophagy initiation, tissue hypoxia,
genotoxicity, cytotoxicity, and cell death. Further, clinical research endorses these undesired harmful
effects in humans. Oral submucosal fibrosis, a potentially malignant disease of the oral cavity, is
predominantly reported from the geographical areas of the globe where AN is habitually chewed. OC
in chronic AN users presents a more aggressive phenotype, such as resistance to anti-cancer drugs.
The available evidence on the carcinogenicity of AN based on the findings reported in the recently
published experimental studies is discussed in the present review.
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1. Introduction

Consumption or chewing of areca nut (AN), the seed (endosperm) found in the fruit
of the Areca catechu tree, is a cultural habit in the tropical countries of South Asia, the Asian
Pacific region, and some parts of East Africa [1]. In 2004, AN was classified as a group 1
human carcinogen by the International Agency for Research on Cancer [2]. AN causes oral
squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMD) such as
oral submucous fibrosis (OSF), oral leukoplakia (OL), oral erythroplakia (OE) and lichenoid
reactions [1]. In addition, AN-induced OPMDs have recorded various rates of malignant
transformation [3,4]. The AN-associated pathogenesis of oral cancer (OC) and OPMDs
have been extensively studied during the past few decades through in vitro and in vivo
experiments. Previous studies have demonstrated that AN chewers have a significantly
higher risk of OC progression [5–8]. Furthermore, the 5-year survival of a regular AN
chewer with OC is lower than that of a never-AN chewer [3,9]. How carcinogenesis is
induced in oral keratinocytes by AN and its constituents is well-elucidated, and several
mechanisms are described in the literature.

Moreover, among AN chewers, significant increases in the prevalence of cancers in
the liver, lung, stomach, pancreas, and larynx were also reported [10]. Several hypotheses
on the carcinogenicity of AN are reported in the literature. Thus, the initial pathways of
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AN associated with carcinogenesis need to be better understood to assess its effects at the
molecular level by disentangling the effects brought about by other compounding agents.
This review attempts to comprehensively compile the available information, enabling a
clear view and understanding of the carcinogenicity of AN.

AN/BQ induces preneoplastic changes in the lining of the oral cavity of its users.
Figure 1A illustrates the clinical appearance of rigidifying of the oral mucosa that occurs
in a condition referred to as oral submucosal fibrosis (OSF). OSF is characterized by tris-
mus due to reduced fibro-elasticity and inflammation of the oral cavity. In the second
clinical manifestation, a bright red velvety patch termed oral erythroplakia is shown (OE)
(Figure 1B). More common are whitish plaques or patches on the buccal mucosa or tongue,
termed oral leukoplakia (OL) (Figure 1C). Oral lichenoid lesions (Figure 1D) may appear
as white, lacy patches. These lesions may cause burning sensation, pain, or discomfort.
Lumps or bumps, swellings/thickenings, crusting and/or erosion, and ulceration on the
cheeks, tongue, or other areas in the oral cavity characterize oral squamous cell carcinoma
(OSCC) (Figure 1E).
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2. Different Mechanisms of Carcinogenicity
2.1. Areca Nut Extract

Research on AN, in the published literature, describes various animal experimental
models that have used crude AN extract to simulate the effects of AN chewing. Aqueous
extracts, as well as alcoholic extracts of AN, have also been used. As AN is consumed
as a whole nut or in other processed forms, it is justifiable to use AN extract in in vitro
and in vivo experiments to study its effects. Different concentration gradients of AN
extracts have been selected for these studies according to the toxicity assessments in vitro
and based on the AN concentration of the saliva in AN chewers [11,12]. Experimental
studies conducted during the past few decades, especially using animal models, have
demonstrated that AN extract can initiate, promote, and induce OSF, as well as squamous
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cell carcinomas [13,14] and squamous hyperplasia [15,16]. Moreover, it was reported
in several studies that AN extract causes direct genotoxic and cytotoxic effects on the
oral mucosa [17–19] In Table 1 we summarize the molecular changes observed in in vitro
experiments using AN and alkaloids and reported data are described in detail below.

Table 1. Summary of Key Literature.

Nature of Extract(s) Type of Experiment Analyses Conducted Main
Observations References

Aqueous AN and pan
masala extracts

Injection into buccal
mucosa of

Sprague-Dawley rats

Histological analysis
and TGF-beta1 gene by

RT-PCR

Epithelial atrophy and
collagen accumulation,

significant upregulation of
TGF beta1 gene

[13]

AN extract Subcutaneous injection
into BALB/C mice

Histological analysis,
immunohistochemical

staining, and
immunoblotting

Increase of collagen
deposition, higher

expression of α-smooth
muscle actin, and

connective tissue growth
factors compared to

control group

[14]

Arecoline

Smearing in the inner
mouth area of C57BL/6

mice followed by
administration

via drinking

Examination of tongue
tissue, Krt17 protein
expression analysis

Malignant lesions
observed, and

upregulation of Krt17
compared to control group

[15]

Arecoline
In vitro exposure of
arecoline on human
gingival fibroblasts

Analysis of cytotoxicity,
mitochondrial activity,
and cell cycle analysis

DNA inhibition, decrease
of mitochondrial activity,
and cell cycle arrest at the

G2/M phase in a
dose-dependent manner

[17]

AN extract and
arecoline

In vitro exposure on
human gingival tissue

Cytotoxicity, total and
unscheduled DNA

synthesis

AN extract caused cell
growth suppression, and

induction of total and
unscheduled DNA
synthesis at lower

concentrations
than arecoline

[18]

Aqueous AN and
aqueous arecoline

extracts

In vitro exposure on
mouse kidney cells

Cell growth and DNA
strand break

analysis

Suppression of cell growth
and enhanced DNA strand
breaks caused by exposure

to AN or arecoline
compared to control group

[20]

Aqueous, acetic acid,
hydrochloric acid, and
ethanol extracts of AN

In vitro treatment on
Hep 2 cells

Cell viability and
unscheduled DNA

synthesis

Reduction of cell viability
and increase of

unscheduled DNA
synthesis observed, with
aqueous and acetic acid

extracts showing a higher
effect than other extracts

[21]

AN extract
In vitro treatment on
normal human oral

keratinocytes

Cell viability and
proliferation,

p38MAPK and repair
enzymes, cell cycle,

NF-κB, and IκBα
activation

Inhibition of cell viability
and proliferation,

p38MAPK activation, cell
cycle arrest at G1 phase,

induction of NF-κB
and IκBα

[22]
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Table 1. Cont.

Nature of Extract(s) Type of Experiment Analyses Conducted Main
Observations References

Aqueous AN extract
In vitro treatment on

Chinese hamster ovary
cells

Cytotoxicity,
intracellular ROS
production and

micronuclei formation,
cell cycle analysis,
evaluation of actin

filament distribution
and nucleus

number

Increased MN frequency,
G2/M arrest, cytokinesis
failure, and accumulation
of hyperploid/aneuploid

cells increased intracellular
H2O2 levels and actin

filament disorganization

[23]

Arecoline extracts
In vitro exposure of
arecoline on human
gingival fibroblasts

Cytotoxicity assay and
gene expression

profiling

Increased cytotoxicity in a
dose-dependent manner,

the genes AKR1A1,
CYP26B1, S100A12,
ALDH9A1, MAOA,
UGCGL1, and GSS,

LCMT1, and NAT8 were
all repressed by arecoline.

Gene related to DNA
damage signaling (DDIT4)
was moderately induced.
DNA repair-related genes

BRCA1 repressed, and
RAD50 were induced

by arecoline

[24]

AN extract, arecoline
and arecaidine

In vitro exposure of
AN extract on human

keratinocytes

Cytotoxicity assay,
apoptosis, ROS
analysis, and
hypoxanthine

phosphoribosyltransferase
(HPRT) mutation.

Increased HPRT mutations,
intracellular ROS

generation, and apoptosis
[25]

AN extract
In vitro exposure of

AN extract on human
gingival fibroblasts

Cytokinin secretion,
ROS production,
oxidative DNA
damage, DNA

double-strand breaks,
gene silencing

GRO-α, IL-6, and IL-8
cytokinin production was
enhanced. Results indicate

NOX1 and NOX4
gene-mediated

cytokine-induced oxidative
DNA damage by

regulating ROS production

[26]

AN extract and
arecoline

In vitro exposure of
AN extract and

arecoline on human
keratinocytes

compared to KB
carcinoma cells

mRNA expression,
extracellular

signal-regulated kinase
(ERK) phosphorylation

via RT-PCR, flow
cytometry, Western

blotting,
and ELISA

Induced c-Fos mRNA
expression and PGE2 and
IL-6 production by cells

and stimulation of
ERK-1/ERK2

phosphorylation

[27]

AN extract
In vitro exposure of

AN extract on human
gingival keratinocytes

Cytotoxicity, mRNA
and protein expression,

and ELISA

Extract stimulated
PGE2/PGF2α production,

and upregulated
expression of

cyclooxygenase-2 (COX-2),
cytochrome P450 1A1

(CYP1A1) and
hemeoxygenase-1 (HO-1)

[28]
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Table 1. Cont.

Nature of Extract(s) Type of Experiment Analyses Conducted Main
Observations References

Arecoline

In vitro exposure of
arecoline extract on

human buccal mucosal
fibroblasts

Gene expression,
collagen contraction,

and migration
capability

Increased Twist expression
transcript and protein
levels; myofibroblast

activity, including collagen
gel contraction and
migration capability

[29]

AN extract

In vitro exposure of
AN extract on human

gingival fibroblasts and
epithelial cells

compared to TGF-β
treatment

Transcriptome profiling

AN and TGF-β enhanced
fibroblast activation in both

types of cells. Both
significantly common and

unique gene expression
patterns were identified in
both types of cells. Action

of AN on fibroblasts is
enhanced by

epithelial-mesenchymal
interaction via TGF-β

[30]

Arecaidine
Intraperitoneal

injection into Swiss
albino mice

Sister chromatid
exchange analysis

Sister chromatid exchange
frequency increased
dose-dependently

[31]

Arecoline

Organ-specific
mutagenic potential

in gpt delta transgenic
mice

Genomic DNA analysis
from the oral tissues

and liver tissues

G:C to T:A transversions
(in oral tissues) and G:C to

A:T transitions (in oral
tissues and liver tissues)

were observed

[32]

Arecoline

Cytotoxic and
genotoxic effects of

arecoline in normal rat
hepatocytes

Cell cycle analysis,
DNA damage, TGF-β1

mRNA expression,
protein expression,

phosphorylation of p53

Arecoline induces cell cycle
arrest, and DNA damage,
increasing TGF-β1 mRNA

expression and
transcription. Also,
arecoline increased
p21WAF1 protein

expression and p53
phosphorylation and gene

transcription

[33]

2.2. Areca Alkaloids

The constituents of AN include several alkaloids (0.15–0.67%), polyphenols (11–26%),
fats (1.3–17%), saccharides (26–47%), and some crude fiber and tannins such as gallotannic
acid, and phiobatannin [6–8]. Studies investigating the underlying mechanism of AN-
induced carcinogenicity and addictiveness have detected alkaloids, namely arecoline,
arecaidine, guvacoline, and guvacine, as the constituents of AN contributing to these
actions [2,34,35]. Among the four major alkaloids, arecoline is the primary alkaloid in AN.
It regulates a group of cellular enzymes, including matrix metalloproteinases (MMPs) and
lysyl oxidase, and inhibits p53 mRNA expression and DNA repair mechanisms [36–38].
The contribution of other alkaloids is not well known; however, they can induce alterations
in the macromolecules of mammalian cells [37]. In addition, in an AN consumer, these
alkaloids undergo nitrosation in the oral cavity to generate AN-derived nitrosamines (N-
nitrosoguvacine, 3-methylnitrosaminopropionitrile, and N-nitrosoguvacoline) to damage
DNA [39–41]. Furthermore, Arecaidine and 7,12-dimethylbenz(a)anthracene (DMBA)
interacted synergistically to induce tumorigenesis in the buccal pouch of hamsters [42].
Another study demonstrated that 4-nitroquinoline-1-oxide (4-NQO) and arecoline induce
OC in C57BL/6JNarl mice [14,43].
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2.3. Effect of Areca Nut Extracts on Molecular Carcinogenesis

Studies based on animal models have revealed that AN extract could be an effective
tumor initiator/promoter and may provoke potentially malignant lesions in the oral cavity,
such as squamous hyperplasia [15,16], OSF [13,14] or cause malignant transformation [16,42,44].
Likewise, in vitro studies reported that AN extract can decline vital dye accumulation (i.e.,
neutral red uptake), membrane integrity, and cell survival of cultured human buccal epithelial
cells (HBEC) dose-dependently. AN extract also leads to DNA single-strand breaks and DNA-
protein crosslinking [20,41,45]. Furthermore, different preparations of AN extracts, i.e., acetic
acid extract of areca nut (AAEAN), HCl extract of areca nut (HEAN), aqueous extract of
areca nut (AEAN), and ethanol extract of areca nut (EEAN) along with arecoline produced
cytotoxic and cytostatic effects to varying degrees, and induced variable levels of unscheduled
DNA synthesis in Hep2 cells under in vitro conditions in a dose-dependent manner. As
mentioned earlier, a potent effect was observed in the most potent properties of arecoline,
EEAN, and HEAN [20,21]. Exposure of cultured human oral keratinocytes (HOK) to ripen AN
extract significantly reduced population doubling, increased cellular senescence, decreased cell
proliferation, and cell cycle arrest at the G1/S phase [22] (Table 1). It was assumed that BQ
might promote tumor cell migration by stimulating MMP-8 expression through the MEK/ERK
pathway in some upper aerodigestive tract carcinomas. Among BQ ingredients, arecoline is
a positive MMP-8 regulator [46]. The effect of prostaglandin endoperoxide synthase (PTGS)
on OC development was investigated in terms of exposing AN extract to two human oral
cancer cell lines, KB and cellosaurus cell line OEC-M1, and a standard fibroblast cell line (NF)
showed that AN extract significantly inhibited cell proliferation in KB, OEC-M1, and NF. Low
concentrations of AN extract significantly enhanced the activity of PTGS in OEC-M1 and NF
but significantly decreased at high concentrations. Conversely, the activity of PTGS in KB was
inhibited considerably by AN extract, and this effect was dose-dependent [47].

Moreover, when treated with human oral mucosal fibroblasts, arecoline or AN extract
induced an approximately three-fold increase in mRNA levels of the protooncogene c-jun,
independent of endogenous glutathione (GSH) depletion [48]. Additionally, AN extract,
inflorescence of Piper betle, AN polyphenol, catechin, and arecoline reduced cell prolifer-
ation and survival. In contrast, an aqueous lime extract of BQ was found to increase cell
proliferation [49]. Additionally, AEAN induces chromosomal breaks, reduces GSH levels,
and delays cell kinetics in mouse bone marrow cells by inducing sister chromatid exchanges
likely associated with TP53-dependent changes in cell proliferation [46]. Ethyl acetate and
n-butanol extracts of AN and betel leaves have been reported to induce chromosome breaks
in human lymphocytes and Chinese Hamster Ovary (CHO) cells [37].

All components of BQ individually enhance chromatid breaks and exchanges in hu-
man cells in vitro by a range of 12–37%. In addition, AEAN induced DNA cleavage and
enhanced cell proliferation in mouse kidney T1 cells in vitro [20]. Exposure of CHO-K1
cells to AN extract results in increased micronucleus frequency, G2/M arrest, accumulation
of hyperploid or aneuploid cells, and cytokinesis failure. These events correlate with the
increased disassembly of actin filaments and intracellular H2O2 levels [23] (Table 1). AN ex-
tracts also induce actin reorganization, resulting in morphological changes in fibroblastoid,
lamellipodia formation, stress fiber formation in cultured HOK cells, and loss of subcortical
actin [50].

Arecoline has also been reported to inhibit cell spreading, migration, and attach-
ment in cultured human gingival fibroblasts in a dose-dependent manner under in vitro
conditions [51]. Depletion of glutathione S-transferase (GST) activity and GSH has been
manifested in fibroblasts treated with arecoline and cultured HOK [2]. Arecoline exhibited
cytotoxicity to human oral fibroblasts in a dose-dependent manner, whereas cellular GST
activity was dose-dependently downregulated, thereby preventing increased lipid perox-
idation. The addition of extracellular nicotine acts synergistically on arecoline-induced
cytotoxicity, showing that arecoline can render human OMF more susceptible to other
reactive substances in cigarettes through the reduction of GST. These observations may
explain why patients practicing combined tobacco smoking and BQ chewing habits have
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a higher risk of developing OC [52]. In addition, arecoline inhibits the growth of human
KB epithelial cells in a time- and dose-dependent manner by resulting in cell cycle arrest
in G2/M and late S phases due to the initiation of Wee 1, phosphorylated cdc2 proteins,
cyclin Bl, and inhibition of p21 protein expression in KB cancer cells. However, the effects
of arecoline appear to be mediated differently in human gingival keratinocytes. In this
case, arecoline stimulated p21 but restricted cyclin B1 and cdc2 proteins. This clarifies
that differential regulation of G2/M and S cell cycle-associated proteins in KB and HGK
cells plays a vital role at different stages of carcinogenesis [53]. Furthermore, arecoline
can stimulate the phosphorylation of H2A histone family member X (c-H2AX), a sensitive
DNA damage marker, in HEP-2, 293 cells, and KB, suggesting that arecoline induces DNA
damage. Likewise, p53-activated DNA repair and the expression of p53-regulated p21
(WAF1) were suppressed by arecoline [19].

In addition, due to the inhibition of mitochondrial activity and depletion of intracellu-
lar thiols of HGF cells, arecoline appeared cytotoxic. Apart from that, arecoline-induced
cell cycle arrest at the G2/M phase in a dose-dependent manner in HGF cells in in vitro
conditions [17]. HGF exposed to arecoline revealed that four genes related to the main-
tenance of genome stability and DNA repair were repressed, including CHAF1, CHAF2,
FANCG/XRCC9, and BRCA1 [24] (Table 1). Among them, at the minimum, BRCA1 response
was dose-dependent. Cyclooxygenase-2 (COX-2) and PTGS2, involved in cancer initiation
and progression, were upregulated in HGF cells. The two proteins, DNAAJA1 and HSP4A1,
were also upregulated dose-dependently by arecoline [24]. It has been reported that treating
normal oral fibroblasts with AN extract altered the miRNA expression profile. Furthermore,
AN extract-induced upregulation of microRNA-23a (miR-23a) was deemed correlated
with an elevation of c-H2AX. A correlation between the AN chewing habit and miR-23a
overexpression has also been reported in OC patients. Hence, AN-induced miR-23a was
associated with a reduced DNA double-strand break repair and FANCG expression, which
might lead to AN-associated malignancies in humans [54].

Furthermore, oral fibroblasts treated with subtoxic AN extract exhibited MMP-2
activation and growth arrest. The supernatant of arrested oral fibroblasts activated the
Ak strain transforming (AKT) signaling pathway in OC cells. Subcutaneous co-injection
of arrested oral fibroblasts into nude mice significantly increased the tumorigenicity of
xenographic oral carcinoma cells. Therefore, this study concluded that AN extract might
damage oral fibroblasts and regulate the progression of oral epithelial carcinogenesis via
secreted molecules [55]. Several studies have demonstrated the mutagenicity of AN and its
components. For example, arecoline N-oxide, the major metabolite of arecoline, was found
to be moderately mutagenic in Salmonella typhimurium test strains TA 98 and TA 100.

However, N-acetylcysteine, cysteine, and glutathione could potently inhibit this mu-
tagenicity [56]. Furthermore, an aqueous extract of tobacco-free AN induced mutations
in S. typhimurium but not in V79 Chinese hamster cells. Conversely, AEAN induced mu-
tations in S. typhimurium and V79 Chinese hamster cells and induced gene conversion in
Saccharomyces cerevisiae and chromosomal breaks in CHO cells. It has also been reported
that the AN tannin fraction induced gene conversion in S. cerevisiae [36]. An Ames test
of S. typhimurium strain TA 1535 revealed that AEAN, HEAN, and arecoline were weak
mutagens. In contrast, EEAN and AAEAN were strong mutagens, suggesting that the
mutagenic potential of arecoline could be significantly increased by other components of
AN [57–59]. It has also been reported that exposure to AN extract induces mutations at
the hypoxanthine phosphoribosyltransferase locus in human keratinocytes, enhancing the
intracellular levels of reactive oxygen species (ROS) and 8-hydroxyguanosine. It also affects
the frequency of the appearance of micronuclei in the cells, indicating that stress induced by
long-term exposure to AN extract increases genetic damage and oxidative stress in human
keratinocytes [25] (Table 1).
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2.4. Areca Nuts-Related ROS Production and Inflammation

ROS, including hydrogen peroxide (H2O2), hydroxyl radical (HO•), and superoxide
anion (O2

−), are composed of O2 radicals and non-radical species generated by partial
reduction of O2. Mitochondrial oxidative phosphorylation primarily mediates the endoge-
nous generation of cellular ROS. However, they can also be produced through interaction
with exogenous sources such as xenobiotic compounds. Oxidative stress occurs intra-
cellularly when ROS overwhelm the cellular antioxidant defense system, either through
elevated ROS levels or reduced cellular antioxidant capacity [60]. Oxidative stress causes
direct or indirect damage to proteins, lipids, and nucleic acids via ROS and is associated
with carcinogenesis [61], atherosclerosis, diabetes [62], neurodegeneration [63,64], and
aging [65]. However, the involvement of ROS in the pathogenesis of disease states is not
limited to macromolecular damage. It is becoming increasingly evident that ROS signaling
contributes to disease development. For example, ROS has been reported to promote
tumor metastasis through gene activation [66]. As already mentioned, AN, in combination
with lime, forms ROS such as HO• [39,67]. The formation of HO• is promoted by the
auto-oxidation of polyphenols from AN by Haber–Weiss or Fenton reactions in the presence
of transition metals [68].

Mechanisms include enhancement of ROS production by mitochondrial metabolic
enzymes such as cytochrome P450s (CYPs) [69], NADPH oxidase enzymes NOX-4 and
NOX-1 [26] (Table 1), and the inhibition of the antioxidant system by suppressing super-
oxide dismutase activity [70,71]. Additionally, arecoline has been reported to induce ROS
production in several cell types. For example, in endothelial cells, it stimulates ROS produc-
tion to suppress the expression of the cytoprotective enzyme hemeoxygenase-1 (HO-1) [72].
HO-1 is a stress protein that regulates a cytoprotective response to diminishing cellular
damage [73]. Furthermore, AN elevates the expression of the Interleukins-1b (IL-1b), IL-
6, IL-8, and tumor necrosis factor-a (TNF-a), in human peripheral blood mononuclear
cells (PBMC) [74,75] and lipid mediators’ leukotriene B4 and prostaglandin E2 (PGE2) in
neutrophils [76,77].

Clinical research has reported the elevated expression of various proinflammatory
cytokines by PBMCs in OSF patients [78] and several inflammatory mediators in OSF
tissues [79] and OC patients [80,81]. The evidence suggests that regular exposure to AN
by habitual chewers may lead to the long-term expression of myriad proinflammatory
mediators by immune cells and create a proinflammatory oral microenvironment with the
potential for cancer development [82]. PGE2, IL-1α, and COX-2 are inflammatory mediators
commonly identified in various tumorigenesis, including OSCC [80,83,84]. Blocking the
expression of IL-1α or COX can reduce tumor development [85]. Conversely, increased
production of PGE2 may allow malignant clones to evade immune detection [84]. Inter-
estingly, IL-1 is also a potent stimulator of the upregulation of PGE2, COX-2, and other
cytokines [86,87]. Correspondingly, AN extract or arecoline induces the generation of
ROS in keratinocytes and fibroblasts; following transforming growth factor (TGF-β), IL-6,
extracellular signal-regulated kinase (ERK), Ras, and epidermis growth factor receptor
(EGFR) are stimulated [26–28] (Table 1). Various cytokines or signaling pathways in re-
sponse to AN treatment could be cell-type specific. Clinically, adjacent tissues of OSF and
OC patients from a prevalent chewing area have increased inflammation-related cells [88].
Briefly, AN increases ROS levels, enabling cellular inflammation and tumor progression
through multiple molecular regulators (Figure 2).
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Figure 2. Schematic representation of the action of reactive oxygen species (ROS) leading to inflam-
mation. ADAM17 (ADAM metallopeptidase domain 17); ASC (Activating signal co-integrator 1); 
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Figure 2. Schematic representation of the action of reactive oxygen species (ROS) leading to inflamma-
tion. ADAM17 (ADAM metallopeptidase domain 17); ASC (Activating signal co-integrator 1); BMP4
(Bone morphogenetic protein 4); IKB-α (Inhibitor of nuclear factor kappa B kinase regulatory subunit
alpha); IKK (Inhibitor of nuclear factor kappa-B kinase); IP3R (Inositol 1,4,5-trisphosphate receptor
type 3); JNK (c-Jun N-terminal kinase); LPC (Lysophosphatidylcholine); LPS (Lipopolysaccharide);
NF-κB (Nuclear factor kappa subunit B); NLRP3 (NLR family pyrin domain containing 3); NOX
(NADPH oxidase); OxPL (Oxidized phospholipids); PAR (Par family cell polarity regulator); PAK
(p21 (RAC1) activated kinase); SOD (Superoxide dismutase); TLR4 (Toll-like receptor 4); TNF-α
(Tumor necrosis factor alpha); TNFR (TNF receptor superfamily); TNFR1 (TNF receptor superfamily
1); TXNIP (Thioredoxin interacting protein); Ub (Ubiquitin).

2.5. AN-Induced Cell Motility and Epithelial-Mesenchymal Transition (EMT)

Cell motility is a crucial characteristic of the malignancy reaction for most cancer
invasions and metastasis. MMP and tissue inhibitors of metalloproteinase (TIMP) are
essential factors in OSF [89] and OC [90]. The definite mechanism for the malignant trans-
formation of healthy oral epithelium remains ambiguous. MMPs play a crucial role in
extracellular matrix (ECM) degradation, a process essential for tumor growth, invasion,
and metastasis. The MMP family comprises≥ 28 members classified as collagenases, gelati-
nases, stromelysins, matrilysins, or membrane-type MMPs, primarily based on substrate
specificity and their sequence homology [91,92].

The involvement of the gelatinases, such as MMP-2 and MMP-9, with the development
and progression of cancer is well documented [91,92]. TIMPs control the enzymatic activity
of MMPs. TIMPs counteract MMP’s enzymatic activity. Four varieties had been identified,
comprising TIMP-1, 2, 3, and 4. TIMP-1 and TIMP-2 can inhibit all non-membrane-kind
MMPs, which include MMP-9 and MMP-2. The elevated MMP levels and the decreased
levels of inhibitors may enable tumor progression and development [91,92]. Numerous
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molecular signaling pathways, including p38, mitogen-activated protein kinase (MAPK),
Erk1/2, NF-kB, and phosphoinositide 3-kinases (PI3K), could be involved in the modulation
of TIMP and MMP expression [91–93]. These can act via the muscarinic M4 receptor [93].
According to the clinical findings, excessive MMP-1 or MMP-9 are detected in the cancer
tissues or saliva specimens of OC patients who consumed AN [93–95]. The AN induces
cell motility via the activation of MMP. However, various MMP proteins may respond
specifically in different individuals.

EMT, critical for proper development during embryogenesis and wound healing, is in-
volved in several pathological processes, including degenerative fibrosis and cancer [96–99].
Although this process was initially described as an “epithelial-to-mesenchymal transfor-
mation”, this trans-differentiation process is now termed EMT to emphasize the transient
nature of the transformation of epithelial cells into motile mesenchymal cells [97]. Various
molecular processes are activated during EMT, including transcription factor activation,
epithelial cell surface protein downregulation, loss of connectivity, and apical-basal polarity
by epithelial cells. In addition, EMT is associated with the reorganization and expression of
cytoskeletal proteins, upregulation of mesenchymal markers, formation of ECM degrading
enzymes, reprogramming of gene expression by specific microRNAs, and changes in cell
shape from cuboidal to fibroblastoid [97–99].

Eventually, all these processes elevate the motility of individual cells and allow the
development of an invasive phenotypic feature capable of degrading the basement mem-
brane and migrating through the ECM to colonize numerous territories during embryonic
development and cancer progression [96,100–102]. Recent studies have proven that AN
extract would stimulate oral fibrogenesis and carcinogenesis through the ECM. AN extract
or arecoline induces fibroblast trans-differentiation in buccal mucosa fibroblasts (BMFs),
which may drive by EMT-related transcription elements, including Twist, Slug, and Zinc
finger E-field binding homeobox 1 (ZEB1) [29,103,104] (Table 1). ZEB1 may participate in
the pathogenesis of AN-associated OSF by activating the α-smooth muscle actin (α-SMA)
promoter and inducing myofibroblast trans-differentiation from BMFs [103]. Further, the
upregulation of Twist might be involved in the pathogenesis of AN-associated OSF through
dysregulation of myofibroblast activity [103]. AN induces fibrotic activation preassembly
through the induction of the EMT process via TGF-β signaling pathways in epithelial cells
or gingival fibroblasts [30,105] (Table 1).

Consistently, in either cancer cells or oral keratinocytes, AN mediates the EMT process
by decreasing epithelial markers (E-cadherin, involucrin) and increasing mesenchymal
markers (N-cadherin, vimentin) via activating the phosphoinositide-3-kinase–protein ki-
nase B/Akt (PI3K-PKB/Akt) pathway [106,107]. Additionally, chronic or long-term AN
treatment in cancer or oral epithelial cells promotes mesenchymal trans-differentiation, with
the induction of multiple EMT-associated transcription factors; Slug, Twist, ZEB1, Snail,
Grp78 and forkhead box C2 (FOXC2) [96,108,109]. Furthermore, Keratin 17 (Krt-17), which
belongs to the keratin family, is upregulated upon the AN treatment and facilitates cell
motility and malignant transformation via EMT conversion in a mouse model study [15].
In addition, the EMT-associated factor Slug has been upregulated in oral fibroblastic tissues
and correlated with different myofibroblast markers, α-SMA [29,103]. Furthermore, loss of
E-cadherin expression and elevation of EMT-associated transcription factors or Krt-17 were
also significantly associated with OC in habitual BQ chewers [15,94,110] (Figure 3).
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mal to epithelial cells is known as a mesenchymal–epithelial transition (MET). CDH1 (Cadherin 1);
DLL1/3/4 (Delta-like canonical Notch ligand 1); ECM (Extracellular matrix); EGF (Epidermal growth
factor); EGFR (Epidermal growth factor receptor); EMT-TF (Epithelial-mesenchymal transition-
transcription factors); GSK3β (Glycogen synthase kinase-3 beta); HIF-1α (Hypoxia-inducible factor-1);
JAG2 (Hs00171432_m1), JAG1 (Hs01070032_m1); MAPK (Mitogen-activated protein kinase); MMPs
(Matrix metalloproteinases); NICD (Notch Intracellular Domain); PI3K (Phosphatidylinositol 3 ki-
nase); SMAD (Suppressor of Mothers against Decapentaplegic); SNAI1 (Zinc finger protein); STAT3
(Signal transducer and activator of transcription 3); TGF-β (Transforming growth factor-β); TWIST1
(Twist-related protein-1); WNT (Wingless/Integrated pathway); ZEB1/2 Zinc finger and home-
odomain transcription factor.

2.6. Areca Nut Stimulates Autophagy and Restrains Tumor Suppressors

Autophagy is a self-repair mechanism by which cells degrade defective or damaged
cellular components and recycle intracellular proteins to ensure survival in hostile environ-
ments. Failure of autophagy leads to cell death by either apoptosis or necrosis. Autophagy
can play a dual role in carcinogenesis, but in most cases, it promotes tumorigenesis [111].
Cancer cells can upregulate autophagy to withstand microenvironmental stress and increase
aggressiveness and growth. Autophagy promotes cancer by suppressing the induction of
the tumor suppressor protein p53 and maintaining mitochondrial metabolic function [112].
AN can induce autophagy through clathrin-mediated endocytosis [112]. Additionally,
beclin-1, Autophagy related 5 (Atg5), and MEK/ERK pathways are commonly required
for AN-induced autophagy. Long-term AN usage might elevate the resistance of survived
tumor cells against serum-limited conditions [113,114].

Further, microtubule-associated protein light chain 3-II (LC3-II) transition and Poly
(ADP-ribose) polymerase (PARP) cleavage mechanisms were still detected in the serum-
starved cells after AN treatment, suggesting simultaneous activation of apoptotic and
autophagic pathways [115]. Moreover, p38 activation and MAPK phosphatase (MKP-1)
upregulation occurred after AN treatment. AN treatment-induced autophagy in OC cells
by the accumulation of LC3-II, formation of autophagosomes, and appearance of enhanced
green fluorescent protein-protein light chain 3 (EGFP-LC3) puncta. This induction was
mediated through activation of MKP-1, hypoxia-inducible factor-1α (HIF-1α), and p38.
Autophagy can be reduced by knocking down AN-modulated HIF-1alpha expression.
Furthermore, blocking AN-induced autophagy increased the proportion of OC cells under-
going apoptotic death [116].

In addition to inducing autophagy, AN may inhibit tumor suppressor molecules
and induce malignant transformation. Arecoline has been shown to contribute to oral
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carcinogenesis by inhibiting p53 and DNA repair. Moreover, arecoline induced γ-H2AX
phosphorylation, suggesting that DNA damage was mediated by arecoline. This phe-
nomenon was confirmed by the observation of arecoline-induced hyperphosphorylation
of Nbs1, ATM, Chk1/2, Cdc25C, and p53 and G2/M cell cycle arrest, suggesting that the
cellular DNA damage response was activated. As previously mentioned, arecoline may
inhibit p53 through its expression and transactivation functions. As a result, expression of
WAF1 and p53-activated DNA repair were suppressed by arecoline [19].

Furthermore, p21 and p27 levels were elevated in two OSCC cell lines with high
confluence [117]. In addition, elevated levels of p21 and p27 may be downregulated by
the ROS/mTOR complex 1 pathway upon treatment with arecoline. Arecoline also leads
to ROS-induced DNA damage. This suggests that reduced levels of p21 and p27 may
promote the G1/S transition of the cell cycle, resulting in error-prone DNA replication [117].
Briefly, AN may contribute to cellular transformation by activating cellular stress response
mechanisms; ROS generation, autophagy induction, and tumor suppressor inhibition
(Figure 4).
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Figure 4. The molecular pathway of Autophagy. Due to the microenvironmental stress, AMP-
activated protein kinase (AMPK) is activated, leading to the activation of ULK-1 complex (ULK-1,
ATG13, ATG101, and FIP200). ULK-1 complex activation leads the assembly of Class III Phospho-
inositide 3-kinases (PI3Ks) (Beclin-1, Vps34, AMBRA, p150, and ATG14). Both ULK-1 complex and
Class III PI3K translocate to the nucleation site and stimulate the establishment of the isolation
membrane known as the phagophore. Elongation of the phagophore befalls via the effect of ATG5-
ATG12-ATG16 and LC3-II until a double membrane vesicle is formed, known as the autophagosome.
Autophagosomes fuse with the lysosome, which leads to degradation of cargo via the effect of
lysosomal enzymes with release of biomolecules.
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2.7. Areca Nut Consumption Evokes Genotoxicity, Cytotoxicity, Cell Cycle Arresting,
and Apoptosis

AN extracts exert cytotoxic and genotoxic effects on HBEC27, possibly related to
its ability to elevate DNA strand breaks, micronucleus formation, gene mutation, and
promote chromosomal abnormalities [118,119]. Arecoline is reported to induce a genotoxic
effect [118–120]. Additionally, it has been revealed that arecoline can induce cell cycle
arrest at the G2/M stage [17,53], which is a consequence and a characteristic feature of cells
with DNA damage. In a mouse model study, AN alkaloids have induced sister chromatid
exchanges. Arecoline, the principal alkaloid of AN, is clastogenic in many studies [118–120].
Arecaidine, another alkaloid, is also reported to be genotoxic in sister chromatid exchange
induction assays [31]. In a transgenic mouse study, the frequency of mutations at G:C
sites, where G:C→T:A transversions were most frequent, followed by G:C→A:T transitions
and G:C→C:G transversions were increased in arecoline, suggesting that arecoline poses a
mutagenic hazard in the oral tissues of transgenic mice [32] (Table 1).

Further, arecoline may prompt cytotoxicity in oral mucosal epithelial cells and fibrob-
lasts; nevertheless, its underlying mechanisms are not fully understood [27,49,121]. Cell
cycle arrest, PGE2 synthesis, and cytotoxicity to primary oral keratinocytes and KB cancer
cells are some of the cellular and biochemical processes induced due to AN ingredients [27].
Preexisting literature has reported that exposure of human KB cancer epithelial cells, CHO-
K1 cells, and oral mucosa fibroblasts to arecoline can evoke G2/M cell cycle arrest and
even apoptosis [23,52,53]. Exposure to >0.2 mM arecoline reduces the proportion of EAHY
cells that exist in the S phase [122]; however, it increases the cell arresting in the G2/M
phase, suggesting that the anti-proliferative and cytotoxic effects of arecoline are feasibly
correlated with the changes of cell cycle regulatory proteins such as checkpoint kinases,
ATM, p53, and cdc25C for G2/M checkpoint [19,121]. Still, arecoline-induced DNA dam-
age, p21 and p53 expression, and G0/G1 arrest in cultured rat hepatocytes [33] (Table 1).
This indicates that the cell cycle response to arecoline differs amongst cells, possibly due to
distinct cellular metabolic enzymes in different tissues. Furthermore, arecoline’s prolonged
cell cycle dysregulation may result in chromosomal aberration, aneuploidy, and genomic
instability [123,124].

AN and arecoline induce G2/M cell cycle arrest of oral epithelial cells via triggering
Chk1/Chk2 signaling pathways to offer the time for DNA repair [17,82] because AN and
arecoline are known to exhibit genotoxicity [125]. In oral keratinocytes, AN may cause
cellular senescence and cell cycle arrest through the upregulation of p21, p38, p16, NF-B,
COX-2, and IL-6 [22]. In addition, Ras may regulate p53, further affect cdc25 and cyclinB1,
and induce cellular senescence [126], signifying Ras activation in the modulation of oral
carcinogenesis. As previously indicated, the primary alkaloid of AN, arecoline, is known
to cause ROS generation and apoptosis. In addition, arecoline may inhibit AMP-activated
protein kinase (AMPK) through intracellular ROS, which is responsible for the execution
of apoptosis [116]. Briefly, different molecular pathways and cytotoxic effects in response
to AN stimulation may depend on differential microenvironmental factors or specific cell
types. Generally, growth arrest or apoptosis is considered the optimal cellular defense
mechanism to evade further effects of malignant transformation.

2.8. Areca Nut Promotes Malignant Transformation by Inducing Tissue Hypoxia

Hypoxia in the tissue microenvironment alters cellular metabolism and induces vari-
ous pathological reactions [127]. These hypoxic conditions may be correlated with cellular
oxidative stress [69,127]. Additionally, it activates the anaerobic respiratory pathway by
increasing the enzymes lactate dehydrogenase, glucose transporter, or hypoxia-inducing
factor (HIF) [128–130]. It is recognized that hypoxia is a crucial underlying element in the
development of tumors and cancers. Several cellular mechanisms, namely sustained HIF
proliferative signaling, dysregulated metabolism, and angiogenesis [131,132], are reported
to be influenced by hypoxia and HIF signaling. Hypoxia plays a critical role in these
hallmarks [133]. HIF-1 is a crucial mediator of cellular adaptation to low O2 levels. HIF-1 is
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a heterodimer comprised of α and β subunits. HIF-1α is an O2-regulated subunit induced
in response to various stimuli, such as cytokines, growth factors, and hypoxia [134].

It has been suggested that the etiology of OSF related to AN chewing may be in-
fluenced by hypoxia through the expression of HIF-1 [135]. OSF intrinsically expresses
elevated levels of HIF-1α protein than BMF, signifying the presence of the localized hypoxic
condition in OSF tissues [136]. Arecoline also could promote HIF-1 expression in BMFs. By
stimulating the plasminogen activator inhibitor (PAI-1), which promotes the deposition
of ECM in the oral submucosa, hypoxia through HIF-1 may lead to fibrogenesis [136]. Lu
et al. identified that AN modulates a signaling cascade that induces HIF-1α expression
in OC cells [116]. The eventual initiation of autophagy was helpful to cell survival from
AN-induced apoptosis [116]. Additionally, chronic stimulations of AN improve OC and
leukemia T cells’ tolerance to anti-cancer medications, as well as to hypoxia and glucose
deprivation, and increase autophagy activity, which increases drug resistance [137].

Tissue hypoxia may also promote EMT by activating several transcriptional factors,
including Twist1 and Snail, to promote the growth of tumors [138,139]. In addition, previ-
ous studies have shown the association between HIF-1α and vascular endothelial growth
factor (VEGF) in OSCC, and elevated levels of HIF-1α expression appear to predict a poor
prognosis. Prolyl hydroxylases (PHDs) modify HIF-1α and prepare it for proteasomal
degradation at physiological concentrations of O2. In hypoxic conditions, these PHDs
are inhibited, and HIF-1α dimerizes with HIF-1β to form HIF-1, which is responsible for
the activation of several genes, including VEGF, which is an essential regulatory gene of
angiogenesis in the adaptation to a hypoxic microenvironment [140]. Hypoxic conditions
may also promote resistance in the tumor microenvironment by activating pathways linked
to stemness, such as Sox2, AKT/Notch1, and Oct3/4 molecular signals [141,142] (Figure 5).Clin. Pract. 2023, 13, FOR PEER REVIEW  15 
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HIF-1α is degraded rapidly, while in hypoxic conditions, it is accumulated. HIF-1α associates with
HIF-1β, and the resulting heterodimer binds to the hypoxia response element (HRE) of target genes.
The factor inhibiting HIF-1 (FIH-1) is a protein that binds to HIF-1α and inhibits its transactivation
function. The von Hippel–Lindau (VHL) protein is a tumor suppressor.
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2.9. Areca Nut Metabolites on the Oral Microbiome

The oral microbiome is the collection of microorganisms that live in the mouth, includ-
ing bacteria, viruses, and fungi [143]. A healthy oral microbiome is essential for maintaining
oral health and preventing disease, including oral cancer [144].

Researchers investigate the potential impact of Areca nut on the oral microbiome.
Several studies have found that Areca nut metabolites, specifically arecoline and arecaidine,
can alter the composition and diversity of the oral microbiome [145]. These changes can
lead to a reduction in beneficial bacteria and an increase in harmful bacteria, which can
cause oral inflammation and oxidative stress. Inflammation and oxidative stress are known
risk factors for oral cancer [146].

A study by Chen et al. (2022) found that Areca nut metabolites altered the composition
and diversity of the oral microbiome, leading to a reduction in beneficial bacteria, such as
Lactobacillus, and an increase in harmful bacteria, such as Porphyromonas gingivalis [147].
These changes can cause oral inflammation and oxidative stress, increasing the risk of oral
cancer [145]. Furthermore, Hernandez et al. (2017) found that Areca nut use led to changes
in the oral microbiome, including an increase in the number of potential carcinogenic
bacteria, such as Fusobacterium nucleatum [148,149], and a reduction in the number of
beneficial bacteria, such as Streptococcus salivarius [149]. This shift in the oral microbiome
can increase the risk of oral cancer by promoting inflammation and oxidative stress [148].

In a systematic review and meta-analysis of the impact of Areca nut on the oral
microbiome, Zhong et al. (2021) found that Areca nut use led to significant alterations
in the oral microbiome, including changes in the abundance and diversity of bacterial
species. These changes may increase the risk of oral cancer by promoting inflammation
and oxidative stress [149].

3. Conclusions

AN is an addictive substance widely consumed by all age groups, specifically in
Southeast Asia. Apart from being a carcinogenic agent, it may have negative effects on the
human body, impacting nearly all organs. Numerous in vitro and in vivo investigations
have demonstrated AN’s carcinogenicity, mutagenicity, and genotoxicity, evidencing its
position as a carcinogen beyond doubt. In addition, AN metabolites can significantly impact
the oral microbiome, leading to changes that may increase the risk of oral carcinogenesis.
Many molecules involved in cell cycle control, DNA damage, hypoxia, cell senescence,
and many other biological processes related to carcinogenesis were studied, and there is
substantial evidence for AN-induced malignant transformation in OSF.

Furthermore, OSF incidence is high in geographical regions where habitual chewing of
AN is also prevalent. Comparatively, OC patients with a frequent AN chewing habit were
exposed to more aggressive cancer phenotypes, with elevated rates of cancer metastasis,
recurrence, and poor patient survival. Hence, the evidence points to the conclusion that
ANs lead to oral carcinogenesis via complex mechanisms. It is evident that harmful and
addictive substances in AN affect the whole human body, and its consumption is essential
to be regulated for the well-being of society.
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