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Abstract: Chemical risk assessment in the context of the risk analysis framework was initially
designed to evaluate the impact of hazardous substances or xenobiotics on human health. As the
need of multiple stressors assessment was revealed to be more reliable regarding the occurrence
and severity of the adverse effects in the exposed organisms, the cumulative risk assessment started
to be the recommended approach. As toxicant mixtures and their “cocktail effects” are considered
to be main hazards, the most important exposure for these xenobiotics would be of dietary and
environmental origin. In fact, even a more holistic prism should currently be considered. In this
sense, the definition of One Health refers to simultaneous actions for improving human, animal, and
environmental health through transdisciplinary cooperation. Global policies necessitate going beyond
the classical risk assessment for guaranteeing human health through actions and implementation
of the One Health approach. In this context, a new perspective is proposed for the integration of
microbiome biomarkers and next generation probiotics potentially impacting and modulating not
only human health, but plant, animal health, and the environment.
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1. Introduction

Ongoing pollution due to anthropogenic activities poses a significant threat to the
environment and health of its inhabitants. Until recently, human health was the primary
focus of risk assessment in the context of the risk analysis framework. However, interna-
tional policies [1] are starting to reflect research results revealing that humans are not a
separate but an integral cog in the complex machine of the Earth’s ecosystem. Since the
interdependencies between human, animal and plant health and the environment were
realised, health started to be regarded through the prism of an integrated approach that is
being called One Health. The definition of One Health refers to the holistic approach for
simultaneously improving human, animal, and environmental health through transdisci-
plinary cooperation [2]. In this context, the human gut microbiome can be also considered
as an important element of the next generation risk assessment in support of this One
Health approach (Figure 1).
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Figure 1. Risk assessment of xenobiotics in an accordance with the One Health approach.

Anthropogenic activities, such as industrial processes, urbanization, waste disposal,
agriculture, breeding, etc., introduce directly to the ecosystem various compounds, with
the important common feature of being foreign to the biological system, and, as such, may
cause unprecedented adverse effects in the ecosystem. These foreign to the body or the
biological system substances are referred as xenobiotics [3]. Currently, the most investigated
groups of xenobiotics, i.e., pesticides, preservatives, plasticizers, personal care products,
dyes, and pigments, have been found in the following products: plant control constituents,
drugs, pesticides, cosmetics, flavourings, fragrances, food additives, industrial chemicals,
and environmental pollutants [4]. On the other hand, these contaminants may also enter
the ecosystem indirectly due to instability of the environment caused by environmental
degradation (such as deforestation) and climate change. Moreover, these xenobiotics do
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not always remain in the same chemical form but can be transformed during chemical,
physical, and biological processes [5].

Xenobiotic dietary exposure is a global health concern nowadays. As dietary intake
is the most important exposure pathway related to the xenobiotic intake, the quality and
quantity of food consumed is of particular interest among the research community.

Xenobiotics may alter the microbiota composition, leading to a state of dysbiosis, which
is linked to multiple diseases and adverse health outcomes, including increased toxicity
of some xenobiotics. Toxicomicrobiomics studied the mutual influences and alterations
between the ever-changing microbiome cloud and xenobiotics of various origins, with
emphasis on their fate and toxicity [6,7]. These bidirectional interactions could be diverse:
(1) Individual gut microbiome (human/animals) might be negatively affected by several
contaminants or xenobiotics with pathophysiologic impact through triggering microbial
composition disequilibrium; (2) Gut microbiota could protect against the carcinogenic and
genotoxic substances by degrading or biotransforming them to less toxic compounds or
facilitating their excretion; (3) Gut microbiota may also detoxify xenobiotics, for example,
into genotoxins, or may reverse the detoxification implied by host metabolism; (4) Gut
microbiota is capable of transforming xenobiotics towards lower toxic and mutagenic
substances, thus it may be able to lessen the chances of dysbiosis effects.

However, dietary contaminants and hazardous substances present in environmen-
tal compartments may also significantly affect human health. Remarkably, regarding
xenobiotic metabolism, participation of human gut microbiota might mediate long term
physiological impact, affecting the balance between eubiosis and dysbiosis. However, to
understand the key mechanisms a multidisciplinary approach is needed. Xenobiotics that
alter the gut microbial composition and metabolism is categorized into a subgroup termed
“microbiota disrupting chemicals” (MDCs) [8]. These MDCs might have the ability to
promote changes in the microbiota that have been associated with intestinal, hormonal,
and chronic or long-term systemic diseases in the host.

A collection of MDCs and their effects on the microbiota has widely explained by
several authors: bisphenol [9,10]; phthalates, such as diethylhexylphthalate [11,12]; heavy
metals. Many heavy metals have shown disrupting properties, and human exposure occurs
through diet and water, inhalation of polluted air, smoking, and dermal absorption [13-15].
Triclosan and parabens: Triclosan is a well-known preservative [16]. Parabens are widely
used as preservatives in cosmetics, personal care products, drugs, and foods [17]. Poly-
brominated diphenyl ethers (PBDEs) are environmentally persistent chemicals widely
used as flame retardants [18] that have been shown to alter microbiota [19]. Pesticides
have been shown to have important implications for environmental, animal, and human
health [20]. Glyphosate and chlorpyrifos exposure occur mainly through diet and drinking
water [21]. They have been reported to interfere with gut microbial communities and
enteroendocrine cells [22,23]. Diazinon, an organophosphate pesticide with estrogenic
activity [24], has shown to alter the structure of the gut microbiome community, func-
tional metagenome, and associated metabolic profiles in a sex-related manner in murine
models [25]. Organochlorine pesticides with endocrine disrupting capacity have also been
associated with alterations in gut microbiota [26,27]. Antibiotics are also MDCs of concern,
especially because of their contribution to antimicrobial resistance, a critical One Health
issue [28]. Directly and indirectly (e.g., via reducing short-chain fatty acid production), they
can have profound short and long-term negative effects on the gut microbiome, including
altering its composition and opening a niche for pathogens [29]. Additionally, due to
ingestion exposure to antibiotic-resistant microorganisms and given its high microbial
density, the gut microbiome is emerging as a reservoir for antibiotic resistance genes and
their horizontal transfer to commensals and, importantly, pathogens [30,31].

The cumulative exposure to xenobiotics and overall outcome could hugely impact
health research. Therefore, interaction among distinct scientific disciplines as microbiol-
ogy, nutrition, toxicology, environmental protection, and both personalised medicine and
nutrition are needed. Moreover, multiple technologies, communities and professional
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domains should converge in order to obtain relevant outcomes. Research in risk assess-
ment, including microbiota, metabolome, and omics technologies, favours new progress to
evaluate the factors and substances that affect human health. Studies employing holistic
analysis of human microbiota as metabolic node for health impact is the first step of this
perspective goal.

The main objective of this work is to pay attention to the upmost scientific information
about the interaction between the human microbiota and exposure to xenobiotics in the
diet and environment.

2. Key Challenges of Gut Microbial Metabolism Research

Regarding the implementation of current EU policies, emissions of hazardous sub-
stances should be limited and controlled [32]. However, even so, xenobiotics already
present in the environment cause a major problem, as demonstrated by the fact that even
extensive human biomonitoring studies do not approach, adequately, the real body burden
scenario [33]. Xenobiotics can be found everywhere in daily life, from food, cosmetics,
and homecare products to prescription and over-the-counter drugs, gasoline, alcoholic
beverages, and paper receipts. Thus, preventing long-term exposure to these harmful
substances and mitigating their impacts become health and environmental priorities.

Interestingly, despite food being the source of energy and nutrients for the human
body to grow, develop, and perform everyday activities, it may also contain xenobiotic
substances. The rising of the global population results in higher food demand and con-
sequently necessitates incremental increases in food resources [34]. Developed countries
have incorporated much more processed foods and artificial products into the diet of their
populations to keep up with the rapid pace of modern lifestyles. Cumulative exposure to
contaminants and the physiological impact and mechanisms are poorly investigated [35].
Importantly, long-term exposure contributes to host gut microbiome dysbiosis [36], which
previously had only been associated with changes in diet or antibiotic use [37,38]. Moreover,
dysbiosis associated with xenobiotic exposure varies from person to person, depends on
life stage and, overall, appears to be a strongly personalised effect [39].

As xenobiotic mixtures are increasingly ubiquitous in the environment nowadays [40],
the question of how much the environment is polluted does not suffice anymore. The key
question raised recently by the research community as well as by key environmental and
health authorities, organisations, and agencies, such as EFSA, WHO, EEA, USEPA, etc., is
what adverse health effects are caused by everyday contact with xenobiotics. In this context,
the risk assessment consists of four crucial parts. The first step is hazard identification,
followed by exposure assessment, hazard characterisation, and, finally, risk characterization
(Figure 1). Regarding xenobiotics, the following challenges can be observed. Firstly, exact
concentrations of defined xenobiotics are needed for reliable risk assessment. It means that
specific xenobiotics entering the body via ingestion of food and via other exposure routes
(e.g., inhalation or skin contact) facilitated by environmental pollution must be identified
and their concentrations in foods/environment be elucidated. Secondly, xenobiotics may
not remain in the same chemical form, but they may be transformed in other chemicals less
or more toxic comparing with the parent compound. Moreover, the total concentration
of xenobiotics does not always raise concerns, as only the bio-accessible proportions are
responsible for adverse health effects. Additionally, the bio-accessibility of each xenobiotic
is regulated by complex ADME processes (absorption, distribution, metabolism, excretion)
taking place in living organisms.

Xenobiotic ADME processes involve genes, enzymes, and pathways not only of hu-
man origin, but also from the human microbiota, which has started to be investigated
thoroughly in latest years. The current knowledge has shown that innovative microbiota
biocomponents and functional analyses could contribute to increase the metabolites, an-
alytes and enzymatic repertoire beyond the microbial taxonomic principal components
analyses that were widely used in studies of the microbiome and toxicant exposures [41].
Recent research advancements have focused on molecular data for involving microbiome
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biomarkers in the prevention of diseases and dysfunctions triggered by xenobiotic expo-
sures [42,43]. Integrative omics data and technologies [44,45] became essential tools for
determining the holistic impact of microbiome on health-diseases balance (Figure 1). These
findings strengthen the rationale for using a homologous model for toxicology. To study
effects of exposures on the human microbiome in vitro systems may be preferable [46].
Moreover, the microbiome seems be particularly sensitive to xenobiotic influence during
key life stages [47].

Personalized nutrition treatments based on next generation probiotics able to detoxify
xenobiotics is envisaged as closing the circle of promoting the One Health approach [48].
Moreover, beneficial microbes isolated from the human gut microbiota could be further
proposed for being used as plant probiotics, animal probiotics, and, even for bioreme-
diation, having a potential positive modulation capacity in the context of One Health.
The results of specific microbiota metabolizing particular xenobiotics and especially those
used in bioremediation should be accompanied in parallel by environmental biosafety
assessments [49].

Accordingly, as there is a strong drive-in international policy for next generation (non-
animal) testing methods the human gut microbiota may become a plausible substitute to
anticipate assessments and avoiding animal testing, when possible [50]. Specific consortia
of human gut microbiota might be used in research studies to define the related ADME
processes in cellular, organ-on-a-chip or organoids models [51] for analysing the fate of
xenobiotics and inducting the effects in health and environment, such as for BPA biodegra-
dation [52]. This contrasts with toxicological studies on animals, which are commonly used
for environmental risk assessments performed up to now. Thus, the human gut microbiota
approach seems to more relevant as results from traditional toxicology tests are performed
on animals and in terms of acute exposure (short time, high doses) and, thus, must be
extrapolated from animals to humans, as well as from high to low doses and long-term
exposure that is specific for environmental exposure. Additionally, research determining
the individual exposure levels of the human population depending on the composition
of the intestinal microbiota may be performed as differences among individuals in the
population are observed. The interindividual variations can be related to dietary habits,
level of pollution, and ethnical and geographical differences [53].

According to Humboldt-Dachroeden et al. [54], One Health approach has the potential
to become a comprehensive research field, however up to now environmental perspective of
this approach is stunted in comparison for instance with epidemiological, microbiological,
or public health perspectives. Environmental issues have gained even greater interest in
terms of climate change and related adverse effects. Climate change disturbs the ecological
and environmental integrity of living systems by causing lifecycle changes that at the end
adversely affect among others food security and food safety, as well as related responses
at local, regional, and global level [55]. In accordance with food security and food safety,
European Union has launched the Farm to Fork Strategy, being the central part of the
European Green Deal, for making food systems fair, healthy, and environmentally friendly,
in one word—sustainable [56]. Food production is inseparably related with soil, thus in
accordance with Green Deal Targets, European Commission has launched Mission Soils
for achieving soil relevant targets in the perspective of 2030. Among Mission Soils’ targets
related with the related with the One Health are following: reducing overall use and risk of
chemical pesticides by 50%, reduce fertilizer us by at least 20%, reduce nutrient loses by at
least 50%, reduce microplastic release into the environment by 30%, reduce the greenhouse
gas emissions by at least 55% compared to 1990 levels, and 25% of organic farming land
use [57]. Thus, considering above clauses, the perspective and priority in the scientific
research should be better focused on xenobiotics that influence the greatest the food safety
and security such as plant protection products, i.e., pesticides, food contact materials, i.e.,
plasticizers such as BPA and analogues, phthalates, and heavy metals circulating in the
food chain.
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3. Conclusions

Global policies necessitate going beyond the traditional methodologies towards cu-
mulative risk assessment implementations for guarantying the human health through
integrative actions and implementation of the One Health approach. What is more, the
One Health approach has already been incorporated in the education of future consumers,
assessors, managers, and scientists, and it is a key driving force in organising access to
transdisciplinary science through international partnerships, joint research projects, and
global conferences and social channel communications. In this sense, there is already a body
of knowledge and scientific evidence to support the key role of microbiome biomarkers
and its derived bioresources for contributing to modulate and intervene for improving
global health. In the context of environmental health, soil is the first link-chain in the food
production cycle, and afterward has a great impact on human and animal health. Thus,
there is the necessity to link the environmental and microbiological research related with
xenobiotics in the food chain.
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