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Abstract: In recent decades, “environmental xenobiotic-mediated endocrine disruption”, especially
by xeno-estrogens, has gained a lot of interest from toxicologists and environmental researchers.
These estrogen-mimicking chemicals are known to cause various human disorders. Pesticides are the
most heavily used harmful xenobiotic chemicals around the world. The estrogen-mimicking potential
of the most widely used organochlorine pesticides is well established. However, their effect is not
as clearly understood among the plethora of effects these persistent xenobiotics are known to pose
on our physiological system. Estrogens are one of the principal risk modifiers of various disorders,
including cancer, not only in women but in men as well. Despite the ban on these xenobiotics in some
parts of the world, humans are still at apparent risk of exposure to these harmful chemicals as they
are still widely persistent and likely to stay in our environment for a long time owing to their high
chemical stability. The present work intends to understand how these harmful chemicals may affect
the risk of the development of estrogen-mediated human cancer.
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1. Introduction

Xenobiotics (xeno: foreign; biotic: life form) are chemicals of synthetic origin that are
foreign to living systems. These chemicals are not part of the normal metabolic activity
of living organisms and therefore may interfere with the functioning of the physiological
system. These unwanted chemicals inside the body are known to have harmful effects on
functioning and are responsible for diseases in humans. One such detrimental effect caused
by some of these chemicals is xeno-estrogenicity [1].

‘Xeno-estrogenicity’ (xeno: foreign; estrogenicity: resembling natural estrogens) de-
notes the property of foreign chemicals being able to produce responses in physiological
systems comparable to estrogens produced by the body by different mechanisms. Xeno-
estrogens are a group of chemicals that disrupt the endocrine system by mimicking the ac-
tivity of natural estrogens or producing a similar response in the body by other mechanisms.
Majorly known persistent organochlorine pesticides (OCPs) and other classes of chemicals
present in the environment are known to bind estrogen receptors and produce a physiolog-
ical response equivalent to the hormone in various organs and tissues [2]. Therefore, these
chemicals can produce adverse effects such as increasing the risk of estrogen-mediated
cancers [3]. These chemicals can easily enter the human body due to their physiochemical
characteristics. They not only widely persist in our environment, including water, soil, and
food, but also exhibit high volatility at environmental temperatures [4]. Moreover, a much
greater risk is rendered by such chemicals due to their biomagnification through to the top
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of the food chain to humans. Additionally, their lipophilic nature makes them more harmful,
as these compounds easily bioaccumulate in the adipose tissue of humans [5]. Therefore, a
large portion of the world’s population, if not all, is apparently exposed to these chemicals.
The health concerns due to these endocrine-disrupting chemicals are inevitable as expo-
sure to these chemicals is continuous throughout the lifetime [6–8]. Studies have shown
evidence of the continuous exposure to these compounds as their metabolites have been
detected in different types of human samples. Studies reported a statistically significant
correlation between cancer risk in individuals and their adipose tissue concentration [9,10].

Xenobiotics, including from pesticide exposure, are significant causes of cancer in-
cidence worldwide [11,12]. These compounds are known to increase the risk of various
human cancers amongst humans by different mechanisms such as DNA mutations, inflam-
mation, upregulation of tumor suppressor genes, and/or downregulation of oncogenes [13].
Amongst the harmful effects of these contaminants, xeno-estrogenicity remains one of the
most enigmatic and widely reported ones to contribute towards higher morbidity and mor-
tality [14]. These estrogen-mimicking chemicals are known to increase the transcriptional
activity factors associated with the natural estrogens, thus enhancing the risk of various
estrogen-mediated human disorders including cancer [15–18].

Other natural and man-made compounds are known to exist with xeno-estrogenic po-
tential in the environment, such as butylated hydroxyanisole, phthalate esters, nonylphenol,
benzyl butyl phthalate, and bisphenol-A, etc. [19]. However, pesticides are the most potent
xeno-estrogens amongst all the chemicals because the estrogenic potency and half-life in
the environment of these compounds exceed those of any other compound [3–5].

2. Carcinogenic Effects of Organochlorine Pesticides

Pesticides are the most well-known carcinogenic chemicals to humans. Studies from
both humans and animals have unambiguously confirmed the development of pesticide
exposure-mediated human cancer [20]. All known OCPs possessing xeno-estrogenic poten-
tial are listed in the ‘first dirty dozen’ in the Stockholm Convention as they were widely
reported to cause various adverse health outcomes in humans around the world [21].
Human studies support the association of various OCPs (aldrin, dieldrin, endosulfan,
HCH, DDT, 2,4,5-trichlorophenoxyacetic acid, phenoxy acid herbicides, and methoxychlor).
The exposure (both occupational and non-occupational) has been strongly linked to in-
creased incidence of non-Hodgkin’s lymphoma [22]; multiple myeloma [23]; soft tissue
sarcomas [24]; lung cancers [25]; and cancers of the pancreas, stomach, liver, and kidney as
well as urinary and gall bladder cancer [26–30].

The International Agency for Research on Cancer (IARC) has listed OCPs as potent
carcinogens in animal studies [31,32]. Cancer development also depends on genetic sus-
ceptibility as well. Xenobiotic metabolic enzymes are metabolic susceptibility enzymes
whose metabolization leads to the elimination of a diverse range of xenobiotics, including
OCPs. These predominantly hepatic enzymes are responsible for xenobiotic detoxification
in two phases: ‘phase I’ enzymes (functionalization reactions), mainly cytochrome P450,
and ‘phase II’ enzymes (conjugation reactions), including glutathione S transferases (GSTs).
Cytochrome P450 (abbreviated as CYP P450 and infrequently as CYP450) is a superfamily
of monooxygenase enzymes that catalyze metabolism by oxidation of their substrates.
On the other hand, GSTs, important phase II enzymes of the xenobiotic metabolizing en-
zyme family, eliminate phase I CYP450 enzymes’ catalyzed intermediates, leading to their
excretion out of the body [33,34].

Individual susceptibility to environmental chemical exposure leading to diseases,
including cancer, is modified by genetic susceptibility, and polymorphism in such gene
families is a major risk. Genetic variations in phase I and/or phase II genes may alter
the activity of the corresponding enzyme responsible for the bioactivation of xenobiotics;
individuals with genetically impaired xenobiotic elimination functions will be at higher risk
of disease susceptibility over their lifetime. Identification of the genes responsible for the
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elimination of xenobiotics and their variability is key for the identification of individuals at
higher risk [12,33–35].

3. Evidence of Xeno-Estrogenicity

Since the advent of modern agriculture, pesticide use has become a primary means
to enhance crop productivity. Amongst all the pesticides, OCPs became the first choice
of farmers around the world after their introduction, attributed to their low cost and
versatile effectiveness against a wide range of agricultural pests. Table 1 presents the
current usage status, commercial name, and other relevant details related to pesticides.
Organochlorine pesticides were banned in developed countries after their listing in the
Stockholm Convention on Persistent Organic Pollutants (an international agreement aimed
at the banning of harmful environmental pollutants), which is still used for the development
and control of vector-borne diseases such as malaria. The overuse of OCPs has been rising
alarmingly, and it is raising serious threats to both human health and the environment [36].
Every year, billions of pounds of OCPs are used for boosting agriculture productivity to
fulfill the dietary needs of the world population. It is not surprising that high levels of
these harmful chemicals are also detected in water and soil [37,38].

Table 1. Current use status and year listing of commercial pesticide brands around the world.

Name of
Pesticide Commercial Name Ban Status Current Status

Year of Listing in
Stockholm Convention
on Persistent Organic

Pollutants

Used for the Crops References

Dieldrin

Hortico, Dieldrin Dust
Mustex 25%, Shell

Dieldrex, Yates Garden
Dust

Complete No manufacturing 2001 Corn, cotton, citrus
cabbage, legumes [39]

DDT

Cezarex, Anofex,
Clorophenothane,

Dicophane, Dinocide,
Gesarol, Guesapon,

Guesarol, Gyron, Ixodex,
Neocid, Neocidol, Zerdane

Partial
For malaria control

programs (countries
of Africa and Asia)

2001
Amaranth, cabbage,

lettuce, pumpkin,
spinach

[40]

Endosulfan

Afidan, Beosit, Endocel,
Hildan

Cyclodan, Devisulfan,
Endocide, Endosol, FMC
5462, Hex-asulfan, Hoe

2671, Insectophene, Malix,
Thiodan, Thimul, Thifor,

Thionex

Regulated
For certain
crop–pest
complexes

2011
Spinach,

cauliflower, potato,
brinjal, tomato, okra

[41]

Aldrin
Aldrec, Aldrex, Drinox,

Octalene, Seedrin,
Compound 118

Complete No manufacturing 2007 Corn, cotton, citrus,
cabbage, legumes [39]

HCH

Forlin, Etan 3G, Gamaphex,
Isotox, GermatePlus,

Gamma-Mean400,
Lindagram

Complete No manufacturing 2008
Amaranth, cabbage,

lettuce, pumpkin,
spinach

[40]

The hormone-like activity of these man-made chemicals was realized long after they
were released into our environment. Krishnan et al. (1993) accidentally found unknown
chemicals to be estrogenic because they disrupted experiments conducted in laboratories
while studying the effects of natural estrogens. Later experiments confirmed that the dis-
ruption of the experiments was due to the plastic tubes used in the experiments possessing
estrogenic activity [42]. In humans, indirect positive evidence of “pesticide exposure-related
estrogenicity” was reported among farm workers. In 1949, workers occupationally exposed
to dichlorodiphenyltrichloroethane (DDT) were found to have significantly lowered sperm
counts and loss of fertility [43].

These chemicals are known to stay in the environment for a long period of time, which
could be from a few years to several decades in different media; for instance, the most
well-known pesticide, DDT, has a half-life of up to 30 years in soil and 3 to 6 years in the
human body (up to 150 years in water) [44]. Therefore, long-term exposure may lead to
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considerable accumulation in adipose tissue due to the lipophilic nature of agricultural
chemicals [45]. High levels of pesticides, including OCPs, have been reported in different
samples from all over the world, including blood, adipose tissue, placental tissue, umbilical
cord, colostrum, and even cord blood, etc. [6–8]. In a recent study, groundwater polluted
with pesticides was found to increase susceptibility to estrogen-mediated cancers, in spite
of the ban on these chemicals for decades [46]. Likewise, alarmingly high levels of these
chemicals have also been reported from other regions of the world in recent studies [47–49].
Additionally, a Brazilian study from the year 2022 linked pesticide residue with an increased
risk of cancer in one province [50].

These xenobiotics contaminate water resources and animals living in pesticide-contami
nated water, leading to their accumulation in the animals’ bodies. The quantity of OCPs
in their bodies can be several folds higher than that in the surrounding water. If these
animals are consumed by other organisms, the OCPs will enter and accumulate in those
animals’ bodies (bioaccumulation) [51]. Studies on the OCP levels in edible fishes found
alarmingly high levels of these compounds [52–54], suggesting that these compounds are
bioaccumulating in our bodies at an alarming rate, mainly due to the biomagnification of
pesticides through seafood. These compounds are still found in our food and increasing
the risk of human diseases despite the ban.

4. Confirmation of the Pesticide’s Xeno-Estrogenicity

Data from the observation of occupational exposure were not sufficient to understand
the adverse effects of these OCPs. Nevertheless, animal- and cell-line-based studies un-
ambiguously confirmed the xeno-estrogenic potential of heavily used and well-known
pesticides [3,55,56].

Animal-based experiments first confirmed the biological response to DDT comparable
to that for estrogens, such as increased uterine weight and vaginal epithelial cornification
in lab animals, known as uterotrophic assay [57]. Later, uterotrophic assays of aldrin,
dieldrin, endosulfan, and HCH confirmed that all these compounds were xeno-estrogenic
in nature [55,56]. Furthermore, a cell-line-based study found evidence of the pesticides
modulating estrogen-dependent genes as natural estrogens do [58].

The highest isoform of dichlorodiphenyltrichloroethane, the most well-known pesti-
cide in the world, p,p′-DDT (more than 85% of w/w), was found to be estrogenic in animal
and cell lines experiments [59]. Additionally, experiments proved that DDT metabolite
binds to the estrogen receptor (ER), further consolidating its xeno-estrogenic activity [60].

Dieldrin was reported to cause various forms of cancer in at least seven strains of mice
upon oral administration [61]. In one study, dieldrin was found to decrease the binding
of natural estrogens to its receptor in female rats’ uterine tissue extracts. Additionally, in
another animal-based study, the dieldrin treatment was found to competitively inhibit the
binding of 17β-estradiol (the most potent form of estrogen) to the receptor in the rat uterus,
indicating the strong similarities between these two compounds [62]. Dieldrin treatment at
a concentration of 10 µM in MCF-7 cells produced a significant increase in proliferation.
The proliferation induced due to dieldrin at this concentration was 54.89% that of estradiol,
indicating that it is a strong xeno-estrogen [63]. Both isoforms of the pesticide endosulfan,
α- and β-endosulfan, were reported to possess xeno-estrogenic potential [64]. Furthermore,
atrophy was noticed in different testicular tissues of male rats fed meal containing 10 ppm
concentration of endosulfan [65]. In another study, it was noted that endosulfan-induced
atrophy relates to biochemical changes in testicular tissue that translate into a significant
fall in sperm counts in the testicular epididymis region and reduced spermatid counts in
intratesticular tissue [66]. Endosulfan-induced testicular atrophy has also been reported to
induce infertility in males due to a dramatic decrease in sperm count after exposure [67].

Chemicals produced by humans and nature possess estrogenic activity. However,
the molecular details or structure rendering a chemical/compound its xeno-estrogenic
activity are not well known. However, the majority of environmental xeno-estrogens share
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a common structural motif either of phenol or structurally similar to phenol as observed in
all the OCPs [68].

The understanding of mechanisms of endocrine disruptors exerted by such chemicals
is growing with time. Scientists proposed that by following these mechanisms, these
environmental chemicals (including OCPs) are reported to lead to endocrine disruption
(including xeno-estrogenicity) [69]. Figure 1 presents the different mechanisms of action of
these compounds:

1. Mimicking the effect of endogenous steroidal hormones (androgens and estrogens).
2. Antagonizing steroidal hormones.
3. Altering the synthesis and metabolism of endogenous steroidal hormones.
4. Modifying hormone receptor expression in different tissues.
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Figure 1. Different mechanisms of endocrine disruption by xeno-estrogenic pesticides: (a) mimicking
estrogens, (b) antagonizing estrogens, (c) altering estrogen synthesis, and (d) modifying estrogen
receptor expression.

5. Association of Xeno-Estrogenic Pesticides with Endocrine-Related Cancer

Through human studies, the role of estrogens in female as well as male cancers has
been well established. Breast and endometrial cancers in females are primarily estrogen-
mediated [70]. In males, declining testosterone with age and rising estrogens are known to
elevate prostate cancer risk with age [71].

Therefore, the risk of estrogen-mediated cancer has been analyzed in relation to
exposure to OCPs by researchers. Risk of breast, endometrium, and ovary cancers in females
and risk of prostate and testis cancers in males are estrogen-dependent to some extent [71].
Studies indicate a strong relation between exposure to estrogens as the principal risk factor
in the development of these estrogen-mediated cancers [15,16,18,19,32,38,57,60,62,70].

5.1. Xeno-Estrogenic Pesticides and Female Cancer

The role of these xeno-estrogenic pesticides in elevated breast cancer risk has been
most extensively studied compared to any other cancer in humans [11,72–83]. Over the
past few decades, the incidence and mortality of breast cancer have increased worldwide
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by more than 33% [72,73]. Numerous studies have linked the contaminants we humans are
unavoidably exposed to as the prime cause of higher breast cancer risk. Sufficient evidence
points to the fact that breast cancer is strongly related to exposure to such contaminants,
including DDT and other pesticides that act as estrogenic stimulants [40]. Significantly
higher levels of pesticides such as DDT along with its persistent metabolites (especially
DDE and DDD), heptachlor, dieldrin, and hexacyclohexane were detected in samples of
patients with carcinoma of the breast, irrespective of any other factor when compared to
controls [74].

Incidence of breast carcinoma is the world’s second highest, and it has the fifth highest
mortality rate, while 36.8% of all incidences directly link to lifestyle and/or environmental
factors in females over the age of 30 years. A significant association was found between the
breast cancer epidemic and environmental contaminants exposure—especially DDT [11,75].
In one of the most significant studies linking OCPs with breast cancer, the decline in
mortality rates observed in a decade (1976 to 1986) related significantly to decreases in
specific OCPs (DDT and lindane) in colostrum [38]. Studies also suggest that removal
of xeno-estrogens can prevent the incidence of and mortality due to breast cancer in
females [76]. In prospective studies, exposure to OCPs was measured over a long time
before diagnosis, and a statistically significant link was reported between breast cancer risk
and DDT exposure. Similarly, two studies consistently linked the pesticide DDT with higher
breast cancer risk when significant exposure occurred before teenage years (below the age
of 14 years) [77,78]. These observations were further consolidated by a cohort study where
it was found that above a certain cut-off concentration of dieldrin (>57.6 ng/g), morbidity
and mortality amongst breast cancer patients significantly increased [78]. Dieldrin weakly
induced both ER expression and cell proliferation in MCF-7 cell lines in a study, indicating
dieldrin to be weakly estrogenic in females [82].

It is not clear how the estrogenic mechanism increases breast cancer risk. In a toxico-
proteomic study amongst breast cancer patients, these OCPs were found to downregulate
the expression of ER (a common event in a large number of breast cancer cases) by dis-
rupting the relevant pathways [83]. In vitro studies also confirmed estrogen deregulation
and increases in the concentration of cellular metabolites that activate a number of onco-
genes [84,85]. In a recent study from China, OCPs were not only associated with breast
cancer risk but were also found to elevate oxidative stress biomarkers in both serum ad
urine [86].

Studies analyzing the role of xeno-estrogenic pesticides in endometrial cancer risk
are few and rather inconclusive. Previous studies did not find any correlation between
xeno-estrogenic OCP levels and endometrial cancer risk [87,88]. More human and animal
experiment-based studies are needed to establish a link between these contaminants and
endometrial cancer risk.

5.2. Xeno-Estrogenic Pesticides and Male Cancer

The role of xeno-estrogens in modifying the risk of male cancer and other related
disorders is heavily debated and not well understood. In utero and early postnatal estrogen
exposure is a significant contributory factor for testicular cancer risk in young men [89,90].
Studies from our lab have found a high level of these pesticides in mothers’ milk and umbil-
ical cord, indicating continuous transfer of these pesticides during the early development
of children [6–8].

Endocrine-disrupting chemicals were found to contribute to increased testicular cancer
risk in some studies [91–93]. Later, this hypothesis was further consolidated when it was
found that exposure to different xeno-estrogens in utero increases testicular cancer risk
by fourfold in men (between the ages of 16 and 59) [64]. In an occupational study, xeno-
estrogenic OCPs were found to increase testicular cancer risk among youngsters born to
Norwegian farmers from 1952 to 1991, reporting a higher-than-expected testicular cancer
incidence compared to controls [94]. In a nested case–control study, it was found that
mothers of patients with testicular cancer had significantly higher DDT metabolites in their
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body during the lactational period [95]. A pooled study found 1.29 times higher testicular
dysfunction risk, the main cause of testicular cancer, amongst the population living in
regions having higher occupational and non-occupational exposure to OCPs compared to
those in regions with limited or lower chances of exposure [96].

Due to the hormonal basis of prostate development, researchers have valid reasons to
understand the potential relationship of xeno-estrogenic pesticides with prostate cancer
risk [97]. The human prostate gland is the organ most affected by malignant neoplasm in
elderly men. With the increase in life expectancy, the incidence of cancer has increased,
affecting almost 90% of males over 80 years of age. The basis for this high incidence
is not clear despite decades of exhaustive research [98]. In contrast to testicular cancer,
direct connections between xeno-estrogenic pesticides and prostate cancer have not been
established [90,99]. Animal- and cell-line-based studies are a better indicator of the effect
of xeno-estrogenic pesticides on the functioning and transformation of prostate cancer.
One study reported that endocrine-disrupting chemicals can transform and/or reprogram
prostate stem cells and potentially elevate prostate cancer risk in experimental animals [100].
In an animal-based study, it was found that feeding regular small doses of xeno-estrogens to
pregnant females led to a significantly increased prostate weight in adulthood in their pups;
increased prostate weight is one of the hallmarks of prostatic disorders, including both
prostate cancer and benign prostatic hyperplasia (BPH) [101]. The most compelling proof
for a link between xeno-estrogenic OCP exposure and prostate cancer comes from studies
from our laboratory. We found that the levels of some of these pesticides were significantly
higher amongst patients with higher-stage and more aggressive prostate cancer, indicating
the development of an aggressive form of cancer. In addition, these pesticides influence
prostate weight as well amongst BPH patients [102,103]. Occupational pesticide exposure
is regarded as an established factor elevating prostate cancer risk [104–106]. Furthermore,
numerous epidemiological studies reported a positive relation between (non-occupational)
pesticide exposure and the risk of prostate cancer [106–108]. In relatively recent Asian
studies, DDT and endosulfan were found to increase prostate cancer risk. This hints
that in spite of the partial ban on these two compounds, they may still be increasing the
risk [109,110]. However, more studies are needed to understand if there is a relation before
drawing any conclusion.

6. Conclusions

The association of pesticides, including OCPs, with cancer risk is well established.
However, some of the mechanisms, such as xeno-estrogenicity, that increase the risk of
carcinogenic progression are not clearly understood. Accumulating evidence is consoli-
dating the role of xeno-estrogenic OCPs in the risk of not only cancers but also a plethora
of other human disorders. These chemicals, despite their apparent adverse health effects,
are still used in some countries. Although the risk of some cancers such as breast cancer is
clearly modified with exposure to the discussed chemicals, the link with the risk of other
estrogen-mediated cancers, especially in males, is not clearly understood and needs to be
studied more. Figure 2 represents the risk of different cancers reported to be associated
with exposure to xeno-estrogenic pesticides. In recent decades, breast cancer in females
and prostate cancer in males have become the top causes of morbidity and mortality, and
both are estrogen-mediated cancers. More studies are needed to find out how much this
increased incidence can be attributed to such harmful environmental factors. To the best of
our knowledge, this is the only study that focuses on all-gender estrogen-mediated cancer
risk modification by xeno-estrogenic OCPs. These chemicals must be completely phased
out and replaced with less toxic and affordable alternatives that have negligible adverse
health effects on mammalian systems.
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