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Abstract

Toxicokinetic (TK) properties are essential in the framework of chemical risk assessment
and drug discovery. Specifically, a TK profile provides information about the fate of chem-
icals in the human body. In this context, Quantitative Structure—Activity Relationship
(QSAR) models are convenient computational tools for predicting TK properties. Here, we
developed QSAR models to predict two TK properties: oral bioavailability and volume
of distribution at steady state (VDs;). We collected and curated two large sets of 1712 and
1591 chemicals for oral bioavailability and VDsg, respectively, and compared regression and
classification (binary and multiclass) models with the application of several machine learn-
ing algorithms. The best predictive performance of the models for regression (R) prediction
was characterized by a Q?p;3 of 0.34 with the R-CatBoost model for oral bioavailability and
a geometric mean fold error (GMFE) of 2.35 with the R-RF model for VDss. The models
were then applied to a list of potential endocrine-disrupting chemicals (EDCs), highlighting
chemicals with a high probability of posing a risk to human health due to their TK profiles.
Based on the results obtained, insights into the structural determinants of TK properties for
EDCs are further discussed.

Keywords: QSAR; oral bioavailability; volume of distribution; endocrine-disrupting
chemicals; Toxicokinetics

1. Introduction

In the realm of drugs, pharmacokinetics (PK) refers to the characterization of the
absorption, distribution, metabolism, and excretion of xenobiotics in an organism [1].
Toxicokinetics (TK) is closely related to pharmacokinetics (PK), as it involves the gen-
eration of PK data, either as part of nonclinical toxicity studies or through dedicated
supportive studies to evaluate systemic exposure. Such analyses are largely used in
pharmaceutical and chemical industries, as they are critical for gaining insights into
the TK propensities of potential drug candidates and for assessing risks associated with
environmental chemicals [2,3].
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To limit the costs of such experiments and still provide relevant information for
decision-makers in the field of drug discovery and chemical risk assessment, in silico
models capable of predicting key TK/PK properties, notably oral bioavailability and
volume of distribution (VD), are commonly developed for initial estimation [4].

Oral bioavailability characterizes the fraction of an orally administered drug that
reaches the systemic circulation (F%). It is calculated based on the relationship between
plasma chemical concentration and time after administration. Oral bioavailability is de-
fined as the percentage of the dose area under the curve of the chemical concentration
in the plasma after oral administration, divided by the dose area under the curve of the
concentration of the drug in the plasma after intravenous administration [5]. This compari-
son yields information about the proportion of chemicals reaching the bloodstream since
intravenous administration circumvents the digestive system and first-pass metabolism.
High oral bioavailability can result in exposure to toxic compounds after intake, and low
oral bioavailability for drugs can increase the required dose, with the associated risk of
toxicity through accumulation and metabolites [6].

The volume of distribution (VD) measures the ability of a chemical to remain in plasma
or to redistribute to other tissue compartments. VD is computed by considering the amount
of a chemical in the body divided by the plasma concentration of the same chemical [7]. In
the field of drug discovery, having a priori knowledge about VD assists in optimizing drug
therapies, avoiding undesirable effects, and proposing effective treatments. Specifically, at
a constant clearance rate, a chemical with a high VD will have a longer elimination half-life
than one with a low VD [8], since the former will persist in tissues while being slowly
released into the bloodstream. Therefore, knowing the VD of environmental chemicals is
also important in the field of chemical risk assessment since these chemicals might remain
longer in tissues, which could lead to accumulation in the human body and result in toxicity,
especially for lipophilic drugs [6]. Different VD-related terms are commonly used, with
the volume of distribution at steady state (VDss) generally being the most relevant, as it
is used to determine the VD associated with the steady-state dosing of the chemical. It is
calculated during the phase called “steady state”, when the distribution and elimination
phases are equal [7].

Several computational studies have been conducted to predict oral bioavailability [9-16]
and VDs;, and many have used QSAR models [17-21]. Most existing models have focused
on oral bioavailability using classification approaches, while regression models have been
primarily developed for VDgs, notably using Lombardo et al.’s dataset [17]. In our work,
we combined datasets from multiple sources, including a newly developed dataset from
Liu et al. [22].

In this context, we decided to collect a large dataset of chemicals and to develop
different modeling algorithms for regression, binary-class, and multiclass prediction for
oral bioavailability and VDsg;.

The most relevant models were then used to assess the TK properties of potential
endocrine-disrupting chemicals (EDCs). The focus on this category of chemicals is moti-
vated by the fact that EDCs can disrupt the endocrine system and cause cancer, metabolic
disorders, neurocognitive functions, infertility, immune diseases, and allergies [23-27] by
interfering with the estrogen, androgen, and thyroid hormone receptors, exerting steroido-
genesis (ER, AR, and TR)-mediated effects [28]. Thus, predicting potential EDCs with high
oral bioavailability and high VDss could be relevant for regulatory purposes.

To complement this work, we also applied an existing QSAR model to predict the
elimination half-lives (t; /) of EDCs. The elimination half-life is a key toxicokinetic parame-
ter that reflects the time required for the concentration of a chemical in the body to decrease
by half. This feature is crucial for assessing a compound’s persistence, bioaccumulation
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potential, and dosing frequency, making it an important factor in risk assessment and
regulatory decision-making [29,30].

Finally, this large-scale analysis provides insights into the structural features that
might be important in the determination of TK for EDCs, which is further discussed below.

2. Results
2.1. Data Distribution

Starting from the chemicals with experimentally known F% and VDss, multiple
datasets were designed. The number of chemicals in each dataset is reported in Table 1.

Table 1. Number of chemicals used to develop QSAR models, according to the modeling algorithms,
for oral bioavailability and VDss.

Endpoint Dataset Modeling Algorithm Number of Chemicals
Regression 1213
Oral Training Classification (50% threshold) 1307
bicavailability Binary classification (30% and 60% thresholds) 1244
Validation Regression/binary classification/multiclass classification 405
Training 1167
VDs;s Validation 1 Regression/binary classification/multiclass classification 390

Validation 2 34

The work described herein relied on three datasets for training models to predict
oral bioavailability. The first dataset contained 1213 chemicals and was used to train
regression models. The second dataset was composed of 1307 chemicals and was used to
train classification models with a 50% dichotomizing threshold. The third dataset consisted
of 1244 chemicals and was used to train multiclass models. All models trained on the three
datasets were then evaluated on a common set of 405 chemicals with known F% values.

For the VDg; analysis, a single dataset containing 1167 chemicals was used to train
regression and multiclass classification models. Two validation sets, one with 390 chemicals
and the other with 34, were used. The first set was used to assess the overall performance
of the trained model both with and without applying applicability domains, whereas the
second set was used to compare the model’s predictive performance with that of published
QSAR models for the same endpoints, given that it is a set of chemicals commonly used to
compare the precision of QSAR models in the literature.

2.1.1. Oral Bioavailability Data

The distributions of F% for the training and validation sets cover the complete endpoint
range while having a similar shape, and therefore, they are suitable for model evaluation
and training (Figure 1a). Indeed, the bioavailability values span the entire range from 0%
to 100%. The distribution exhibits peaks at 0% and 100% bioavailability. This characteristic
could be due to the limitations of oral bioavailability testing methods, as discussed by
Aungst et al. [31]. The presence of many chemicals associated with 0% or 100%, with few
in-between values, likely introduces a bias where the model yields correct predictions for
the majority classes while displaying poor performance for intermediate values.
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Figure 1. (a) Histograms of the distribution of oral bioavailability for the training set and the validation
set for all chemicals with continuous F% values. (b) Distribution of the values characterizing VDs;
for the training set and validation sets 1 and 2.

2.1.2. Volume of Distribution Data

Figure 1b shows the distribution of VDgs values across the training set, validation
set 1, and validation set 2. To address the skewed nature of the VD¢ distribution (from
0.035 L-kg~! to 700 L-kg™') and facilitate model convergence, the dependent variable
was logarithmically transformed, in base e, when regression models were applied. The
distribution of VDgs values across the training set, validation set 1, and validation set
2 is depicted in Figure 1b. We can observe that all three datasets exhibit comparable
distributions across this range, ensuring coverage of VDss values for model training
and evaluation.

2.1.3. Chemical Space

The chemical space covered by the chemical sets was characterized using a Uniform
Manifold Approximation and Projection for Dimension Reduction (UMAP) representa-
tion [32], facilitating a comprehensive exploration of the molecular landscape and enabling
insightful analysis of the distribution of chemicals (Supplementary Figure S1).

UMAP on the oral bioavailability dataset (Supplementary Figure Sla) shows the
distribution of chemicals while accounting for their F% values. The plot reveals that most
points are distributed all around the two axes and exhibit a wide range of F% values,
highlighting the difficulty of finding patterns between F% values and chemical similarity.

The UMAP representation of the In(VDss) values (Supplementary Figure S1b) projects
the high-dimensional VDss dataset onto a two-dimensional map. The plot highlights
the range of VDgs values, with higher values on the left and lower values on the right,
illustrating the relationship between chemical similarity and VDss values.

These observed patterns support the pertinence of using machine learning models
for F% and VD prediction. Machine learning algorithms can potentially learn effective
predictive models that capture the diverse landscapes observed in these datasets.

2.2. Predictive Performance
2.2.1. Oral Bioavailability Performance

Multiple models were trained and evaluated to predict oral bioavailability. Regression
models were evaluated for the prediction of continuous values, while for binary-class and
multiclass prediction, we imposed 50% and 30-60% thresholds. All models were evaluated
using dedicated metrics.



J. Xenobiot. 2025, 15, 166

50f 25

From the 1826 molecular descriptors computed with Mordred, the most relevant ones
were selected using the VSURF algorithm. This resulted in the selection of 66 molecular
descriptors for a Topliss ratio (number of training chemicals per molecular descriptor) of
18:1 for the regression model, 59 molecular descriptors (Topliss ratio of 26:1) for binary
classification prediction with a 50% threshold, and 70 molecular descriptors (Topliss ratio
of 23:1) for multiclass prediction with 30-60% thresholds, with the Topliss ratio largely in
compliance with the recommended threshold (>5) to avoid overfitting. Then, these selected
molecular descriptors were utilized as input features to train the CatBoost, XGBoost, and
RF models for predictive modeling.

The predictive performance of the algorithms was evaluated across regression (R),
binary classification (BC), and multiclass classification (MC) tasks, with the regression task
further assessed for its ability to facilitate classification-based predictions for the training
and validation sets.

As the majority of the models developed showed high performance values on the
training sets (Supplementary Tables S2a, S3a and S4a), we evaluated the performance using
five-fold cross-validation on training sets in order to select the best models. More precisely,
models characterized by the highest mean Q?f3, BA, and macro-BA for, respectively, re-
gression, binary classification, and multiclass classification (for internal validation), were
selected. Ultimately, the R-CatBoost, BC-CatBoost, and MC-CatBoost models were retained
as the best models since they were characterized by the highest Q”g3, BA, and macro-BA
(0.34 £ 0.05, 0.74 £ 0.02, 0.69 + 0.02, respectively) (Table 2).

Table 2. Performance obtained for the QSAR models in predicting oral bioavailability on the valida-
tion set. The predictive performance of the algorithms was evaluated across regression (R), binary
classification (BC), and multiclass classification (MC) tasks. NA means not applicable.

Performance Performance for Performance for Cross-Validation CV Performance for CV Performance
Metric for Binary Multiclass (CV) Performance Binary for Multiclass
Regression (R) Classification (BC) Classification (MC)  for Regression (R) Classification (BC) Classification (MC)
Validation Set Ccv
Model R-CatBoost BC-CatBoost MC-CatBoost R-CatBoost BC-CatBoost MC-CatBoost
Regression metrics
RMSE 25.86 NA 27.71+£0.98
R? 0.42 NA NA 0.38 £0.04 NA NA
MAE 20.09 NA NA 20.90 +0.82 NA NA
MedAE 15.92 NA NA 17.01 +£1.11 NA NA
Q%53 0.39 NA NA 0.34 £ 0.05 NA NA
Binary classification metrics
Sensitivity 0.78 0.79 NA 0.75 £ 0.03 0.78 £0.03 NA
Specificity 0.76 0.68 NA 0.72+£0.03 0.69 +0.04 NA
Balanced accuracy 0.77 0.74 NA 0.74 £0.02 0.74 £0.02 NA
Multiclass classification metrics
Sensitivity (<30%) 0.46 NA 0.67 0.45 £ 0.05 NA 0.64 £ 0.05
Specificity (<30%) 0.91 NA 0.86 0.93 £0.03 NA 0.83 £0.03
Balanced accuracy (<30%) 0.68 NA 0.77 0.63 +0.02 NA 0.74 +0.02
Sensitivity [30-60%] 0.58 NA 0.25 0.69 +0.02 NA 0.31 +£0.05
Specificity [30-60%] 0.63 NA 0.89 0.63 +£0.03 NA 0.88 £0.02
Balanced accuracy [30-60%] 0.60 NA 0.57 0.63 +0.03 NA 0.60 +0.03
Sensitivity (>60%) 0.63 NA 0.83 0.63 £ 0.04 NA 0.79 £0.03
Specificity (>60%) 0.84 NA 0.67 0.84 £0.03 NA 0.70 £0.03
Balanced accuracy (>60%) 0.74 NA 0.75 0.74 £ 0.02 NA 0.74 £ 0.02
Macro sensitivity 0.56 NA 0.58 0.57 £0.03 NA 0.58 £ 0.02
Macro specificity 0.79 NA 0.81 0.80 £ 0.01 NA 0.81 £0.01
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Table 2. Cont.
Performance Performance for Performance for Cross-Validation CV Performance for CV Performance
Metric for Bina Multiclass (CV) Performance Bina for Multiclass
Regression (R) Classification (BC) Classification (MC) for Regression (R) Classification (BC) Classification (MC)
Validation Set Ccv

Model R-CatBoost BC-CatBoost MC-CatBoost R-CatBoost BC-CatBoost MC-CatBoost
Macro balanced accuracy 0.68 NA 0.70 0.68 +0.02 NA 0.69 + 0.02
Micro sensitivity 0.56 NA 0.64 0.57 £0.03 NA 0.63 £0.02
Micro specificity 0.78 NA 0.82 0.79 £0.01 NA 0.82 £0.01

For the validation set, the R-CatBoost regression algorithm achieved an R? of
0.43 and a Qg3 of 0.39 (Table 2, Supplementary Table S2a). Furthermore, the mean absolute
error (MAE) is reported at 20.09 (F%) within the range of 0 to 100 (F%). The RMSE is also
significant, with a value of 25.86 (F%). Absolute F% errors of 10 and 20 are illustrated in Sup-
plementary Figure S3. According to Wang et al., the RMSE of experimental measurements
of oral bioavailability is 14.5 (F%) [33], which might explain this high RMSE.

We categorized the outcome predictions from the developed R-CatBoost model into
two classes: high (greater than 50%) and low (less than 50%) oral bioavailability. We then
evaluated the performance for binary classification using the 50% threshold, resulting in
a BA of 0.77 (Table 2, Supplementary Table S3a). In comparison, the best model trained
on binary data, where values are dichotomized into 1 (greater than 50%) and 0 (less than
50%), showed a lower BA, with the BC-CatBoost classification method achieving a BA of
0.74 (Supplementary Table S3a).

We applied the same processing for multiclass classification; we categorized outcome
predictions from R-CatBoost regression into three classes: low (less than 30%), medium
(higher than 30% and less than 60%), and high (higher than 60%) oral bioavailability.
We then evaluated the performance for multiclass classification using the 30% and 60%
thresholds, resulting in a lower macro-BA of 0.67 compared to the multiclass model, MC-
CatBoost, which achieved a macro-BA of 0.70. The analysis of predictive performance
under the 30-60% thresholds (Table 2, Supplementary Table S4a) further highlights notable
trends and disparities among various machine learning approaches in multiclass prediction.
On the validation set, the MC-CatBoost model trained for multiclass prediction achieved a
BA of 0.77 for the <30% class and of 0.75 for the >60% class. However, these models had
low reliability when predicting the intermediate class (between 30% and 60%), showing a
lower BA of 0.57, alongside a pronounced inability to accurately identify chemicals in this
range, exemplified by an SE of 0.25.

The R-CatBoost regression model, while exhibiting lower performance compared to
the double-threshold MC-CatBoost classification model, offers superior versatility and
effectiveness in predicting medium-F% chemicals. It achieved a BA of 0.60 and an SE of
0.58 for the medium-F% class, demonstrating its utility in addressing the complexities
of multiclass prediction tasks. These results emphasize the importance of methodol-
ogy selection, with regression models proving particularly advantageous for medium-
class prediction.

2.2.2. Volume of Distribution Performance

Multiple ML models were trained and evaluated for their robustness in predicting
VDgs. Regression models were evaluated for the prediction of continuous values and for
dichotomous and multiclass predictions with 1 L-kg~! and 0.6 L-kg~'-5 L-kg ! categoriza-
tion thresholds. The models were evaluated using dedicated metrics.

Molecular descriptor selection utilizing the VSUREF algorithm on Mordred molecular
descriptors yielded a subset of 26 molecular descriptors for a Topliss ratio (number of
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training chemicals per molecular descriptor) of 45:1, in compliance with the recommended
threshold (>5) to avoid overfitting. These selected molecular descriptors were used as input
to train the CatBoost, XGBoost, and RF models.

In order to select the best models, we only considered the performance obtained in
five-fold cross-validation on training sets. More precisely, the best models corresponded to
those characterized by the lowest mean GMEFE, the highest BA, and the highest macro-BA
for, respectively, the regression, binary classification, and multiclass models (for internal
validation). According to this logic, the R-RF, BC-Chemprop, and MC-Chemprop models
were retained as the best models since they were characterized by the lowest GMFE, highest
BA, and macro-BA (2.19 £ 0.08, 0.78 & 0.02, and 0.73 £ 0.02, respectively) (Supplementary
Tables S5b, S6b and S7b). These models performed well on training data, with a GMFE
below 2 (Supplementary Tables S5a, S6a and S7a).

For validation set 1, the R-RF regression algorithm achieved a GMFE of 2.35 (Supple-
mentary Table S4a), indicating that the model can be regarded as sufficiently precise [34].
The R-RF regression model was able to predict VD¢ values mostly within 2-fold to 3-fold
errors (Supplementary Figure 54).

From the developed R-RF model, we categorized the outcome predictions into two
classes: high (greater than 1 L-kg~!) and low (less than 1 L-kg ') VDgs. We then evaluated
the performance for binary classification using the 1 L-kg~! threshold, resulting in a BA of
0.75, showing comparable performance to that of the best model, BC-Chemprop trained on
binary data, where values are dichotomized into 1 (greater than 1 L-kg~!) and 0 (less than
1 L-kg™1), which achieved a BA of 0.76 (Supplementary Table S6a).

We applied the same processing for multiclass classification; we categorized the
outcome predictions from R-RF regression into three classes: low (less than 0.6 L-kg™!),
medium (higher than 0.6 L-kg ! and less than 5 L-kg 1), and high (higher than 5 L-kg 1)
VDss. We then evaluated the performance for multiclass classification using the 0.6 L-kg ™!
and 5 L-kg ! thresholds, resulting in a lower macro-BA of 0.68 (Table 3) compared to the
best-performing multiclass model, MC-Chemprop, which achieved a macro-BA of 0.72.
The analysis of predictive performance under the 0.6-5 L-kg~! threshold (Table 3) did
not reveal notable trends, as all classes had a BA greater than 0.60 for all algorithms
(Supplementary Table S7a).

Table 3. Predictive performance of the QSAR models for the prediction of VDgs as a function of
validation set 1. The predictive performance of the algorithms was evaluated across regression (R),
binary classification (BC), and multiclass classification (MC) tasks.

Regression Classification Multiclass CV Regression CV Classification CV Multiclass
Metric Model Model Classification Model Model Classification
Performance Performance Model Performance Performance Performance Model Performance
Validation Set 1 cv
Model R-RF BC-Chemprop MC-Chemprop R-RF BC-Chemprop MC-Chemprop
Regression metrics
GMFE 2.35 NA NA 2.19+0.08 NA NA
Binary Classification metrics
Sensitivity 0.79 0.77 NA 0.79 +0.03 0.73 £ 0.06 NA
Specificity 0.71 0.75 NA 0.75+0.03 0.83 4 0.04 NA
Balanced accuracy 0.75 0.76 NA 0.77 £0.02 0.78 +0.03 NA
Multiclass classification metrics
Sensitivity (<0.6) 0.62 NA 0.68 0.66 &= 0.04 NA 0.7140.05
Specificity (<0.6) 0.91 NA 0.89 0.90 £ 0.02 NA 0.87 £0.03
Balanced accuracy (<0.6) 0.76 NA 0.78 0.78 +0.02 NA 0.79 +0.03
Sensitivity [0.6-5] 0.82 NA 0.76 0.83 +£0.03 NA 0.76 £0.05
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Table 3. Cont.
Regression Classification Multiclass CV Regression CV Classification CV Multiclass
Metric Model Model Classification Model Model Classification
Performance Performance Model Performance Performance Performance Model Performance
Validation Set 1 cv

Model R-RF BC-Chemprop MC-Chemprop R-RF BC-Chemprop MC-Chemprop
Specificity [0.6-5] 0.51 NA 0.63 0.57 £0.04 NA 0.66 £+ 0.05
Balanced accuracy [0.6-5] 0.67 NA 0.70 0.70 £ 0.02 NA 0.71+£0.03
Sensitivity (>5) 0.22 NA 0.45 0.32 £ 0.06 NA 0.42 £ 0.09
Specificity (>5) 0.97 NA 0.94 0.97 £0.01 NA 0.94 £+ 0.02
Balanced accuracy (>5) 0.60 NA 0.69 0.64 +0.03 NA 0.68 +0.04
Macro sensitivity 0.56 NA 0.63 0.60 +0.03 NA 0.63 £0.03
Macro specificity 0.80 NA 0.82 0.81 £0.01 NA 0.82 £0.02
Macro balanced accuracy 0.68 NA 0.72 0.71 £0.02 NA 0.73 £0.02
Micro sensitivity 0.65 NA 0.68 0.68 +0.02 NA 0.69 +0.03
Micro specificity 0.83 NA 0.84 0.84 +0.01 NA 0.84 +0.01
Micro balanced accuracy 0.74 NA 0.76 0.76 +0.02 NA 0.77 £0.02

Oral bioavailability 3-KNN applicability domain

Q2F3

0 2Thresho\d 0.35
Tanimoto similarity threshold SARpy LR threshold

The R-RF model AD was further explored, and the model was used to map EDCs.

2.3. Applicability Domain
2.3.1. Oral Bioavailability Applicability Domain

The applicability domain of the regression model (R-CatBoost was assessed according
to the best mean Q?p3 of the 50 iterations of 5f-CV) was assessed using a three-nearest
neighbor approach on the validation set. The same plot reports the Qg3 performance
and the coverage according to different Tanimoto thresholds for the R-CatBoost regression
models (Figure 2a). This model showed good overall performance in predicting oral
bioavailability for low, medium, and high categories. As the applicability domain narrows,
the validation set comprises more structurally similar compounds to the training set, and
our models exhibit enhanced performance.

Oral bioavailability SARpy applicability domain

M Coverage Q2F3

B Coverage —— Q2F3
1

0.8

[}
|
|
08 1 0.8
I
I
I
I

0.6 0.6

0.6

Q2F3

0.4 0.4

III 02 )
II-__O .
0.6 0.8

Coverage (%)
Coverage (%)

10

5
Threshold: 1.90

0.2
|||||“|||||||||||||||||||IIIIIIIIIIIIIIIII0
15 20 25 30 35

0.4

(a) (b)

Figure 2. The effect of different definitions of applicability domains on coverage and predictive
performance. (a) The 3-NN Tanimoto AD. The evolution of Q%3 performance between observed and
predicted values (red) on the validation set, between predicted and real values according to different
Tanimoto thresholds ranging from 0 to 1. The evolution of the validation set coverage is plotted as
blue bars. The model tested is the CatBoost regression method predicting F% values. (b) The SARpy
LR AD. The evolution of Q%3 performance (red) on the validation set according to different Log
ratio thresholds relative to the structural alert associated with query chemicals. The evolution of the
validation set coverage is plotted as blue bars.
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This improvement stems from the models” ability to effectively recognize and learn the
inherent patterns within the data. However, at higher threshold levels, occasional declines
in R? performance are observed. These fluctuations arise due to certain compounds being
inaccurately predicted despite their structural resemblance to those in the training set.
Additionally, as the number of compounds used for performance evaluation decreases, the
uncertainty in performance metrics increases. Assessing performance based on a small
dataset introduces variability, which can compromise the reliability and robustness of the
models. While restricting the applicability domain can enhance performance, it is crucial to
maintain a balance between predictive accuracy and the number of retained compounds
to ensure the validity of the models. Here, we considered a minimum coverage of 60% of
chemicals in the validation set retained, corresponding to a Q?p3 of 0.46.

Finally, we considered a Tanimoto threshold of 0.35 when applying the threshold
formula Dc = <y> + Z x sigma, with <y> equal to 0.35, Z equal to 0.5, and a sigma of 0.14.
This threshold resulted in a Q%g3 improvement from 0.39 to 0.43 and an MAE decrease from
20.09 to 18.9 with a coverage of 65%.

We explored the use of the Log ratio (LR) given by the MC-SARpy multiclass model
to define the applicability domain. We plotted Q?g3 by varying the LR threshold from 0 to
the maximum values of LR (infinite values transformed to maximum LR) alongside the
size of the retained validation set (Figure 2b). Qg3 increases as the thresholds are raised.
Structural fragments defined by the MC-SARpy model (Supplementary Table S8) can be
employed to provide insights into the reliability of predictions and identify significant
structural features that move chemicals toward either high or low F% values.

When we use SARpy to define the applicability domain and consider a threshold
corresponding to a coverage of 65% (LR of 1.90), as we did when analyzing the applicability
domain defined by the k-nearest neighbor approach, we obtain a Q?; of 0.46. This predic-
tive performance is slightly better than that obtained with the k-nearest neighbor method
and can be used as the applicability domain definition to improve the model’s performance.
Both approaches can be used together to define the AD, each providing deeper insight into
the prediction.

2.3.2. Volume of Distribution Applicability Domain

The applicability domain of the best regression model (R-RF was assessed according
to the best mean GMFE of the 50 iterations of 5{-CV) was explored using a three-nearest
neighbor approach on the validation set. In the same plot, the GMFE performance and
the coverage of chemicals retained according to varying Tanimoto thresholds for the R-RF
regression model are illustrated in Figure 3a.

As the threshold is further increased, the GMFE stops decreasing and starts increasing,
as was seen in the QSAR model for oral bioavailability. We considered a minimum coverage
of 60% of chemicals in the validation set retained.

Finally, we considered a Tanimoto threshold of 0.34 when applying the threshold
formula Dc = <y> — Z x sigma, with <y> equal to 0.42, Z equal to 0.5, and a sigma of 156.
This threshold improved the GMFE from 2.35 to 2.17, becoming closer to 2, with a coverage
of 61%.

We used the Log ratio (LR) given by the MC-SARpy multiclass model as an appli-
cability domain definition. We plotted the GMFE by varying the LR threshold from 0 to
the maximum values of LR (infinite values transformed to maximum LR), alongside the
effective data retained in the validation set (Figure 3b).

The GMEFE decreases as the thresholds are increased. When a threshold corresponding
to a coverage of 63% is considered (LR of 2.40), similarly to what is described for the k-
nearest neighbor approach, a GMFE equal to 2.24 is observed. SARpy structural fragments
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GMFE

defined by the MC-SARpy model can be used (Supplementary Table S9) to provide insights
into the reliability of predictions and identify significant structural features that modulate
chemical activity toward either high or low VDgs values.
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Figure 3. The effect of different definitions of applicability domains on coverage of validation set
1 and predictive performance (a) The 3-NN Tanimoto AD. The evolution of the GMFE (in red) on
validation set 1 according to different Tanimoto thresholds ranging from 0 to 1. The evolution of
the coverage of the validation set is plotted as blue bars. (b) The SARpy AD. The evolution of the
GMEE performance (in red) on the validation set according to different Log ratio thresholds relative
to the structural alert associated with the prediction. The evolution of the effective size retained in
the validation set is plotted alongside in blue. The plot was made using the SARpy model with the
0.6-5 L-kg~! threshold.

2.4. Molecular Descriptor Importance

The importance of the molecular descriptors in the best models was analyzed using
the SHAP (SHapley Additive exPlanations) values with the SHAP Python package (version
0.44.0) [35]. The SHAP value for each molecular descriptor (in rows) indicates the degree
to which a model’s computed predictions change when the values of molecular descriptors
vary. In Figure 4, all the SHAP values for the top 15 molecular descriptors are displayed
in rows. The x-axis represents the SHAP values, while the y-axis depicts the molecular
descriptors, ordered by importance from highest (at the top) to lowest (at the bottom).
Each dot corresponds to a chemical and is color-coded according to the value of the
corresponding molecular descriptor, ranging from high to low.

Among the top 15 most important molecular descriptors for the R-CatBoost regression
oral bioavailability model (Figure 4a), we observe complex molecular descriptors that
retain topological and electrostatic information, with the JGI9 (9-ordered mean topological
charge), ATSCOc (centered Moreau—Broto autocorrelation of lag 0 weighted by Gasteiger
charge), Estate_VSA1 (Labute’s Approximate Surface Area EState indices and surface
area), BCUTd-1I (first lowest eigenvalue of Burden matrix weighted by sigma electrons),
and MID_O (molecular ID on O atoms) molecular descriptors being of most importance
in the model.

These molecular descriptors are consistent with those identified in previous models
developed for oral bioavailability. For instance, the model by Wei et al. [9] highlighted SSOH
(an E-state molecular descriptor), ATS5i (a topological structure molecular descriptor), and
TopoPSA(NO) as the most important. Similarly, the model by Ma et al. [16] identified
additional topological structure descriptors, including TopoPSA and TopoPSA(NO), along
with an E-state molecular descriptor (EState_VSAS8) and the MID_O molecular descriptor,
which is related to the identification and characterization of oxygen atoms in chemicals.
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Figure 4. (a) A summary plot obtained using the SHAP package. The plot shows the importance of
the 15 most important molecular descriptors of the R-CatBoost (regression) oral bioavailability model
and their effects on predictions. The plot depicts the relationship between a molecular descriptor’s
value and its impact on the prediction. For instance, high values of jGI9 (a topological charge
molecular descriptor) are associated with a tendency to decrease oral bioavailability. (b) A summary
plot obtained using the SHAP package for the R-RF (regression) VDgss model. The plot shows the
importance of the 15 most important molecular descriptors and their effect on the predictions. This
plot depicts the relationship between a molecular descriptor value and its impact on the prediction.
For example, high values of SLogP tend to increase VDs;.

For VD, Figure 4b depicts the molecular descriptor importance for the R-RF regres-
sion model. Among the top 15 molecular descriptors, we observe those that impact the
model’s prediction. We observe that low numbers of acidic groups increase VDss and
low numbers of base groups decrease VDgs. Another important molecular descriptor is
the logarithm of the n-octanol-water partition coefficient (SLogP), an important factor in
pharmacokinetics. These molecular descriptors were previously found to impact VDsg [23].

The list of molecular descriptors, along with their Mordred molecular descriptions
and examples of chemicals with high and low values, is provided in Supplementary
Tables 510 and S11.

2.5. QSAR Mapping of EDCs as a Function of Key TK Properties

In order to characterize the TK profiles of chemicals regarded as endocrine disruptors
(EDCs), we predicted key TK properties for 131 EDCs by applying three QSAR models: the
two QSAR models for oral bioavailability and VDss described in this manuscript, using
the SARpy AD, and an existing QSAR (from VEGA) model predicting the total body
elimination half-life, for which we considered moderate and good experimental predictions
to be inside the AD.

The oral bioavailability and volume-of-distribution prediction results for the targeted
EDCs (categorized into 10 common chemical families) are shown in Figure 5, in addition to
the total body elimination half-life prediction.

Among the studied chemical categories, perfluoro (alkyl/alkane) substances (PFASs)
exhibited a long total body elimination half-life, suggesting prolonged retention in the
body. However, these compounds typically had a low VDgs, with the exception of PFASFs
(Supplementary Figure S5), which demonstrated a moderate predicted VDs;. Bisphenols,
on the other hand, exhibited a moderate VD, indicating a balanced distribution across
tissues, and displayed medium oral bioavailability. These compounds were characterized
by a relatively short elimination half-life, implying faster clearance from the body compared
to PFASs.
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Figure 5. Boxplots of the predictions for oral bioavailability, VDss, and elimination half-life for
a set of 131 EDCs categorized into 10 chemical categories. Perfluoroalkylcarboxylic acid (PFCA),
perfluoroalkylsulfonic acid (PFSA), perfluoroalkylether acid (PFEA), perfluoroalkane sulfonamide
derivative (PASF), perfluoroalkyl phosphonic acid (PFPiA), and polyfluoroalkyl phosphate diester
(diPAP) categories were grouped as PFASs. Chemicals inside the SARpy AD are represented as circles,
and chemicals outside as crosses. Background colors are set to green, orange, and red for, respectively,
low, medium, and high values of VDs;s (thresholds: 0.6 L-kg_1 and 5 L~kg_1), oral bioavailability
(thresholds: 30% and 60%), and elimination half-life (thresholds: 4 h and 24 h).

To assess the molecular descriptors driving model predictions, we visualized a
heatmap of the mean standardized descriptor values for EDC compounds, grouped by
chemical family, based on the major descriptors used in the oral bioavailability and VDss
models (Figure 6). The results reveal that PBCs and nitrophenols exhibit notably low values
of GATS1se and AATS3i, features associated with high predicted oral bioavailability in
the model. These characteristics could contribute to the model assigning elevated oral
bioavailability to compounds in these families. PFASs display low values of BCUTp-1l,
AMID_C, and AATSC2s, combined with high nAcid and low nBase counts. The model
predicted a low volume of distribution (VDss) for these chemical families, suggesting
that these structural traits are key drivers of the pharmacokinetic behavior predicted for
these EDCs.

Interestingly, only a few chemicals were inside the AD of the VDgs and oral bioavail-
ability models, with, respectively, 16 and 27 chemicals inside the 3-NN Tanimoto AD. For
the elimination half-life, where a good prediction is considered to be inside the applica-
bility domain, 24 chemicals were considered. Among them, Phthalates (DBP, DCHP, DEP,
DMP, . ..), Benzophenone-type UV filters, 4-n-Nonylphenol (Alkylphenols), and Benzyl-
paraben emerged for the VDgs model, and Phthalates (DBP, DCHP, DEP, DMP, .. .), 4-n-
Nonylphenol (Alkylphenols), Benzophenone-type UV filters, Parabens, and Bisphenols
(BPE, BPF, BPS) for the oral bioavailability model.

With the SARpy AD, of 131 chemicals, 118 and 91 were inside the AD for VD and
oral bioavailability, respectively. The method also allowed us to identify structural patterns
among the groups of chemicals that were linked to high or low values of VDgs or oral
bioavailability. For example, aromatic rings or two aromatic rings linked, which are found
in bisphenols, PBC, and benzophenone-type UV filters, are associated with medium or
high values of VDgs. An aromatic ring linked to a carboxylic group, found in parabens and
phthalates, is associated with low values of VDs (Figure 7a). Perfluoroalkyl groups, found
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in PFASs, are associated with high oral bioavailability, and long carbon chains, found in
parabens, are associated with low oral bioavailability (Figure 7b).
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Figure 6. Heatmap of the mean standardized descriptor values for the EDC list, grouped by EDC
families, based on the major descriptors of the oral bioavailability and VDss models. Standardization
was performed using the mean and standard deviation computed from the training set.
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Figure 7. Structural fragment alerts identified by MC-SARpy in more than two chemicals across
different EDC categories for the VDg; (a) and oral bioavailability (b) models. The Log ratio and
the predicted category associated with each structural alert are reported. PASFs, PFCAs, PFEAs,
PFSAs, diPAPs, and PFPiAs were combined into the PFAS category when the structural fragment
was identical.

In order to have an idea about the relevance of our predictive models for EDCs,
we searched the literature for toxicokinetic (TK) profiles reported in humans. We found
that TK profiles of bisphenols were assessed in piglets in the study by Gély et al. [36].
BPA and its alternatives exhibited low oral bioavailability, medium to high VDs, and a



J. Xenobiot. 2025, 15, 166

14 of 25

short elimination half-life. Studies on humans have estimated the elimination half-life of
deuterated BPA to be approximately 6.4 & 2.0 h [37].

For benzophenone UV filters, the literature reports a short elimination half-life of
around 4 h [38]. Per- and polyfluoroalkyl substances (PFASs) generally exhibit high oral
bioavailability. For example, PFOA and EOF showed bioavailability values of 65-71%
and 74-87%, respectively, in mouse studies [39]. In workers exposed to perfluoroalkyl
surfactants, a low mean distribution volume of 0.08 L-kg~! was reported [40]. Drew
et al. [41] investigated the elimination half-lives of several PFASs, including PFOS, PFHpS,
PFHxS, PFNA, and PFDA, reporting prolonged elimination half-lives of 74.1 &+ 13.4 h,
457 £9.4h,93 +£1.3h,12.3 £ 3.2 h, and 60.4 & 10.4 h, respectively. Phthalates were found
to have short elimination half-lives. For example, DEHP exhibited an elimination half-life
of 4.3-6.6 h in humans [42]. Overall, these findings from the literature align with our TK
QSAR models.

We also predicted TK properties for a set of 316 chemicals that are likely to disrupt
ARs and ERs. Using dedicated thresholds for each TK property (VDss: 0.6 kg/L and
5 kg/L; oral bioavailability: 30% and 60%; elimination half-life: 4 h and 24 h), we set
chemical attributes as low, medium, and high TK concern to highlight chemicals that are
characterized by concerning TK profiles in terms of chemical risk. Among the 316 chemicals,
67.4% (213 chemicals) were inside the SARpy AD of the oral bioavailability QSAR, 70.9%
(224 chemicals) were inside the SARpy AD of the VDgs QSAR, and 94.3% (298 chemicals)
were inside the ADI of the elimination half-life QSAR.

Among the 316 chemicals, 16.4% (52 chemicals) were predicted as having a TK risk,
with at least one TK property classified as high.

Among them, Bisphenol AF was predicted to have high oral bioavailability, a medium
half-life, and a medium VDgs. This chemical poses a risk, as it is produced in large
amounts—100 to 1000 tons, as stated by the European Chemical Agency (ECHA) [43].
Seven other chemicals were found to be registered in ECHA (4',5'-Diiodofluorescein; 3,5-
Dichloro-4-hydroxybenzophenone; 3-[1-[4-[2-(dimethylamino)ethoxy]phenyl]-2-phenylbut-
1-enyl]phenol; 3',6’-dihydroxyspiro [2-benzofuran-3,9'-xanthene]-1-one; 4',5’-dibromo-3',6’-
dihydroxyspiro[isobenzofuran-1(3H),9’-[9H]xanthene]3-one; Bisphenol AF; mitotane; and
1-chloro-2-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene). For example, the use of 4',5'-
Diiodofluorescein in cosmetic products was banned in Europe, 3-[1-[4-[2-(dimethylamino)
ethoxy]phenyl]-2-phenylbut-1-enyl]phenol, and bisphenol AF were recognized as toxic
to reproduction, and CLP describes 2,2,2,0,p’-pentachloroethylidenebisbenzene as fatal if
inhaled and toxic if swallowed.

From the set of identified EDCs, three have a high TK risk, namely, (E,Z)-Tamoxifene,
Clomiphene, and (E)-Toremifene, all having a high VDs, high oral bioavailability, and a
medium body elimination half-life. These chemicals are known to be related to endocrine
disruption: Clomiphene is a drug that increases the chance of pregnancy by facilitating
ovulation [44], Tamoxifen is a drug used to treat hormone-positive breast cancer [45], and
Toremifene is known to bind to estrogen receptors and act as a weak partial agonist and
potent antagonist [46]. Overall, these results show the relevance of using our QSAR models
to predict EDCs and TK properties to identify chemicals that are most likely to pose a risk.

3. Discussion

This study used a large dataset comprising over 1600 chemicals to develop a QSAR
model for both oral bioavailability and VDss for regression, binary classification, and
multiclass prediction.

Among similar studies considering oral bioavailability at a 50% threshold, Falcén-
Cano et al. (2020) [10] employed a dataset of over 1400 compounds and achieved a BA of
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0.78. Venkatraman (2021) [11] used 1800 chemicals and reported a BA of 0.71, and Wei et al.
(2022) [9] achieved an accuracy of 0.79. Our model exhibited comparable results to these
studies, with a BA of 0.77, corresponding to an accuracy of 0.77 on a different validation set.
Recently, Ma et al. (2024) [16] reported an accuracy of 0.82 using the same 209-compound
validation set as Falcon-Cano et al. [10].

The QSAR model described in this article can be regarded as more robust than those
previously published. In particular, our model was trained and evaluated on a larger
dataset, with twice as many chemicals in our validation set compared to those used by
Falcon-Cano et al., Wei et al., and Ma et al. (405 in our study vs. 209) [10,11,16].

For VDgs model development in related work with similar numbers of substances
that used the GMFE metric to evaluate their models, Lombardo et al. (2021) [17,18],
who had fewer compounds in the training set and used the same validation set of
34 compounds, reported a GMFE of 1.70, while our regression model exhibited a GMFE of
1.81 (Supplementary Table S4a).

Our results are therefore comparable to those of previously published models and, as
discussed for bioavailability, can be considered more robust given the larger training set
size. In addition, we were able to model and compare the development of regression, binary
classification, and multiclass classification models for this endpoint. The development of
an applicability domain to determine the limit of our QSAR models and the application of
SARpy resulted in some structural fragment alerts on EDCs that were linked to high or low
values of VDg; or oral bioavailability.

The development of our QSAR models followed the OECD QSAR validation princi-
ples. In line with Principle 1, the models have defined endpoints for oral bioavailability
and VDs;. Principle 2 is addressed with an unambiguous algorithm (scripts available as
Supporting Material together with model reporting formats, QMRF), defined methods,
and the retained models—R-CatBoost, BC-CatBoost, and MC-CatBoost—for the prediction
of oral bioavailability, corresponding to continuous value prediction, binary classification
prediction, and multiclass prediction, respectively. For VDgs, the retained models are R-RF,
BC-Chemprop, and MC-Chemprop, corresponding to continuous value prediction, binary
classification prediction, and multiclass prediction, respectively. Principle 3 is addressed by
an applicability domain, defined using two approaches: a structural alert approach using
SARpy and an analog-based approach using a three-nearest neighbor method.

The models follow Principle 4 by ensuring appropriate measures of goodness of fit,
robustness, and predictivity. This was demonstrated by strong performance on the training
set (seen data) and the external validation set (unseen data), as well as through 50 iterations
of five-fold cross-validation.

Principle 5, which concerns the definition of a mechanistic interpretation, is explored
through model molecular descriptor importance and the applicability domain. The ap-
plicability domain both explores the nearest neighbors and allows identification of the
most important structural fragments contributing to predictions with the SARpy models.
Both approaches can be used together to define the AD, each providing deeper insight into
the prediction. However, we recommend using the SARpy LR AD approach, as it offers
a clearer understanding of the structural fragments responsible for the activity. Another
definition of the applicability domain was explored using Insubria plots, relying on the
leverage approach from the hat matrix [47]. Similarly to 3-NN, we can observe that around
95% of the compounds fall inside the applicability domain for oral bioavailability and VDgs
(Supplementary Figure S6).
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4. Materials and Methods
4.1. Data
4.1.1. Oral Bioavailability Data Source

Data on human oral bioavailability were collected from multiple sources, including
OCHEM [48], CHEMBL [49], and articles by Min Wei et.al [9], Falcén-Cano et al. [10], Varma
etal. [50], and Tian et al. [13]. In total, 1712 chemicals and associated oral bioavailability data
were retrieved and curated. Special attention was paid to the presence of qualifiers (greater
or less than a certain threshold) for oral bioavailability in order to properly consider this
information with respect to the categorization thresholds adopted during the discretization
of continuous values.

4.1.2. Volume of Distribution Data Source

Data on human VDs; values were collected from CHEMBL [49], the article by Lom-
bardo et al. [18], and the article by Liu et al. [22]. In total, 1591 chemicals and associated
VDss data were retrieved and curated.

4.1.3. Preprocessing Standardization

All the chemicals were mapped to their PubChem Compound ID (CID) in order to
harmonize chemical structures (SMILES) that are standardized according to the PubChem
protocol [51] (i.e., normalization of the representation, implicit hydrogens, atom valence,
tautomeric form representation, etc.). The PubChem CID was retrieved according to the
available SMILES, CAS RN, name, and InChl available from the source database. In cases
of chemicals with ions, the largest fragment was considered. This standardization allowed
us to identify duplicate chemicals for which we computed the mean F% and mean VD
values. Duplicate chemicals with a difference greater than 20 for the standard deviation of
F%, as well as those with F% values exceeding 100 or falling below 0, were excluded from
the dataset.

4.2. Dataset Preparation for Modeling
4.2.1. Oral Bioavailability Data Preparation

The datasets were randomly split into training and validation sets. To construct the
validation set, chemicals were sorted based on their F%, and we selected every fourth
chemical to populate this set. This choice ensured representative inclusion across the range
of F% values. This approach resulted in ~25% of chemicals (405 chemicals) being selected
for the validation set.

The remaining 75% of chemicals of the training set with known F% values were re-
tained for regression modeling (1213 chemicals). Some chemicals in the literature did not
have F% values but only qualitative information about low or high F% with respect to
different thresholds (50%, 30%, and 60%). For the implementation of QSAR classifiers,
chemicals with known threshold values were considered. This encompassed the design of
a training set for binary classification (50% threshold, distinguishing low and high classes
with 1307 chemicals) and another training set for multiclass classification (30-60% thresh-
olds, defining low, medium, and high classes with 1244 chemicals). The 50% thresholds
(single-threshold classification models) were used as described in the literature [9,10], and
the 30-60% thresholds (double-threshold multiclass models) were used considering the
thresholds adopted by some CRO experts in this domain (personal communication). No
chemicals from the respective training set were included in the validation set.
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4.2.2. Volume of Distribution Data Preparation

The datasets for volume of distribution were randomly split into training and vali-
dation sets, similarly to the oral bioavailability data. This resulted in ~25% of chemicals
being selected for the validation set (390 chemicals). A second validation set was developed
using a list of 34 chemicals extracted from the article by Lombardo et al. (2016) [17]. This
dataset, which did not contain chemicals belonging to sets used with previously published
models, was used for model comparison. No chemicals from the two validation sets were
included in the training set. Here, the natural logarithm (In(VDss)) was used to facilitate
QSAR model development [20].

The classification model was developed on the training set (1167 chemicals), with
a threshold of 1 L-kg™! corresponding to a chemical extensively (90%) distributed in
tissues [52]. For multiclass classification, we considered thresholds of 0.6 L-kg’1 and
5L-kg ! [7].

4.3. Molecular Descriptors

We computed Mordred molecular descriptors [53] covering a wide range of struc-
tural and physico-chemical properties of chemicals. A total of 1826 molecular descrip-
tors were computed. Subsequently, columns containing “NA” values, molecular de-
scriptors with zero variance, and those exhibiting absolute pair correlations exceeding
0.97 were excluded from the dataset to reduce redundant information. This process yielded
560 molecular descriptors for the oral bioavailability regression dataset, 507 for the binary
classification dataset, 560 for the multiclass classification dataset, and 500 for the volume-of-
distribution datasets.

4.4. Selection of Molecular Descriptors

In order to reduce the number of molecular descriptors (i.e., the independent variables
of the models) and increase the parsimony and interpretability of the models, the VSURF
algorithm [54] was applied to select and retain only the most informative molecular descrip-
tors. The R package VSUREF (version 1.2.0) allows identification of the most informative
molecular descriptors using random forest importance scores based on permutation and
using a stepwise forward strategy that selects the variables of the most accurate models.
Molecular descriptor selection was performed exclusively on the training sets to avoid data
leakage. VSUREF identifies two sets of molecular descriptors: interpretation and prediction
levels. We selected the interpretation set, as it contains the most molecular descriptors.
We measured the Topliss ratio as the number of training chemicals per molecular de-
scriptor, in accordance with OECD guidelines, which recommend a rule-of-thumb ratio
greater than 5 [55].

4.5. Machine Learning Algorithms

We considered a variety of machine learning models, such as CatBoost [56], XG-
Boost [57], random forest (RF) [58], and Chemprop [59]. The SARpy [60,61] method, a
structure-activity relationship (SAR) method, was also tested for prediction to enhance
the mechanistic interpretability of QSAR models. A description of each machine learn-
ing approach is available in Supplementary Materials (References [62—64] are cited in the
Supplementary Materials). CatBoost, XGBoost, chemprop, and RF were applied to regres-
sion, binary classification, and multiclass classification. SARpy was used for binary and
multiclass classification.
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4.6. Protocol

The tuning of algorithm hyperparameters was optimized using the training set without
using any data from the validation sets.

For CATBoost, XGBoost, and RF, 5-fold cross-validation was carried out for hyperpa-
rameter optimization using a grid search (Supplementary Table S1).

After this step, the models were subjected to 50 iterations of 5-fold cross-validation us-
ing the training set in order to assess algorithm robustness and identify the best-performing
algorithm. Specifically, the training set was partitioned into five non-overlapping subsets
50 times. In each iteration, four subsets were combined to train the model, while the
remaining subset was used to evaluate model performance in cross-validation.

The predictive performance of the “unseen” chemicals in the validation datasets
was then assessed according to commonly used statistical indicators, i.e., sensitivity (SE),
specificity (SP), and balanced accuracy (BA) for the binary classification; class-specific
SE, SP, and BA, macro/micro-SE, macro/micro-SP, and macro/micro-Ba for multiclass
classification; Root Mean Squared Error (RMSE), mean absolute error (MAE), Q?p3, and
R? for oral bioavailability regression models; and geometric mean fold error (GMFE) for
VDgs models. The regression model with the best performance on the external validation
set was also evaluated for its performance in binary and multiclass classification tasks
(Supplementary Figure S2).

4.7. Predictive Performance Metrics

The models were evaluated externally and internally using their respective training
and validation sets, whose data were not used to calibrate or optimize the models.
The performance metrics adopted for classification are defined as follows:

TP

Sensitivity (SE) = P L EN (1)
e TN
Specificity (SP) = TN EP )
Balanced accuracy (BA) = Sensitivity —iz— Specificity 3)

where TP stands for True Positive, TN for True Negative, FN for False Negative, and FP
for False Positive. For multiclass prediction, these same metrics were computed for each
category at a time by considering the category under scrutiny as active.

For multiclass classification models, we evaluated performance using metrics calcu-
lated individually for each class by treating it as the positive class, providing class-specific
SE, SP, and BA. Additionally, we computed micro-averaged metrics, which aggregate
all instances to give equal weight to each sample, and macro-averaged metrics, which
average performance across classes equally, ensuring balance between majority and mi-
nority classes. This combination offers both detailed class-level insights and an overall
performance assessment.

For the oral bioavailability regression models, the performance metrics were defined
as follows [65]:

N
RMSE = w%” 4)

n ._,\.2

(i y)z
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For the modeling of VDs;, we assessed the performance of the regression models using
the geometric mean fold error (GMFE) [17,18].
The GMFE was computed as follows:

GMFE(y, ) = 101 |Logo( ;) 1) /m .

where fji is the predicted value of the i-th sample, and i is its corresponding experimental
value; y is the mean of the predicted values. ntr and noyr are the number of training and
validation chemicals, respectively; y. . is the average value of the training set experimental
responses; and y our 8 the average value of experimental responses of external validation
chemical values.

The VD regression models were trained using logarithmic values, and the linear
predicted values were subsequently adopted for the GMFE formula. GMFE is a standard
metric for evaluating PK models when the model is trained with values in the logarithmic
space and the predicted values are recovered through y = eY(°8), where y(log) is the pre-
dicted value in the logarithmic space [66]. GMFE values around and below 2 are generally
considered indicators of acceptable precision for pharmacokinetic parameters [34].

The predictive performance of the regression models was also evaluated in terms of
classification. For this evaluation, the validation set was predicted with the best model and
then classified according to the corresponding thresholds of oral bioavailability and VDss.

4.8. Definition of the Applicability Domain
4.8.1. K-Nearest Neighbors

In QSAR modeling, the applicability domain refers to the precision of the prediction
computed by a model within a given chemical space, thereby providing information about
the expected level of reliability of predictions computed for unseen chemicals included in
the molecular descriptor space defined by the applicability domain (AD). The applicability
domain helps prevent model misuse and enhances the trustworthiness of predictions. It is
established by considering the training set and serves as a guideline for determining which
chemicals the model can assess with a given reliability [67].

Various methods exist for defining the applicability domain in QSAR. In this study,
a distance-based approach was chosen (3-NN Tanimoto AD), evaluating the similarity
between a query chemical and those in the training set. This similarity was measured using
the Tanimoto score, which measures chemical similarity using chemicals encoded as finger-
prints; here, we used Morgan fingerprints [62]. For each query chemical in the validation
set, we calculated the average Tanimoto score of the three most similar compounds from
the training set. The models’ predictive performance was then characterized by analyzing
the precision of predictions across different threshold values for the Tanimoto score.

Establishing a useful threshold to determine whether a chemical falls within the
applicability domain requires balancing precision and coverage of the chemical space.
Various methods exist for setting this threshold, and in this study, we defined it as
Dc = <y> — Zo. Here, (y) represents the average Tanimoto score of the three closest
training set neighbors for each chemical, while o'\sigmao denotes the standard deviation
of these scores. The parameter Z controls the significance level, with a default value of
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0.5. Unlike the original formula, which uses Euclidean distance (where 0 signifies identical
chemicals), our approach subtracts Zo from (y), adapting it to the Tanimoto score scale
(ranging from 0 to 1, where 1 indicates identical chemicals) [68,69].

4.8.2. SARpy

We also investigated the possibility of applying SARpy to define the applicability
domain (SARpy AD). For this purpose, we took into account the likelihood ratio (LR) for
each structural alert (SA) associated with each predicted chemical to gauge its precision in
correctly predicting the chemical. A chemical was considered to be within the applicability
domain if the LR of the structural alert responsible for the predicted compound exceeded
a specific threshold. The predictive performance of the models was then compared by
evaluating their effectiveness across various LR threshold values.

4.9. Mapping of EDCs

We mapped the TK space of EDCs on two lists of chemicals, the first one containing a
selection of 131 endocrine-disrupting chemicals reported in the literature [70]. These EDCs
can be found in everyday life in different products, including additives, food packaging,
food and beverage containers or cans, cosmetics, cookware, toys, hygiene and cleaning
products, etc. [71-73]. Many of these chemicals can be found at detectable levels in the
urine and blood of children and adults [74-76].

The second set, consisting of 55,450 chemicals to which humans are potentially ex-
posed, forms a list of toxicological and environmental chemicals of interest [77]. From this
set, we applied QSAR models for estrogen binding [78] and androgen binding [79] and
selected the chemicals most likely to perturb the considered receptors by considering only
QSAR predictions characterized by an applicability domain index greater than >0.8. This
strict requirement resulted in a subset of 316 chemicals being retained for screening.

Oral bioavailability and VDss were computed by the QSAR models described herein.
In addition, the elimination half-life was computed using the freely available dedicated
VEGA QSAR [78] model, and the TK properties of different groups of EDCs were compared.

All the models and code for the prediction of oral bioavailability and volume of
distribution at steady state are available at https://github.com/guillaumeolt/QSAR_TK
(accessed on 16 September 2025).

5. Conclusions

In this study, we developed QSAR models to predict oral bioavailability and VDs;
using state-of-the-art machine learning approaches and following OECD guidelines. Lever-
aging current databases for these pharmacokinetic endpoints, we developed regression,
binary classification, and multiclass classification models and systematically evaluated
their performance across various scenarios using relevant metrics. We applied a 3-NN
applicability domain approach and highlighted the importance of using SAR methods
to define applicability domains. Furthermore, we integrated these QSAR models with a
complementary elimination half-life model and applied them to a curated list of endocrine
disruptors and a list of toxicological and environmental chemicals of interest. This com-
bined approach identified critical categories and chemicals of concern, providing valuable
insights for the prioritization and regulatory evaluation of endocrine-disrupting chemicals.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/jox15050166/s1, Table S1: Optimized parameters for the ma-
chine learning models, Table S2a: Performance table of the regression model of oral bioavailability,
Table S2b: Cross validation performance table of the regression model of oral bioavailability,
Table S3a: Performance table of the classification model of oral bioavailability, Table S3b: Cross


https://github.com/guillaumeolt/QSAR_TK
https://www.mdpi.com/article/10.3390/jox15050166/s1
https://www.mdpi.com/article/10.3390/jox15050166/s1

J. Xenobiot. 2025, 15, 166

21 of 25

validation performance table of the classification model of oral bioavailability, Table S4a: Performance
table of the multiclass classification model of oral bioavailability, Table S4b: Cross validation per-
formance table of the multiclass classification model of oral bioavailability, Table S5a: Performance
table of the regression model of VDss, Table S5b: Cross validation performance table of the regression
model of VDgg, Table S6a. Performance table of the classification model of VDgg, Table S6b: Cross
validation performance table of the classification model of VDss, Table S7a: Performance table of
the multiclass classification model of VD, Table S7b: Cross validation performance table of the
multiclass classification model of VDgs, Table S8: Table of the best structural alerts found for the
multiclass prediction of oral bioavailability, Table S9: Table of the best structural alerts found for
the multiclass prediction of VD, Figure S1la: UMAP representation of the chemical space in a 2D
map projection for the oral bioavailability dataset. Each point represents a chemical, and its color
encodes the corresponding F% value, ranging from red for low oral bioavailability to blue for high
oral bioavailability; 32% of chemicals have F% values below 30 (F%), 45% above 60 (F%), and 23%
between 30 (F%) and 60 (F%), Figure S1b: UMAP representation of the chemical space in a 2D map
projection for the VDgs dataset. Points are colored considering the Log-transformed VDgs values
from red to blue for low to high VDss; 37% of chemicals have VD¢ values below 0.6 L-kg_l, 16%
above 5 L-kg ™!, 47% between 0.6 L-kg !, and 5 L-kg !, Figure S2: General protocol applied for the
development and evaluation of predictive models for the prediction of oral bioavailability and VDs;,
Figure S3: Predicted vs. true oral bioavailability values on the 405 chemicals of the validation set.
Red and blue dashed lines correspond to a 10% and 20% error, respectively, Figure S4: Predicted vs.
true VDgs values on the 405 chemicals of the validation set. Red and blue dashed lines correspond to
a 2-fold and 3-fold error, respectively, Figure S5: Boxplot of the predictions for oral bioavailability,
VDgs and elimination half-life for a set of EDC categorized by chemical category, Figure S6: Plot
of the predicted values against the hat values for the (a) oral bioavailability R-CatBoost model and
the (b) VDss R-RF models, Table S10: Table of the best molecular descriptors for the best model of
regression of oral bioavailability, Table S11: Table of the best molecular descriptors for the best model
of regression of VDs;s, Table S12: Table of models’ regression prediction on a set of toxicological and
environmental chemical list of interest, Table S13: Table of models’ regression prediction on a list of
endocrine disruptors, Table S14: Table of models’ regression prediction with molecular descriptors
on a set of toxicological and environmental chemical list of interest, Table S15: Dataset for oral
bioavailability, Table S16: Dataset for VDss, File S1: QMRF VD, File S2: QMRF Oral bioavailability.
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Abbreviations

The following abbreviations are used in this manuscript:

R Regression

BC Binary Classification
MC Multiclass Classification
Cv Cross Validation

TK Toxicokinetics

PK Pharmacokinetics

GMFE  Geometric Mean Fold Error

QSAR  Quantitative Structure—Activity Relationship
VD Volume of Distribution

VDgg Volume of Distribution at Steady State

EDC Endocrine-Disrupting Chemicals

SE Sensitivity
SpP Specificity
BA Balanced Accuracy

RMSE  Root Mean Squared Error

MAE Mean Absolute Error

3-NN Three Nearest Neighbors

AD Applicability Domain

UMAP  Uniform Manifold Approximation and Projection for Dimension Reduction
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