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Abstract: Background/Objetives: Pressure injuries pose a significant challenge in health-
care, adversely impacting individuals’ quality of life and healthcare systems, particularly
in intensive care units. The effective identification of at-risk individuals is crucial, but
traditional scales have limitations, prompting the development of new tools. Artificial
intelligence offers a promising approach to identifying and preventing pressure injuries in
critical care settings. This review aimed to assess the extent of the literature regarding the
use of artificial intelligence technologies in the prediction of pressure injuries in critically
ill patients in intensive care units to identify gaps in current knowledge and direct future
research. Methods: The review followed the Joanna Briggs Institute’s methodology for
scoping reviews, and the study protocol was prospectively registered on the Open Science
Framework platform. Results: This review included 14 studies, primarily highlighting
the use of machine learning models trained on electronic health records data for predict-
ing pressure injuries. Between 6 and 86 variables were used to train these models. Only
two studies reported the clinical deployment of these models, reporting results such as
reduced nursing workload, decreased prevalence of hospital-acquired pressure injuries,
and decreased intensive care unit length of stay. Conclusions: Artificial intelligence tech-
nologies present themselves as a dynamic and innovative approach, with the ability to
identify risk factors and predict pressure injuries effectively and promptly. This review
synthesizes information about the use of these technologies and guides future directions
and motivations.

Keywords: artificial intelligence; pressure injury; intensive care units; critical care; critical
care nursing

1. Introduction

Pressure injuries (PIs) are a cross-cutting problem in various healthcare contexts,
with an important impact on patients and healthcare systems [1-4]. The development of
PIs can lead to reduced quality of life, worsening pain, risk of infection, and increased
length of hospital and intensive care stays, and is also associated with increases in hospital
readmission and mortality rates. It thus represents an important increase in direct and
indirect costs related to healthcare [3-5].

A PI can be defined as a localized injury to the skin and/or underlying tissues as a
result of pressure or a combination of pressure and torsion forces, usually located in areas
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of bony prominence [6]. The injury arises due to the forces exerted by the individual’s
body weight or because of external forces such as those applied by a medical device or
other object, or a combination of these. Tissue damage occurs as a result of prolonged and
sustained exposure to compression deformations (perpendicular to the surface of tissues),
tension, torsion (parallel to the surface of tissues), or a combination of both [6,7].

These lesions are often considered preventable, but they are still a problem with a
relevant prevalence at the hospital level. Systematic reviews on the global incidence and
prevalence of PIs in hospitalized adult patients report a prevalence ranging from 12.8% to
14.8%, with a pooled hospital-acquired PI rate of 6.3% to 8.4% [8,9].

Intensive care units (ICUs) are characterized by highly differentiated hospital units that
provide continuous support and monitoring to people in critical and acute conditions [10].
Factors such as multiorgan failure, hemodynamic instability, inadequate perfusion and
oxygenation, multiple comorbidities, reduced mobility, specific medication and insufficient
nutritional support are related, in this context of care, to a significant increase in the risk
of developing PIs and consequent increases in the prevalence of the phenomenon [11,12].
Chaboyer et al. [11] estimated a cumulative prevalence of Pls in ICUs of 16.9-23.8% and a
mean incidence of 10.0-25.9%. These results have recently been reinforced by a large-scale
prospective observational study conducted in 1117 ICUs in 90 countries, in which data
were collected from 13254 individuals. This revealed an overall prevalence of PIs in ICUs
of 26.6%, and the prevalence of PIs acquired in intensive care was 16.2% [13].

Considering PIs as an adverse event that are often preventable and used as an indicator
of the quality of nursing care, it is essential to identify individuals at risk correctly and
effectively. Risk identification is the starting point for implementing appropriate preventive
measures and effectively managing the available resources [14-16].

Coleman et al. [14] proposed a conceptual framework that categorizes PI risk factors
along causal pathways, encompassing intrinsic factors (e.g., perfusion, nutrition, and
mobility) and extrinsic factors (e.g., skin moisture, shear, and pressure). This model
highlights the multifactorial and dynamic nature of PI risk, underscoring the need for
predictive tools capable of integrating a broad range of clinical variables.

To this end, several risk assessment instruments have been developed, such as the
Norton [17], Braden [18] and Waterlow [19] scales. These scales consider general dimen-
sions that lead to the development of PIs but do not consider some relevant risk factors
such as hematological values, oxygenation, perfusion, and certain comorbidities such as
diabetes and vascular pathology. Risk factors for specific populations, such as patients
hospitalized in ICUs, are not yet considered [12]. This fact means that, when applied in this
context, they have low predictive power, with high sensitivity, but with low specificity, and
thus low discriminatory power, as reported in several studies [20-25].

In response to this problem, specific instruments have been developed for the intensive
care context, such as the Cubbin and Jackson [26], CALCULATE [25,27] and EVARUCI [28]
scales, which have greater predictive power in this patient population. Even so, they
are static instruments, applied punctually by an operator, without producing a dynamic,
real-time response to the patient’s health status.

In addition to their structural limitations, the performance of traditional risk assess-
ment tools is influenced by the clinician’s level of experience and subjective judgment.
Variations in clinical interpretation can lead to significant inter-observer variability, compro-
mising the consistency and reliability of risk classification. In intensive care settings, where
the timely and accurate identification of PI risk is crucial, such variability may delay preven-
tive interventions or result in inappropriate resource allocation. Even with tools specifically
developed for critical care populations, dependence on manual and experience-based
assessment remains a limitation to standardized, evidence-based decision-making [29].
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Derived from the increasing availability of Electronic Health Records (EHRs) data,
important advances have been made in the development of new technological instruments
that allow the development of new solutions to this problem, namely, artificial intelligence
(AI). Alis a system or machine simulation of human intelligence [30]. This concept includes
machine learning (ML) models, deep learning, neural networks, and natural language
processing.

Data mining techniques are key for predicting phenomena, enabling the extraction
and categorization of large datasets from EHRs. ML models, a subset of Al, allow systems
to learn from data and build predictive models [31]. These approaches reveal complex
patterns in EHR data, identifying relationships between variables to predict outcomes like
PIs [32-34]. Unlike traditional scales, ML models analyze a broader range of risk factors,
calculate the importance of each variable, and adapt autonomously over time as new cases
are integrated into information systems [35].

The performance of ML classifiers is validated using metrics like receiver operating
characteristic (ROC) curves and the area under the ROC curve (AUROC) [36,37]. A confu-
sion matrix summarizes correct and incorrect classifications, while other metrics, such as
the area under the precision-recall curve (AUPR), F1 score, accuracy, sensitivity, specificity,
precision, and negative predictive value, offer deeper insights. Sensitivity measures the
likelihood of correctly identifying a positive case, specificity reflects the ability to exclude
negatives, and precision indicates the probability of disease presence when the test is
positive. The AUROC quantifies a model’s discriminatory power, with values above 0.8
indicating robust and clinically reliable models, while those below 0.75 are considered
inadequate for decision-making. This highlights AUROC’s importance as both a statistical
measure and a benchmark for clinical applicability [36-39].

Current evidence reinforces the important role of nursing teams in addressing PIs.
Thus, the development of more effective tools for the detection and stratification of individ-
uals at risk has enormous potential, as well as profound implications, in the implementation
of preventive measures and, more globally, in nursing practice.

A preliminary search was conducted in MEDLINE, SCOPUS, CINAHL (Cumulative
Index to Nursing and Allied Health Literature), PubMed, Cochrane Database for Systematic
Reviews, Joanna Briggs Institute (JBI) Evidence Synthesis, Web of Science Core Collection,
PROSPERO and Open Science Framework databases, and no published or ongoing reviews
were found on the use of Al to predict the development of Pls in critically ill patients
admitted to ICUs. Two systematic reviews were identified that investigate the use of
ML models in risk assessment in hospitals, but not in the specific context of intensive
care [40,41], and another systematic review addresses Al technologies in risk management
in ICUs but is not directed at the phenomenon of PIs [34].

Despite the growing interest in Al in healthcare, the current literature remains frag-
mented regarding its specific application to PI prediction in intensive care settings. Tra-
ditional risk assessment tools lack the ability to process complex, multidimensional data,
and often fail to capture ICU-specific risk factors in real time. Although some reviews
have examined Al in hospital-based risk prediction more broadly, they do not address the
particular vulnerabilities of critically ill patients nor the technological approaches tailored
to the ICU context. A focused synthesis of the available evidence is therefore essential to
understand the current landscape, identify gaps, and inform the future development and
implementation of Al models in this high-risk population.

Therefore, the purpose of this scoping review is to systematically map the existing
evidence on the application of Al technologies in this context. Specifically, it aims to identify
the types of Al models used, the variables involved in predictive modeling, the outcomes
reported, and the implications for clinical and nursing practice.
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To guide this review and ensure a comprehensive mapping of the available literature,
the following research questions were formulated:

e  What artificial intelligence tools are used in predicting the risk of pressure injuries in
critically ill patients admitted to intensive care units?

e  What are the results of using artificial intelligence tools in predicting pressure injuries
in critically ill patients admitted to intensive care units?

e  What variables are identified by artificial intelligence tools in predicting pressure
injuries in critically ill patients admitted to intensive care units?

e  What are the implications for nursing practice of using artificial intelligence tools in
predicting pressure injuries in critically ill patients admitted to intensive care units?

2. Materials and Methods

This scoping review was conducted following The Joanna Briggs Institute guidelines
for scoping reviews [42,43] and is reported following the recommendations of the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews
(PRISMA-ScR) [44]. This study protocol was prospectively registered on the Open Science
Framework platform (https://doi.org/10.17605/OSEIO/5M3KH).

Accordingly, and in line with the stated objectives and research questions, this review
aimed to identify and map the available scientific evidence on the use of Al in predicting
PIs in critically ill individuals admitted to ICUs.

2.1. Eligibility Criteria

e  Participants: This review considered studies that include adult critically ill patients. No
restrictions were applied regarding gender, ethnicity, or other personal characteristics.
A critically ill person is defined as someone experiencing a critical illness, with a
potentially reversible health condition characterized by vital organ dysfunction and a
high risk of imminent death if appropriate care is not provided [45].

o  Concept: Studies addressing Al for predicting PIs were considered. Al is understood
as the simulation of human intelligence by a system or machine [30]. This concept
includes, but is not limited to, ML, deep learning, neural networks, and natural
language processing. Studies that address other types of instruments or tools will be
excluded. A Plis an injury or ulceration caused by prolonged pressure on the skin
and tissues when one stays in one position for a long period of time, such as lying in
bed. Additionally, pressure injuries caused by medical devices, known as ‘medical
device-related pressure injuries’, which typically develop in different locations than
traditional PlIs, will also be considered [6].

e  Context: Regarding context, studies conducted in adult, specific, or multipurpose
ICUs within public or private hospitals were included, without geographic or cultural
limitations. Pediatric and neonatal ICUs were excluded. An ICU is an organized
system for providing care to critically ill patients, offering intensive and specialized
medical and nursing care, enhanced monitoring capabilities, and multiple modalities
of physiological organ support to sustain life during acute organ system failure [10].

2.2. Types of Sources

This scoping review considered quantitative, qualitative, and mixed-methods studies.
Literature reviews, dissertations and theses, text and opinion papers, books, and book
chapters were also included.
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2.3. Search Strategy

An initial exploratory search was conducted in CINAHL, MEDLINE and SCOPUS
databases to identify synonymous search terms used in article indexing, titles, abstracts,
and keywords.

v

The terms used for this preliminary search were “pressure ulcer”, “pressure injury”,

v v v

“machine learning”, “artificial intelligence”, “deep learning”, “neural networks”, “critical
care”, “intensive care units”, “intensive care”, “critical illness”, and “critically ill patients”.
The free terms and indexing terms (Medical Subject Headings/CINAHL Subject Headings)
identified were then used to develop the full search strategy for each database.

To identify relevant papers and documents for this review, both published and un-
published works were searched through electronic databases and grey literature. The
electronic databases included CINAHL (by EBSCO), MEDLINE (by EBSCO), SCOPUS,
PubMed, Cochrane Library (Cochrane Database for Systematic Reviews and Cochrane
Central Register of Controlled Trials), Web of Science Core Collection, and Association for
Computing Machinery Digital Library. For grey literature, searches were conducted in the
Bielefeld Academic Search Engine (BASE) and Repositérios Cientificos de Acesso Aberto
de Portugal (RCAAP).

No language restrictions were applied, and no date limit has been set for publication,
since the objective is to comprehensively assess the literature published on this topic.
The electronic search was conducted by two independent reviewers (J.A and A.M) up to
and including 31 March 2024, using the terms “pressure injury”, “artificial intelligence”
and “intensive care units”, along with their related terms. The search strategy, including
all identified keywords and index terms, was customized for each literature source (see

Supplementary Material S1).

2.4. Source of Evidence Selection

The search strategy led to the identification of 137 titles. Their citations and abstracts
were uploaded into Rayyan Web software [46] for bibliographic management and were
organized according to the database from which they were retrieved. After the removal of
duplicates, 72 papers were screened by title and abstract by two independent reviewers
(J.A. and A.M.) with 93.1% agreement (k = 0.82), of which 16 were selected for full-text
review. Of these, 10 met the inclusion criteria. The reference lists of these papers were
then analyzed to identify additional papers of interest based on the relevance of their titles.
Then, 7 papers were selected and assessed against the eligibility criteria, of which 4 met
the inclusion criteria. Searches were also conducted on relevant organizations such as the
European Pressure Ulcer Advisory Panel (EPUAP) and the National Institute for Health
and Care Excellence (NICE) for relevant publications. Finally, 14 papers were included
in this scoping review. The full texts retrieved were uploaded to Zotero software (Zotero,
version 7.0.13) [47]. The process of paper identification, selection, eligibility, and inclusion
is illustrated in the flow diagram below (Figure 1), as per Page et al. [48]. This process
was conducted by two reviewers (J.A. and A.M.). Disagreements were resolved through
consensus and, when necessary, consultation with a third reviewer (R.A.). During the
selection process, a total of six reports were excluded based on the predefined criteria. One
report was excluded because it involved participants outside the scope of the review, which
focused on adult populations (n = 1). Two reports were excluded for not being relevant to
the context of ICUs (n = 2), and three were excluded due to conceptual misalignment, as
they did not address the use of Al for predicting PIs (n = 3). These exclusions ensured that
the analysis included only studies strictly aligned with the review’s objectives.
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Figure 1. Flow diagram of the paper identification, selection, eligibility, and inclusion process [48].

2.5. Data Extraction

Data were extracted by two independent reviewers (J.A. and R.A.) using a data extrac-
tion tool developed in advance for this purpose. The extracted data include specific details
about the studies, such as the title, authors, year of publication, country, source of infor-
mation, objectives, study design, participants, setting, research tools, and the participants.
Relevant results will also be extracted to answer the review questions, namely, the types of
Al instruments used, their performance, the variables used, and the implications of their
application for nursing practice.

The data extraction tool is the result of an adaptation of the data extraction tool
proposed by the Joanna Briggs Institute [49]. Disagreements between the reviewers were
resolved by consensus, or by consulting a third independent reviewer (A.M.). This scoping
review did not seek to address highly specific research questions or evaluate the quality of
the evidence generated; therefore, a critical appraisal of the methodological quality of the
included papers was not conducted [50].

2.6. Ethical Considerations

Considering the nature of the study as a scoping review, which does not involve any
participants, there are no ethical implications to be addressed.

3. Results
3.1. Characteristics of Included Papers

The papers included were published between 2013 and 2024, and the studies were
carried out in the United States of America (n = 9), South Korea (n = 3), Spain (n = 1), and
Czechia (n = 1). Over half (70%; n = 10) were published in the last 5 years. They primarily
reported quantitative research. Most studies reported retrospective cohort studies (n = 11);
one reported a two-phase retrospective and prospective cohort study, one reported a
prospective cohort study, and one an experimental before-after design. All reviewed studies
reported the development of different ML models based on EHR data for predicting PIs,
namely, ensemble models, deep learning, neural networks, regression, Bayesian, decision
trees, and instance-based. These terms are standardized as “prediction models” throughout
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this scoping review. The sample sizes varied between 27 and 74051 in studies designed as
single or multicenter.

3.2. Prediction Model Design

The predictive models identified in this review were primarily developed using
retrospective data extracted from EHRs. These structured datasets commonly included
variables such as demographic characteristics, comorbidities, vital signs, laboratory values,
medication administration, and nursing documentation. This indicates that data entry into
the models was generally automated via EHR queries, rather than performed manually.
While some studies employed deep learning methods capable of processing sequential ICU
data [51], others used probabilistic approaches—such as Bayesian networks—to capture
relationships between clinical variables [32,33].

The primary outcome across studies was the occurrence of hospital-acquired Pls,
without limiting analysis to specific subtypes; some studies included stage I and above,
while others focused on stage II or higher. This outcome variable was consistently obtained
from manually documented clinical assessments in the EHR. Notably, no study reported
the use of imaging technologies for visual wound scanning or the automated staging of PIs.

A total of 61 prediction models were developed for hospital-acquired pressure injury
(HAPI) prediction, and the number of models in each of the 14 studies varied from 1 to
9 (Table 1). Eight studies used more than one model, and six studies used just one. The
most common models used include logistic regression (n = 9), random forest (n = 8), and
support vector machine (n = 5). The most commonly best-performing prediction models
were logistic regression (n = 4), Bayesian networks (n = 2), and random forest (n = 2).

Table 1. Pressure injury prediction models by study and best-performing model.

Author

Prediction Models Best Performing Model

Cho et al. 2013 [32]

Bayesian Networks Bayesian Networks

Logistic Regression; Support Vector

Kaewprag et al. 2015 [52] Machine; Decision Tree; Random Forest; Logistic Regression
k-nearest neighbors; Naive Bayes
Kaewprag et al. 2017 [33] Bayesian Networks Bayesian Networks
Alderden et al. 2018 [53] Random Forest Random Forest
Logistic Regression; Elastic Net; Support
Cramer et al. 2019 [54] Vector Machine; Random Forest; GBM; Logistic Regression
Neural Networks
Hyun et al. 2019 [55] Logistic Regression Logistic Regression
Choi et al. 2020 [56] Naive Bayes Naives Bayes

Ladios-Martin et al. 2020 [21]

Logistic Regression; Bayes Point
Machine; Averaged Perception; Boosted
Decision Tree; Boosted Decision Forest;
Decision Jungle; Locally Deep Support
Vector Machine; Neural Networks;
Support Vector Machine

Logistic Regression
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Table 1. Cont.

Author

Prediction Models Best Performing Model

Vyas et al. 2020 [57]

XGBoost XGBoost

Neural Networks; Random Forest; GBM;

Alderden etal. 2021 [58] AdaBoost; Logistic Regression GEM
K-nearest neighbors; Logistic Regression;
Alderden et al. 2022 [59] Multi-layer Perceptron; Naive Bayes; Ensemble SuperLearner

Random Forest; Support Vector Machine

Sin et al. 2022 [60]

K-nearest neighbors; Logistic Regression;
Multi-layer Perceptron; Naive Bayes; Random Forest
Random Forest; Support Vector Machine

AdaBoost; Decision Tree; Logistic
Regression; K-nearest neighbors;

Ho et al. 2024 [61] Multi-layer Perceptron; Random Forest; MedaBoost
Support Vector Machine; GBM;
MedaBoost
RNN; GRU; LSTM; Logistic Regression;
Kim et al. 2024 [51] Decision Tree; Random Forest; XGBoost; GRU-D++

GRU-D; GRU-D++

Abbreviations: GBM—Gradient Boosting Machine; GRU—Gated Recurrent Unit; GRU-D++—Gated Recurrent
Unit with a decay; LSTM—Iong short-term memory; MedaBoost—Medical Expert Disagreement Adaptative
Boosting; RNN—recurrent neural network; XGBoost—eXtreme Gradient Boosting Machine.

3.3. Variables

The studies included have identified key variables based on conceptual frameworks,
such as Coleman et al.’s model [14], which classifies predictors along causal pathways.
These studies selected variables, including immobility, skin status, and poor perfusion,
as direct causal factors, supported by reviews of relevant literature, to align with PI eti-
ology and enhance prediction approaches (full list of input variables for each study in
Supplementary Material 52).

The studies analyzed a wide range of variables, which can be grouped into seven main
categories:

e Demographics—age, gender, ethnicity, height, weight, and body mass index
(BMI) [32,33,51-55,58-60]. These variables were widely used, serving as foundational
data for risk analysis;

e Clinical Measures—Covers parameters such as blood pressure (systolic, diastolic,
and mean), heart rate, oxygen saturation (SpO2), temperature, Glasgow Coma Scale,
APACHE, and MEWS scores [21,32,51,53,54,58]. These measures play a key role in
capturing the patient’s disease severity for hemodynamic and neurological conditions;

e Laboratory Results—Includes variables such as albumin, hemoglobin, glucose, cre-
atinine, lactate, bilirubin, arterial PaO2, PaCO2, and pH [32,51,53,54,56,58]. These
variables were often highlighted as significant predictors due to their ability to reflect
the patient’s nutritional, metabolic and inflammatory status;

e Interventions—Variables related to clinical interventions, such as the use of ventilation
(invasive or non-invasive), Continuous Renal Replacement Therapy (CRRT), Extra-
corporeal membrane oxygenation (ECMO), and parenteral nutrition [32,51,55,58,60].
These variables reflect the impact of therapeutic interventions on risk of injury
development;

e Medication—Includes sedatives, vasopressors, analgesics, steroids, and diuret-
ics [32,51,53,55,56,58];
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e  Nursing Assessments—Includes variables from the Braden scale (total score and
subscales such as sensory perception, activity, mobility, nutrition, skin moisture, and
friction/shear) [32,33,51,52,55,57-60], repositioning practices, and skin assessment
(e.g., fragile skin or skin tears) [32,58,59];

e  Comorbidities—Encompasses conditions such as diabetes, hypertension, heart failure,
COPD, spinal cord injury, stroke, and cancer [21,33,51,52,54,60].

3.4. Model Performance

Table 2 summarizes the performance results of the best model for each study included
in the review. The indicators used to measure the performances of the prediction models
include the area under the receiver operating characteristic curve (AUROC), accuracy,
sensitivity (SEN), specificity (SPE), positive predictive value (PPV) and negative predictive
value (NPV). Other performance metrics used but not reported in more than 25% of the
studies were not considered for this summary table, namely, the F1 Score, area under the
precision-recall curve, true positive rate, true negative rate, and the Youden index (full
table can be consulted in Supplementary Material S3).

Table 2. Reported performance metrics for the best-performing prediction model in each study.

Author Model ACC AUROC SEN SPE PPV NPV
Cho et al. 2013 [32] Bayesian Networks - 0.85 0.82 0.76 0.36 0.96
KaeWpr*}%Ze]t al. 2015 | sistic Regression - 0.83 0.16 0.99 0.56 0.93
Kaewp raé;]t al- 2017 B vesian Networks - 0.83 0.46 0.91 0.29 0.95
Alderden et al. 2018 Random Forest ) 0.79 } ) } }
[53]
Cramer[;]al. 2019 Logistic Regression - - 0.71 - 0.09 -
Hyun et al. 2019 [55] Logistic Regression 0.92 0.74 0.65 0.69 0.21 0.96
- 0.82 0.6 0.89 0.23 0.98
Choi et al. 2020 [56] Naives Bayes
- 0.68 0.85 0.76 0.37 0.97
Ladios-Martin et al. . .
2020 [21] Logistic Regression 0.87 0.88 0.75 0.88 0.22 0.99
Vyas et al. 2020 [57] XGBoost 0.95 - 0.84 0.97 0.87 0.97
Alderden et al. 2021 CBM ) 0.82 ) ) . )
[58]
Alderden et al. 2022 Ensemble ; 0.81 ; ; ; ;
[59] SuperLearner ’
Sin et al. 2022 [60] Random Forest 0.96 0.99 0.92 - 0.95 -
Ho et al. 2024 [61] MedaBoost - 0.9 - - - -
Kim et al. 2024 [51] GRU-D++ - 0.95 - - - -
Note: “-“ means not reported data. Abbreviations: ACC-accuracy; AUROC—area under the receiver operat-

ing characteristic curve; GBM—Gradient Boosting Machine; GRU-D++—Gated Recurrent Unit with a decay;
MedaBoost—Medical Expert Disagreement Adaptative Boosting; NPV—Negative Predictive Value; PPV—Positive
Predictive Value; SEN—sensitivity; SPE—specificity; XGBoost—eXtreme Gradient Boosting Machine.

In the 14 studies, 12 studies reported AUROC, ranging from 0.74 to 0.99; 4 studies
reported accuracy, ranging from 0.87 to 0.96; 9 reported SEN, which ranged from 0.16 to
0.92; 7 reported SPE (0.69-0.99); 9 reported PPV (0.09-0.95); and 7 reported NPV (0.93-0.99).



Nurs. Rep. 2025, 15,126

10 of 19

3.5. Results of Implementation

Most studies included are modeling studies, which do not report any intervention
effects. In their study, Ladios-Martin et al. [21] report that the prediction model has been
deployed into clinical practice and integrated with the EHR. According to the authors, the
model enables nurses to accurately and objectively identify the risk of PI from admission
to discharge. Recognizing changes in the patient’s condition over time helps caregivers
concentrate on preventive care for those who need it most, without requiring nurses to
collect new information. The data demonstrate that, when employed as a standalone
assessment tool, the logistic regression model exhibits superior discriminant capability
compared to the Norton scale (AUROC = 0.77 vs. 0.88). No other results were measured or
reported in this study.

Cho et al. [32] employed a before-and-after experimental design. The prediction model
was incorporated into a clinical decision support tool accessible to nurses in an ICU setting.
The study’s results were measured regarding the prevalence of hospital-acquired PI and
the length of stay in the ICU. The prevalence of hospital-acquired PI decreased from the
baseline period (21%) to the intervention period (4.0%). The adjusted odds ratio for the
intervention group relative to the baseline group was 0.1 (p < 0.0001), indicating a significant
10-fold decrease in HAPI prevalence. Additionally, the ICU length of stay decreased from
7.6 days in the baseline period to 5.2 days in the intervention period. The adjusted odds
ratio for the intervention group versus the baseline group was 0.67 (p < 0.0001), indicating
a significant 33% decrease in ICU length of stay.

4. Discussion

This review compellingly demonstrates the remarkable potential of Al to revolutionize
the prediction of HAPISs, especially within ICUs. Drawing from an analysis of 14 pivotal
studies, the findings powerfully highlight that ML-based predictive tools not only surpass
traditional assessment methods like the Braden and Norton Scales, but also effectively
address the limitations of these static approaches, which fail to account for the dynamic
and complex nature of ICU patients’ conditions. Embracing Al in this context promises
to enhance patient outcomes significantly and safeguard the well-being of those most
vulnerable in healthcare settings.

Dynamic adaptability enables Al models to utilize real-time clinical data, such as
vital signs, laboratory results, and patient-specific interventions, facilitating more accurate
and timely predictions. Moreover, several studies have reported exceptional predictive
performance, with AUROC values exceeding 0.90, highlighting their potential to enhance
clinical decision-making and resource allocation. These advancements position Al as a
crucial tool in proactive care strategies, particularly for high-risk populations in ICUs, where
early detection and intervention are vital for improving patient outcomes and reducing the
occurrence of HAPIs.

4.1. Performance Analisys of Al Models

Across the reviewed studies, several Al models demonstrated outstanding perfor-
mance, with AUROC values ranging from 0.68 to 0.99, showcasing a broad spectrum of
predictive accuracy across various models and clinical contexts. Notably, 10 out of the
14 studies reported adequate to exceptional discriminatory power, with AUROC values
exceeding 0.8, highlighting the strong potential of these models in accurately identifying
patients at risk. For instance, Sin et al. [60] reported an AUROC of 0.994 using a random
forest model, making it one of the most accurate approaches in the review. Similarly,
Kim et al. [51] achieved an AUROC of 0.945 using a Gated Recurrent Unit with decay
(GRU-D++), a deep learning model adept at handling sequential data and time-dependent
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variables. These models stand out due to their ability to process complex, multidimensional
datasets and adapt to the dynamic nature of ICU patient conditions.

The AUROC values in these studies are significantly higher than those typically
reported for traditional methods like the Braden scale, which often falls below 0.8 in ICU
settings [22]. However, some models have demonstrated improved performance when
incorporating the Braden scale as an input variable. For example, Sin et al. [51] integrated
the Braden scale with other clinical variables, reporting an AUROC of 0.83, suggesting that
the Braden scale, while limited as a standalone tool, can provide meaningful contributions
when used as part of a broader dataset. These findings underscore the potential of merging
traditional risk assessment tools with Al methodologies to enhance the interpretative value
of established practice scales.

Conversely, other studies found that including the Braden scale did not substantially
enhance model performance. For instance, Cramer et al. [54] concluded that including
the Braden scale in the model did not improve performance, as its subscales often show
limited variability among ICU patients, making EHR-based models more effective and
less dependent on time-consuming, subjective manual scoring. Also, in the study of Kim
etal. [51] an analysis of the SHAP values revealed that the Braden scores were among the
top ten most essential variables for predicting PI occurrence. However, predictions using
only 42 variables (excluding the Braden score) resulted in a minimal 1.2-1.4% decrease in
AUROC compared to all 48 variables, indicating that the 42 variables already encapsulate
significant information about PI risk. This approach could reduce the nursing workload
associated with calculating and recording the Braden score, making the model a promising
tool for future application.

Other conventional risk assessment tools, such as the Norton scale, CALCULATE,
and EVAR-UCI, while widely used in clinical practice, also generally demonstrate lower
predictive accuracy when compared to advanced Al models. For instance, the Norton
scale has shown inferior performance in ICU contexts, where patient conditions are more
dynamic and complex when compared to ML models [21]. Similarly, CALCULATE and
EVAR-UCI, though developed to address some ICU-specific challenges, rely on static,
which may fail to capture the rapid changes in patient conditions. These conventional tools
often prioritize ease of use and clinical applicability, but their performance metrics typically
do not reach the thresholds achieved by modern Al models.

Despite its simplicity, logistic regression proved to be a robust and reliable model
in several studies. Kaewprag et al. [52] and Ladios-Martin et al. [21] reported logistic
regression as their best-performing model, achieving AUROC values of 0.83 and 0.88,
respectively. These results demonstrate the continued relevance of logistic regression,
particularly in settings where interpretability and ease of implementation are prioritized.
While logistic regression may not always match the precision of advanced models, its
consistent performance across varied datasets and its transparency in clinical decision-
making remain significant advantages.

However, not all models achieved optimal performance. Hyun et al. [55] used logistic
regression and reported an AUROC of 0.74 with sensitivity and specificity of 0.65 and 0.69,
respectively, indicating moderate predictive accuracy. The model struggled to balance these
metrics, particularly in detecting true positive cases, highlighting the challenge of sensitivity
in some Al applications. Similarly, Naive Bayes models, as applied by Choi et al. [56],
achieved an AUROC of 0.82, which, while acceptable, underscores their limitations when
compared to more complex approaches like ensemble methods or neural networks.

The variation in model performance reflects the influence of several factors, including
the choice of input variables, data quality, and sample size. The studies reviewed suggest
that although models with more variables often demonstrate superior predictive perfor-
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mance, their quality and clinical relevance are more crucial than their quantity. Models
like that used by Kim et al. [51], which included up to 86 variables, achieved an AUROC
of 0.95, highlighting the importance of integrating diverse and dynamic data such as vital
signs and medical device usage. Similarly, Sin et al. [60] achieved an exceptional AUROC
of 0.99 by incorporating a comprehensive set of variables. Conversely, models with fewer
variables, such as that used by Hyun et al. [55], reported lower performance (AUROC
of 0.74). This illustrates the limitations of static or overly general variables, which fail to
capture the dynamic nature of ICU patient conditions.

However, many variables can introduce challenges, including overfitting, increased
computational complexity, and reduced interpretability, particularly in small datasets.
Studies like that by Ladios-Martin et al. [21], with 23 well-curated variables, demonstrated
that selecting carefully relevant data can rival more complex models.

The study by Alderden et al. [58] demonstrated that including a larger set of variables
did not significantly improve the predictive performance of models for HAPIs. Specifically,
models developed using a parsimonious set of five easily accessible variables from EHRs
performed almost as well as those using larger datasets, including variables from routine
care and the Braden scale. This finding suggests that predictive accuracy can be achieved
with a small, focused set of variables, reducing the complexity and burden of data collection.
The study highlights the clinical feasibility of implementing streamlined models, which are
more practical for real-time risk assessment in critical care settings.

Notwithstanding these achievements, obstacles persist. Most models were assessed
retrospectively and lacked clinical validation, limiting their applicability. Furthermore, the
heterogeneity of datasets and the absence of standardized performance metrics across stud-
ies render direct comparisons challenging. Future research should focus on the prospective
validation of these models in multicenter studies, incorporating diverse patient populations
and clinical settings. Furthermore, while AI models have demonstrated superior predictive
power, their integration into clinical practice should consider the balance between advanced
accuracy and the simplicity and accessibility of conventional tools like the Braden, Norton,
CALCULATE, and EVAR-UCI scales, ensuring that predictive advancements translate into
practical and meaningful improvements in patient care.

4.2. Key Variables in Prediction Models

Al-based prediction models for PIs demonstrate a significant advantage over tradi-
tional risk assessment tools by integrating variables that offer both breadth and specificity
in predictive power. A review of the most significant variables used for model training in
various studies highlights their pivotal role in enhancing model accuracy and applicability
to ICU patient populations.

The most commonly identified variables are albumin, hemoglobin, BMI, glucose, and
creatinine, which reflect the patient’s nutritional, inflammatory, and metabolic states. For
instance, Alderden et al. [53] emphasized the importance of variables like surgical time,
creatinine, and lactate, alongside physiological measures such as the Glasgow Coma Scale
(GCS) and oxygenation levels (SpO, < 90%), in predicting PI risk. These findings align with
other studies, such as that by Cramer et al. [54], where mean arterial pressure, albumin, and
ICU-specific factors like pressure-reduction device use were central to model performance.

Dynamic variables evolve throughout the patient’s ICU stay and further distinguish
Al models from static tools. For example, Cho et al. [32] identified the importance of
hemodynamic status, ventilator mode, and systolic blood pressure in improving predictive
accuracy. By incorporating real-time updates to these variables, Al models can effectively
capture temporal changes in patient health, such as sudden hemodynamic instability, that
static tools like the Braden scale might overlook.
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Nursing-related assessments also emerged as critical components of several models.
The Braden scale and its subscales—such as mobility, friction/shear, and moisture—were
frequently highlighted as key predictors. For example, Kaewprag et al. [33] and Vyas
et al. [57] demonstrated how integrating traditional subscale scores into ML algorithms
might enhance predictive outcomes. Similarly, Kim et al. [51] identified repositioning prac-
tices and Braden subscale scores like mobility, nutrition, and friction/shear as significant
contributors to model accuracy. However, these variables are not consistently reported
across studies, suggesting opportunities for the broader integration of care-related data.

Certain studies also highlighted unique predictors tailored to specific clinical contexts.
For instance, Sin et al. [60] identified variables like glucose, albumin, and ICU length of
stay as among the most critical in their high-performing random forest model (AUROC:
0.994). Similarly, Alderden et al. [58] identified the presence of skin tears, thin epidermis,
and vasopressor infusion doses as highly predictive variables in their study, emphasizing
the importance of nuanced skin assessments and the role of some medications.

Despite the success of these models, gaps remain in the consistent inclusion of vari-
ables directly related to prevention practices, such as frequency of repositioning, support
surface use, and comprehensive skin care interventions. While some studies, like those
by Kim et al. [51] and Alderden et al. [58], included data on repositioning, the limited
application of this across models underscores a missed opportunity to enhance predictions
with actionable nursing interventions. Moreover, although some studies were conducted in
surgical ICUs [32,53,56,58], only a few explicitly incorporated perioperative variables into
their predictive models. This omission is particularly significant given that surgery-related
PIs can manifest within hours or up to three days postoperatively [62,63]. Therefore, the
integration of perioperative risk factors, including surgery duration, type and duration of
anesthesia, patient positioning, and intraoperative hemodynamic stability, could further
improve the accuracy and clinical relevance of Al-based PI prediction in surgical ICU
populations [62,63].

4.3. Clinical Implementation and Implications

The clinical implementation of these Al models has already shown promising results.
Cho et al. [32] provided compelling evidence that integrating a Bayesian network model
into clinical workflows resulted in a tenfold decrease in HAPIs and a 33% reduction in
ICU length of stay. These findings highlight Al’s significant impact on patient outcomes
and hospital resource management. Recent guidelines on PI prevention emphasize that
clinical judgment is central to determining risk, yet clinicians face significant cognitive load
with dozens of risk factors identified [6]. Al tools can reduce this burden by synthesizing
complex data and providing actionable insights that align with evidence-based practices,
enabling more consistent and informed decision-making.

Nevertheless, clinical adoption remains a challenge. As seen in the extraction data, the
variability in model performance across different ICUs underscores the need for models to
be tailored to the specific patient populations and care settings in which they are deployed.
For example, Kim et al. [51] demonstrated the performance of deep learning-based models
in multi-center settings, while studies like that by Alderden et al. [58] reported lower
performance in single-center studies. This variation may be due to differences in patient
demographics, treatment protocols, and data quality across institutions.

Moreover, while the review highlights successful implementations, such as the inte-
gration of Al tools into EHR systems, there is a lack of large-scale, multi-center studies that
evaluate the long-term impacts of these models on clinical practice. Most studies report
on the development and validation of models, but do not provide robust data on their
practical utility.
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While Al models show promise, their clinical adoption faces several challenges. Model
performance variability across different ICUs highlights the need for tailored implemen-
tation strategies that account for specific patient populations, treatment protocols, and
institutional workflows. Additionally, integrating Al models with EHRs and Clinical
Decision Support Systems is crucial for practical application. User-friendly interfaces,
automated alerts, and real-time risk assessments are essential to ensuring these tools are
accessible and actionable for clinicians. However, the success of such integrations depends
on clinicians’ trust in the system and their ability to interpret its outputs effectively [64].

Ethical considerations, such as bias in algorithms and accountability for Al-driven
decisions, remain critical concerns. Hassan and El-Ashry [65] emphasized the importance
of using diverse and representative training datasets to minimize biases and promote
fairness. Additionally, maintaining the clinician’s role in decision-making is essential to
preserve patient autonomy and trust. Al should serve as a tool to augment, not replace,
clinical judgment.

Human factors, including user experience and workflow integration, also play a
significant role in determining the success of Al adoption. Transparent models that provide
clear explanations for their predictions are more likely to be trusted and used effectively by
clinicians. One approach to addressing this challenge is the implementation of tools like
feature importance analysis or visual interpretability methods, such as SHAP (SHapley
Additive ExPlanations, version 0.47.1), as these tools enhance interpretability by showing
how individual features influence predictions [51,59]. Ongoing education and collaboration
among healthcare teams can further support the integration of Al tools into clinical practice.
Furthermore, as suggested by Khosravi et al. [66], incorporating training programs and
ongoing education for healthcare teams can strengthen interdisciplinary collaboration and
enhance the usability of Al systems. Engaging clinicians in the model development process
can also foster trust and ensure the tools meet the practical needs of clinical workflows.

Additionally, addressing systemic barriers, such as resource constraints and insti-
tutional readiness, is critical for successful Al integration. Evidence from previous Al
applications in healthcare suggests that aligning organizational goals with Al capabilities
is essential to maximize the impact of these technologies on patient outcomes and resource
optimization [66].

Beyond organizational alignment, practical and economic barriers can significantly
hinder the large-scale adoption of Al tools in clinical settings. These include the need for
compatible infrastructure, integration with existing electronic health record systems, and
secure mechanisms for data storage and transfer. Furthermore, healthcare institutions must
invest in workforce training and ongoing technical support to ensure the proper use and
oversight of Al tools. These requirements can be especially challenging in resource-limited
environments [67].

Economic constraints remain a critical issue. The development, validation, implemen-
tation, and maintenance of Al systems involve substantial financial investment, including
software licensing, hardware acquisition, and system upgrades. Without dedicated funding
and coordinated efforts among health systems, policymakers, and industry stakehold-
ers, these barriers may delay or even prevent the equitable implementation of Al across
different care settings [67,68].

4.4. Strengths and Limitations

A significant strength of this review is its comprehensive scope, encompassing a
wide range of predictive models and study designs. This breadth allows for a thorough
understanding of the landscape of PI prediction in the ICU setting using Al. However,
several limitations should be acknowledged. Firstly, the heterogeneity among the included
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studies, in terms of patient populations, ICU settings, methods, and outcome measures,
complicates direct comparisons and the synthesis of results. Secondly, many studies
had small sample sizes or were conducted in single-center settings, potentially limiting
the generalizability of their findings. Lastly, the rapid advancement in ML technologies
may mean that some older studies do not reflect the current state-of-the-art in predictive
modeling.

4.5. Future Research Directions
This review highlights several key areas for future research, as follows:

e  External Validation and Multicenter Studies—Prospective, multicenter trials across
diverse ICU settings are essential to ensure predictive models’ generalizability and real-
world applicability. Diagnostic randomized controlled trials are critical for evaluating
their true clinical effectiveness beyond retrospective metrics [69,70];

e Incorporation of Underutilized Variables—Future models should include reposition-
ing frequency, support surface use, perioperative variables, skin care interventions,
and staff workload metrics, alongside physiological and laboratory data, to improve
specificity and relevance;

e  Standardization of Metrics—Uniform reporting and performance metrics are needed
to enable cross-study comparisons, enhance evidence synthesis, and improve model
refinement;

o  Real-Time Integration—Dynamic models with continuous monitoring, such as time-
series analysis, should be integrated into EHRs for seamless, proactive care;

e Addressing Ethical and Human Factors—Models must be interpretable and user-
friendly to foster trust and adoption among clinicians. Ethical concerns, such
as algorithmic bias and transparency, must also be addressed to ensure equitable
implementation.

5. Conclusions

This scoping review underscores the potential of predictive models to improve PI
prevention in ICU patients. While traditional risk assessment tools remain valuable, ML
models offer promising advancements. Nevertheless, further research is necessary to
validate these models and ensure their effective integration into clinical practice. By
leveraging predictive models and integrating them into clinical decision support systems,
ICU teams can proactively identify high-risk patients and implement timely interventions.
These algorithms can analyze patient data, such as vital signs, lab results, and risk factors,
providing, in real-time, actionable alerts or recommendations to healthcare professionals.
This creates opportunities for targeted preventive measures, optimized resource allocation,
improved patient outcomes, and reduced healthcare costs by minimizing the incidence
and severity of pressure injuries. However, practical challenges remain, including robust
and interoperable data systems, the risk of alert fatigue among clinicians, proper staff
training, and the need to validate and adapt predictive models to diverse clinical settings.
Addressing these challenges is essential to fully realizing the potential of predictive models
in routine ICU practice.
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