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Abstract: Sickle cell disease (SCD) is a complex genetic disorder associated with multiple clinical
manifestations, including increased susceptibility to bacterial and viral infections. This review article
presents a comprehensive analysis of the current literature obtained from various online databases
focusing on the relationship between SCD and infections caused by specific pathogens, such as
pneumonia- and influenza-causing pathogens, Escherichia coli, Staphylococcus aureus, parvovirus,
and hepatitis viruses. We discuss the underlying mechanisms that contribute to the increased
susceptibility of individuals with SCD to these infections, primarily related to the pathophysiology
of variant hemoglobin (HbSS) and its impact on vascular occlusion, hemolysis, functional asplenia,
and immune deficiency. Moreover, we highlight the significant burden of infections on SCD patients,
particularly children under five years of age, where they are the leading cause of morbidity and
mortality. Additionally, we address the challenges faced in attempts for reducing the global mortality
rate associated with SCD, particularly in low-income countries, where factors such as increased
pathogen exposure, co-morbidities like malnutrition, lower vaccination rates, and limited healthcare
facilities contribute to the high disease burden. This review emphasizes the need for targeted
interventions, improved healthcare access, vaccination programs, and infection prevention strategies
to alleviate the impact of infections on individuals with SCD and reduce the global mortality rates
associated with the disease.
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1. Introduction

Sickle cell disease (SCD) is caused by a single amino acid substitution (Glu > Val) at
codon six at the globin gene, which results in variant hemoglobin formation (HbSS). This
causes an increase in viscosity and adhesion to vascular walls, resulting in obstructing the
blood flow in small capillaries [1]. This primary pathophysiological condition has several
clinical manifestations, such as vaso-occlusive crisis (VOC), splenomegaly, acute chest
syndrome (ACS), ocular manifestation, hepatomegaly, pulmonary hypertension, leg ulcers,
chronic kidney disease (CKD), and stroke, which leads to early mortality [2–5]. However,
in the current scenario, hydroxyurea (HU) is the only SCD drug approved by the Food and
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Drug Administration (FDA) to increase fetal hemoglobin (HbF) levels [6]. Universally, it is
found that more than 300,000 children are born with SCD each year, of which two-thirds
are from Africa, while Nigeria, India, and the Democratic Republic of Congo bear half the
global burden of SCD. It is expected that this number will rise to about 400,000 by 2050 [7].

The phenotypic manifestation of the disease is still poorly understood. However,
environmental factors, including climate and air quality, infections, fetal hemoglobin levels,
and other genetic factors, play a vital role in the progression of the disease [8,9]. The
severity of the disease in pediatric SCD patients, particularly those under the age of five
years, is increased for various reasons, including rapid sequestration of red blood cells in
the spleen, failure of opsonization, and an inability to deal with infective encapsulated
microorganisms after infection [10,11]. As a result, in children with SCD, infection is the
second leading cause of death in their first ten years.

SCD patients in sub-Saharan Africa and the Eastern Mediterranean have a high infec-
tion rate, with obtrusive pneumococcal infection being the most common [12]. The global
reports suggest implementing an effective management and systemic newborn screening
(NBS) program is the first logical step in preventing disease [12]. The initial neonatal
screening and the arrangement of immunization and prophylactic antimicrobial agents
improve the quality of care for SCD patients, resulting in a significant decrease in mortality.
However, in this review article, we discussed several aspects of infections in SCD children,
the underlying mechanisms for susceptibility to specific pathogens, and how infection
affects SCD outcomes. We also highlight the difficulties in reducing the global burden of
SCD mortality.

2. Materials and Methods

Electronic databases, including PubMed, Web of Science, Google Scholar, and EM-
BASE were utilized to retrieve relevant published articles. A comprehensive search strategy
was employed by combining keywords, including “sickle cell disease”/“sickle cell ane-
mia”, AND “hemoglobinopathy”, “vaso-occlusive crisis”, “pathophysiology”, “clinical
manifestations”, “bacterial infections”, “viral infections”, “parasitic infections”, “sepsis”,
“pneumococcal infections”, “streptococcus infections/complications”, “pneumonia”, “os-
teomyelitis”, “meningitis”, bacteremia”, “sickle cell” AND “COVID-19, prevention, thera-
peutics, and management”. Furthermore, to identify additional pertinent studies, references
from relevant original papers and review articles were examined.

Keywords searched

“sickle cell disease”/“sickle cell anemia” AND

“hemoglobinopathy”, “vaso-occlusive crisis”, “pathophysiology”,
“clinical manifestations”, “bacterial infections”, “viral infections”,
“parasitic infections”, “sepsis”, “pneumococcal infections”,
“streptococcus infections/complications”, “pneumonia”,
“osteomyelitis”, “meningitis”, “bacteremia”

“sickle cell” AND “COVID-19, prevention, therapeutics, and management”

3. Results and Discussion
3.1. Immune Dysfunction and Susceptibility to Infection

In patients with SCD, the primary complications often arise from infections. The exact
reason behind susceptibility to infections is complicated. A significant contributing factor
is the impaired functioning of the spleen. SCD has been associated with abnormalities in
processes such as opsonization, the alternate complement pathway, antibody production,
leucocyte function, and cell-mediated immunity.

Individuals with SCD exhibit deficiencies in their innate immune system, primarily
attributed to reduced splenic function, making them more susceptible to infections caused
by encapsulated bacteria, and the compromised innate immune response stems from mal-
functions in elements like chemotaxis, migration, and scavenging due to faulty neutrophils,
alongside decreased splenic phagocytic filtration and a diminished opsonization capabil-
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ity [11]. Furthermore, the adaptive immune system in SCD is compromised, characterized
by a reduced production of memory B cells and crucial IgM components, essential for the
humoral immune system. This weakened immunity hinders the ability to combat viral
infections, thereby worsening the condition in SCD patients, and the impact of infections
contributes to multi-organ dysfunction [8].

3.2. Splenic Dysfunction

The spleen is primarily involved in the filtration of foreign microorganisms and the
support of innate and adaptive immune functions. It serves various vital functions in
immune response and plays a critical role in increasing vulnerability to most SCD patients’
infections. The spleen helps two essential tasks prevent bloodstream bacterial infections.
First, it is a phagocytic filter that removes bacteria from the bloodstream. Second, the spleen
hosts leucocytes, which produce an antibody response to polysaccharide antigens [13].
Still, most infections are caused by SCD complications, such as acidosis, hypoxia, and
dehydration, which activate or exaggerate the sickle cell crises and cause vaso-occlusion
and ischemia, ultimately harming the structure and function of the spleen [14].

Individuals with splenectomy and individuals with non- or partially functioning
spleens (hypo or asplenism), as in SCD, are more vulnerable to infections. Hyposplenic
and asplenic individuals lack IgM memory B cells (as stated above, the spleen is a major
site of their generation or function). Thus, it cannot provide a rapid, precise response
to encapsulated species of microorganisms, particularly Haemophilus influenzae type b
(Hib), salmonellae, and pneumococcal infections [15]. Local infections can easily become
systemic, which, combined with the loss of spleen filtering function, can contribute to
the development of severe sepsis. The risk of infection in children under the age of five
with SCD is nearly thirty to a hundred times higher than in healthy children, implying
that SCD children are more vulnerable to invasive pneumococcal disease (IPD), including
pneumonia, meningitis, and septicemia [16]. In addition, patients with SCD have a 25 times
higher risk of salmonella infections, particularly in older children and adults [17]. The
factors associated with increased SCD infections may be related or unrelated to the immune
system. Few infections can occur as a result of treatment.

3.3. Opsonization

Splenic opsonization is compromised in SCD conditions due to a lack of production
of the immunoglobins and opsonins required for bacterial destruction. The effective
opsonization process is dependent on a complement cascade, which is activated by both
classical and alternative pathways and destroys infectious microorganisms by creating
holes in their cell membranes [18]. Lack of splenic IgM leads to decreased opsonization and
impaired activation of the classical pathway. Another opsonin, tuftsin, formed in the spleen
and required to activate cell-mediated immunity, is reduced in SCD patients, indicating
that the spleen is involved in their synthesis [19]. Furthermore, a lack of C3b-binding
protease enhances the alternative complement pathway, possibly due to depletion from
clearing sickle shaped RBC caused by intravascular hemolysis, and ultimately reduces the
alternative complement pathway’s immune function [20,21].

3.4. Lymphocytes

SCD patients are more susceptible to unusual pathogens, implying that other immune
system defects compromise their immune systems. SCD reduces the production and
function of B and T lymphocyte cells, resulting in impaired memory B-cell and anti-
polysaccharide antibody formation [22–24]. Also, the IgM antibody response to an influenza
virus vaccine is impaired [24]. There are also lower T-cell subsets CD4+ and CD8+ in SCD
patients, which affect their divergence into mature lymphocytes [25]. Therefore, there is
decreased production in both the Th1 (IFN-gamma, IL-2, and TNF-beta) and Th2 (IL-4, IL-5,
IL-6, IL-9, IL-10, and IL-13) responses of CD4+ T-helper cells in SCD [26].
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3.5. Nutritional Deficiencies

Nutritional deficiencies also have a major impact on SCD children’s immune systems.
SCD patients have macro-and micronutrient deficiencies due to pathways that include re-
duced calorie consumption, increased basal metabolic rate (BMR), increased RBC synthesis,
increased protein turnover, dysregulated inflammatory response, and high myocardial
energy requirements. Micronutrient deficiencies are associated with increased susceptibility
to infection and a higher rate of SCD complications [27]. Low plasma zinc levels in mal-
nourished children usually result in immune dysfunction. IL-2 is required for cell-mediated
immunity maturation, and zinc deficiency causes lymphopenia, a decreased production
of IL-2, which impairs the coordination of the innate and adaptive immune systems. Zinc
deficiency is caused by insufficient food consumption, high protein turnover, and increased
loss from the kidney due to insufficient reabsorption. Zinc supplementation improves
somatic development in SCD children, and vitamins A, B, and magnesium have been
shown to reduce inflammation, vaso-occlusive crisis, and hospitalizations [28–32].

3.6. Hereditary Influences

Despite having the same genetic defect, the severity of SCD varies widely among
individuals because not all patients have identical pleiotropic genes. Some carriers have
mutated genes, whichcan either improve or worsen the phenotype. This suggests that the
phenotype of SCD is multigenic. Some other genes unrelated to the globin locus participate
in relevant pathological events (rapid destruction of sickle cells, dense cell formation,
endothelial adhesion) controlled by many, known as pleiotropic or secondary effector
genes [33]. Polymorphisms in various immune-related genes have been proposed as a
factor for increased vulnerability to infection in SCD patients. Previous findings show
direct involvement of the HLA class II polymorphism in developing primary infections
in SCD [34]. The increased risk of bacteremia may be controlled by the mannose-binding
lectin receptor, Fc receptor, beta-S gene cluster haplotypes, IGF1R, and the TGF-beta/bone
morphogenetic protein (BMP) pathway [35–38].

3.7. Mechanical Factors

Several mechanical factors may also play a role in a wide range of infections in SCD
patients. Environmental factors can contribute to a variety of infections in SCD. The leading
cause of respiratory infection in SCD is air pollution. Tobacco smoke exposure increases
the risk of sickle cell crises in children with SCD due to chronic tissue hypoxia, vascular
endothelial cell damage, and thrombus formation.

Furthermore, tobacco smoke may indirectly exacerbate asthma and acute chest syn-
drome in patients with SCD [39,40]. SCD patients are also predisposed to a variety of
iatrogenic infections as a result of therapeutic interventions. Some of the complications
treated by blood transfusion include vaso-occlusive crisis, splenic sequestration, acute
chest syndrome, priapism, and strokes. Blood transfusions without pathogen screening
can increase the risk of blood-borne infections, most notably hepatitis B and C, HIV, cy-
tomegalovirus (CMV), and B19 parvovirus. Patients who are iron-overloaded and on
deferoxamine medication due to frequent transfusions are especially vulnerable to Yersinia
enterocolitica [41]. Patients with SCD who have a venous catheter in place for long-term
blood transfusions are also at risk of bloodstream infections (BSI). Despite adequate antibi-
otic therapy, BSI, such as Staphylococcus aureus and Pneumococci, is hospital-acquired and
primarily associated with venous catheters. These patients are at a high risk of developing
an associated bone–joint infection if they are not adequately treated [42].

3.8. Molecular Mechanism of Clinical Manifestations in SCD

SCD patients are susceptible to infections due to a variety of immunological abnormal-
ities and exposure to infectious agents. Pathophysiological mechanisms of the disease can
explain the disease’s role in stimulating immune dysfunction. The clinical manifestations
of infection in SCD are primarily vaso-occlusion, which causes endothelial dysfunction and



Thalass. Rep. 2023, 13 210

hemolysis. The detailed molecular mechanism involved in the clinical manifestations of
SCD is depicted in Figure 1.
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Figure 1. Molecular mechanism involved in the clinical manifestations of SCD due to infections:
(A) vaso-occlusive crisis; (B) endothelial dysfunction; (C) hemolysis.

Hematocrit, plasma viscosity, and erythrocyte deformability are some factors that
affect blood rheology. Sickled RBCs become mechanically trapped in the microcirculation,
promoting adhesive events among blood cells and resulting in chronic vaso-occlusion,
causing frequent episodes of pain, hemolytic anemia, organ damage, and premature
death [43,44]. Sickled RBCs also promote the exposure of adhesion molecules and binding
motifs that are not generally found on RBCs’ outer membranes, such as phosphatidyl
serine (PS), basal cell adhesion molecule-1 (B-CAM1), integrin-associated protein (IAP),
and intercellular-adhesion-molecule-4 (ICAM-4). Sickled RBCs also have an integrin com-
plex on their surface, which binds to fibronectin and vascular-cell adhesion molecule 1
(VCAM1), expressed on endothelial cells’ membrane and activated by inflammatory cy-
tokines like tumor necrosis factor-alpha. C-reactive protein (CRP) is generated in response
to interleukin-6 and pentraxin 3 (PTX3), generated mainly by neutrophils and endothelial
cells as a result of an inflammatory response [45–47]. Thrombospondin, secreted by acti-
vated platelets, binds to endothelial cells and sickled RBC via CD36 and sulfated glycans
found only on sickled RBC.

The interaction of sickled RBC with vascular endothelium may result in the formation
of oxygen radicals by the endothelial cell and the transcription factor NF-kB by oxidants.
When NF-kB is activated, the transcription of various genes of adhesion molecules, such
as E- and P-selectin, VCAM-1, and ICAM-1, on the endothelial surface is increased [2]. It
also increases the expression of major leukocyte chemo-attractants, such as interleukin-8
(IL-8) on endothelial cells [1,48]. Neutrophil-derived azurophilic protein elastase, with its
inhibitor a1-antitrypsin (HNE-a1-AT), and neutrophil cytosolic protein calprotectin levels
are increased with the activation of neutrophils. The inflammatory environment during
VOC may also promote neutrophil, monocyte, and platelet activation, which increases
their adhesion to each other and activated endothelial cells. These activated neutrophils,
monocytes, and platelets do not act against pathogens but rather contribute to VOCs and act
as sources of oxidative stress, impairing the immune response [49]. Activated neutrophils
form neutrophil extracellular traps (NETs), and during NET formation, nucleosomes are
squeezed out of the neutrophils, resulting in higher nucleosome levels during VOC [50,51].
Vaso-occlusion, on the other hand, contributes to ischemia–reperfusion injury, promoting
chronic inflammation in SCD.
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Hemolysis causes Hb to oxidize, resulting in the formation of heme and its oxidized
form. The Fe3+ and Fe4+ states of hemoglobin formed in SCD are highly reactive in terms
of encouraging oxidation. Hemolysis also results in red cell microparticles, which can
deliver toxic heme to endothelial cells [52,53]. These hemolysis products are thought to
be erythrocyte danger-associated molecular patterns (eDAMPs), which trigger innate im-
mune responses and may play a role in sickle cell inflammation [54,55]. Hemin is also a
potent TLR4 agonist, which contributes to a proinflammatory and procoagulant state in
SCD. Because of the increased production of placental growth factor (PIGF) resulting from
ischemia–reperfusion injury, monocytes are activated in response to PIGF, secreting more
TNF-a, IL-1, and other chemokines. These increased oxidant production and leukocyte
adhesion to the endothelium, followed by extravasation into the tissues and, finally, tissue
damage [56]. Increased hemolysis and reperfusion promote chronic hypoxia, ROS pro-
duction, microvasculature dysfunction, innate and adaptive immune response activation,
and cell death, all of which contribute to ischemia–reperfusion injury. ROS-dependent
degradation of cellular proteins, lipids, DNA, and ribonucleic acids triggers cell death
programs, such as apoptosis, necrosis, and autophagy [57,58].

3.9. Infectious Complications Associated with SCD

Researchers previously identified bacterial infections as the leading cause of morbidity
and mortality in SCD patients, and children are the most vulnerable age group [59–62].
SCD increases susceptibility to various microbial, viral, parasitic, and Protozoan infections
(Figure 2). Bacteremia/sepsis is caused by both Gram-positive (S. pneumonia and S. aureus)
and Gram-negative (E. coli, Klebsiella, and Bacteroides) bacteria, which is the most common
infection reported [63]. The infections become more severe during severe anemia and
recurrent VOC. The prevalence, susceptibility, and severity of the effect on disease depend
on the age group. Children are more susceptible to sepsis and pneumococcal infection [64].
However, adults in their forties and fifties commonly report organ-specific infections,
including pyelonephritis and osteomyelitis. Some of the infections that increase the risk of
mortality are as follows.
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3.10. Bacterial Infections
3.10.1. Bacteremia, Sepsis, and Pneumonia

Bacteremia and sepsis are common complications of SCD. Streptococcus pneumonia,
Neisseria meningitides, Haemophilus influenza, and Escherichia coli cause sepsis [65]. Klebsiella
pneumonia and Staphylococcus aureus are two other bacteria that can cause bacteremia and
septicemia [66]. Salmonella species and Pantoea agglomerans enteric Gram-negative bacteria
also negatively impact SCD patients [67,68]. An extensive data analysis of 550 SCD patients
shows that the use of catheters during red cell exchange/transfusion increased the risk
of bacteremia or thrombosis [69]. Cannas et al. noticed the rapid progression of infection
and a high mortality rate in SCD children with bacteremia/sepsis or meningitis infections,
irrespective of treatment with penicillin sodium ampicillin trihydrate [70].

Children with SCD have immune dysfunctions that cause severe sepsis symptoms,
which is less common in normal children [71]. Sickling infants are more susceptible to
Streptococcus pneumonia infections due to several factors, including the interference of
antibody production, opsonophagocytosis, and functional asplenia, as well as defective
splenic clearance [72]. On the other hand, children and adults are more susceptible to
S. pneumonia infections due to a lack of IgG and IgM antibody response and impairments
in splenic complement and opsonophagocytic functions [65]. Penicillin prophylaxis and
vaccination against bacteremia are preventive measures for infections that have reduced
childhood mortality [73]. Pneumonia is the most common chronic infection that causes
death in children worldwide and is caused by encapsulated microbial species, the most
common of which is Mycoplasma pneumoniae. Studies show that diplococcus pneumonia,
salmonella species, and Hemophilus influenza cause more illness in children than their
normal counterparts [74–76].

Among 2444 SCD patients, Yee et al. has shown that children up to five years of
age have been more infected with S. pneumoniae and H. influenza [77]. SCD patients with
bacterial pneumonia developed ACS, which causes pulmonary infarction in the young age
group and emboli or thrombosis in older patients [78,79]. Pneumococcal polysaccharide
vaccine 23 (PPSV23) was observed to be ineffective against some strain S. pneumonia in an
adult SCD patient with functional asplenia and reduced IgG [80].

3.10.2. Acute Chest Syndrome (ACS)

Acute chest syndrome is one of the major clinical manifestations of SCD, leading
to death. Primarily bacterial and viral infections cause ACS due to functional asplenia.
Children under five years of age with SCD have been reported with high mortality rates
because of Streptococcus pneumonia infection, responsible for ACS [81]. S. pneumonia is also
a causative organism for severe anemia. It causes inflammation of the lungs by migrating
from the upper respiratory tract to the lower respiratory tract [82].

3.10.3. Meningitis

Recently Chenou et al. observed that SCD patients are 300 times more likely to develop
bacterial meningitis than the normal population, and 10% of affected children die due to
the infection generated by meningitis and pneumococcus [83]. Previous research found that
meningitis in SCD patients caused by various bacteria, including H. influenzae, H. meningitis,
and E. coli [84], and Streptococcus pneumonia, was responsible for 70% of bacterial meningitis
cases in SCD children, while H. influenza was responsible for 80% [83,85]. The recurrence
of meningitis occurs more frequently in SCD patients [86]. The resulting pneumococcal
sepsis and meningitis are common in adults, and reported cases have led to adult mortality.
Treatment with a pneumococcal polysaccharide vaccine has been proposed to reduce
infection, which has documented many co-morbidities, such as renal dysfunction and
stroke, along with meningitis [87,88].
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3.10.4. Osteomyelitis

Osteomyelitis is characterized by bone inflammation and is found in up to 61% of
SCD patients, particularly in long bones such as the femur, humerus, and jaws. It is more
common in SCD patients, and it is the second most affected tissue after the spleen [89]. The
episodes of vaso-occlusive crisis ruptured the vasculature around the bones, allowing bac-
teria to infect the site, which is the primary cause of osteomyelitis [90]. Most SCD patients
with osteomyelitis have Salmonella infections at multiple bone sites, which are most fre-
quent in early childhood compared to non-SCD individuals [91,92] Furthermore, microbes
such as Staphylococcus, Pneumococcus, and actinomycetes also cause osteomyelitis in SCD
patients [93].

A meta-analysis shows that salmonellae are the most common bacterial pathogens
of osteomyelitis in SCD in the USA and European populations. Meanwhile, Staphylo-
coccus aureus is the most common pathogen in Sub-Saharan Africa and the Middle East
region [94]. The predominance of Gram-negative bacteria has been linked to bowel is-
chemia and VOC [95]. Most of the symptoms of osteomyelitis are similar to VOC, but
osteomyelitis affects fewer areas, specifically the diaphysis of a long bone [96]. As a result,
physical examination, blood culture, or radiological examination are insufficient for detect-
ing osteomyelitis in SCD, and ultrasonography or a higher imaging device for diagnosis
of osteomyelitis has been suggested [97]. The clinical diagnosis of microbial osteomyelitis
and bone infarction in early SCD patients is a major limitation. It has also been associated
with Mycobacterium ulcers [98] and other causative agents, such as Haemophilus influenza,
Escherichia coli, and Enterobacter sps [95]. However, early diagnosis has been suggested to
prevent invasive surgical intervention and be treated through medicines/antibiotics.

3.10.5. Mycobacteria

It has been reported that iron overload is primarily known to cause organ dysfunction
and also increases the risk for mycobacterial infection in SCD patients [99,100]. Shemisa
et al. found that SCD Patients with iron overload were at an increased 17-fold higher risk
to die from Mycobacterium tuberculosis in the sub-Saharan African population [101]. Thorell
et al. reported that nontuberculous mycobacteria (NTM) infection, such as Mycobacterium
fortuitum, causes frequent admissions for vaso-occlusive painful episodes in teenagers with
SCD [102]. Edrees et al. subsequently confirmed an unusual Mycobacterium avium complex
bacteremia infection in two SCD patients [103].

Another study found that the Mycobacterium terrae complex is a rare clinical pathogen
known to cause pulmonary, bone and joint infections in a patient with febrile SCD [104].
Ashraf et al. also found Mycobacterium mucogenicum bloodstream infections in an outpatient
setting in the USA [105]. The main risk factors of NTM in bloodstream infections are
indwelling vascular catheters (IDVC), which are known to affect the immune system that
causes relative immune deficiencies in SCD [106]. Recently, a Multicenter study suggests
that Mycobacterium does not seem to be a risk factor for severe Tuberculosis (TB) and not a
risk factor for mortality [107].

3.10.6. Urinary Tract Infection (UTI)

Urinary tract infection is a common cause of childhood morbidity and mortality in
SCD. A high prevalence of UTIs with characteristics of pyelonephritis caused by Salmonella,
Staphylococcus, Escherichia coli, and Enterobacter–Klebsiella was seen in SCD patients [108].
It was observed that scarring while healing the renal medulla and excretion of dilute urine
were responsible for increased UTIs and pyelonephritis. A recent report on a longitudinal
retrospective study of SCD children from Saudi Arabia showed most patients have UTIs
due to bacteria and splenic dysfunction, followed by VOC. After the UTIs, compromised
kidney function is a significant manifestation of SCD patients, increasing the asymptomatic
bacteriuria infection in the African population [109,110].

A study revealed that homozygous HbSS has a higher rate of mortality with pro-
teinuria than heterozygous HbAS. Furthermore, Staphylococcus species were the most
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common cause of infections in SCD patients with asymptomatic bacteriuria, followed by
E. coli [111,112]. However, the early detection and treatment of UTIs are essential in patients
with SCD because UTIs can lead to impaired kidney function, scarification, and severe
septicemia [113]. Acute post-infectious glomerulonephritis is another clinical manifestation
observed in SCD patients [114].

3.10.7. Gastrointestinal Infections

SCD patients have frequent hypoxia–reperfusion injuries caused by VOC in the intesti-
nal vasculature, increasing gut permeability [115]. The accumulation of microbes and their
products activates neutrophils, resulting in VOC [116]. The finding of ischemic colitis as an
etiology of intestinal VOC has been observed in SCD patients [117]. Researchers suggest
that the intestine is the primary entry point for non-typhoidal Salmonella infection because
of its increased permeability, which causes gastroenteritis [118].

Non-typhoidal Salmonella and Pneumococcus were the most prevalent causative
agents known to affect children and adults in Sub-Saharan Africa with SCD [119]. The
report suggested that SCD children are more likely to become infected with non-typhoidal
Salmonella than non-SCD children, exaggerating the severity [120]. However, these studies
indicate that changing the density of the gut microbiota could improve the intestinal health
of SCD patients.

3.11. Viral Infection
3.11.1. Respiratory Infections (RI)

Lung function abnormalities, or RI, are common in children and adults with SCD
and may lead to a progressive decline in lung function with age [121,122]. The respiratory
system is affected by several syncytial viruses, such as influenza, rhinoviruses, human
metapneumo, and para-influenza, resulting in respiratory failure, which causes ACS [123].
The symptoms and severity are similar to seasonal influenza reported in SCD children and
teenagers [124]. More hospitalization rates have been observed due to seasonal influenza
infection being observed more in SCD children than normal [125].

Further, children infected with the influenza virus are more prone to secondary bac-
terial infections, which lead to ACS [78]. The severity of asthma is one of the common
comorbid factors that increase in SCD children [126]. It also observed that patients suffering
from repetitive episodes of ACS could develop scattered areas of lung fibrosis, and leads to
advanced chronic lung disease in SCD [127].

3.11.2. Anemia Associated with Viral Infections

Severe anemia due to a transient aplastic crisis caused by B19 parvovirus belonging to
the genus Erythrovirus (family Parvoviridae) was observed in 65–80% of SCD patients. It
infects the erythroid progenitor cells and obstructs erythropoiesis [128]. B19 parvovirus has
been associated with ACS, splenic and hepatic sequestration, bone marrow necrosis, pain
crisis, and stroke [129]. In addition, Epstein–Barr virus is also responsible for hemolytic
anemia, along with splenic rupture, thrombocytopenia, agranulocytosis, hemolytic anemia,
and hemophagocytic lymphohistiocytosis in patients with SCD [63].

3.11.3. Hepatitis B and C Infections

Both hepatitis B virus (HBV) and hepatitis C virus (HCV) infections have a common
transmission mode and can cause chronic liver infection. The prevalence of hepatitis B
infections is globally higher than hepatitis C, and the infection rate is higher in males than
in females [130]. Several reports suggest that SCD children are more frequently infected
with hepatitis C in African countries due to multiple transfusions [131,132]. About 10% of
adults with liver dysfunction documented to be infected with hepatitis C virus [133].

Iron overload following blood transfusions is additive to the liver damage caused by
HCV infection. The administration of ribavirin used to treat hepatitis C virus has been
known to cause hemolysis in SCD patients, which in turn increases the complications of the
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disease [134]. Some studies found that the percentage of hepatitis B was lower in vaccinated
children than in unvaccinated children, indicating that vaccination can prevent hepatitis in
SCD children [135,136].

3.11.4. HIV Infections

There are many crosstalks between HIV and SCD; thus, the coexistence of HIV and
SCD has a synergistic effect. HIV infection was found in 0–11.5% of SCD patients [137]. HIV
infection also creates a favorable environment for pneumococcal infection, which can be
fatal, resulting in severe pneumonia or meningitis in SCD adults [138]. A nested case-control
study by Belisário et al. showed that HIV infection increased the severity of SCD-related
symptoms such as ACS/pneumonia, sepsis/bacteremia, pyelonephritis, ischemic stroke,
hemorrhagic stroke, abnormal transcranial doppler, and pulmonary hypertension [139].
Furthermore, National Hospital Discharge Survey data in the period of 1997–2009 showed
that SCD is associated with decreased HIV but higher HBV and HCV co-morbidities in
adult African-Americans [140]. Odera et al. found that children with HIV and SCD faced
significant life-threatening conditions and developed a severe hypersensitivity reaction
during first-line treatment [141]. Despite various reports demonstrating the impact of HIV
on the clinical outcome of individuals with SCD, the literature also shows controversial
data. Studies between 1995 and 2009 by Neto et al. observed no direct link between HIV
and SCD complications [142]. In addition, according to another report, SCD patients are
more resistant to HIV infection, and the progression of AIDS is slower in SCD patients than
in non-SCD controls [143].

3.11.5. Dengue Virus

Dengue virus is a mosquito-borne flavivirus that is most common in tropical and
subtropical areas [144]. Dengue causes headaches, fever, abdominal pain, bleeding, myal-
gias, and loss of capillary integrity and increased mortality by up to 12.5% in SCD
patients [145–147], due to their compromised immune systems, which make them more
susceptible to hypovolemia and endothelial cell activation. Several reports show that
the prevalence of dengue is high in geographic areas where SCD is endemic, such as the
Caribbean, Central and South America, areas of Africa and the Middle East, Asia, and
Oceania [63,148]. Two case studies on ten and nineteen-year-old female SCD patients
with severe dengue revealed multi-organ dysfunction syndrome (MODS) and impending
death [149]. A recent retrospective study found that children with the HbSC genotype had
a higher rate of severe dengue and death than those with the SS genotype [150].

3.11.6. Coronavirus Disease (SARS-CoV-2)

Since 2019, SARS-CoV-2 coronavirus (COVID-19) infection has been a worldwide concern.
Individuals with co-morbidities are more likely to become infected with the coronavirus.
Individuals with HbSS hemoglobin have hypoxia or ACS. They are thought to be more
susceptible to SARS-CoV-2 infection, which affects the lungs and respiratory tract. Case
reports confirmed ACS and VOC complications in SCD patients with weakened immunity
and infected with the novel coronavirus [151]. However, reports on the impact of COVID-
19 in terms of severity and mortality are contradictory. Some African countries reported
ACS and other co-morbidities in SCD patients with no casualties [152]. According to a
survey of COVID-19 in hemoglobinopathy from the United Kingdom, the majority of patients
hospitalized due to SARS-CoV-2 coronavirus infections had SCD (85.1%) and were primarily
homozygous (Hb SS) patients (64.1%) [153]. Minniti et al. found that SCD patients infected
with the coronavirus had a higher severity of disease (10%) and a higher risk of mortality
without hydroxyurea therapy, compared to approximately 3% of the general population. The
reason for the conflicting reports has been argued to be age, which could be one of the factors
influencing severity and mortality, as children and young adult patients (45–50 years) have a
low risk of mortality. In contrast, older SCD patients have a high risk [154]. Panepinto et al.
found that SARS-CoV-2 increased the risk of severe symptoms in 69% of SCD patients [155].
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However, studies in France and the United Kingdom found that patients with SCD infected
with the coronavirus had a low severity and mortality rate [156,157]. Second, females died at
a higher rate due to SARS-CoV-2 infections than males [158]

Researchers reported the hospitalization rate was high for SCD patients over 40 years.
However, Ramachandran et al. also did not find any increased risk of severity or mortal-
ity in SCD patients with the coronavirus infection [159]. A recent study showed that
SARS-CoV-2 infection increased disease severity in patients with SCD in a different
population [157,160–162]. Still, the overall effect of the coronavirus needs to be eluci-
dated through multicenter reports; the existing reports are mostly speculation rather than
ground-level research. Later reports showed that remdesivir injections given with blood
transfusion were an effective therapy that does not require immunosuppressive or steroid
treatments [163,164].

Hydroxyurea administration may be one of the most effective ways to reduce com-
plications such as VOC during SARS-CoV-2. The HBG2 rs7482144 (C > T) polymorphism,
on the other hand, is linked to HbF levels but not to the severity of SCD [165]. The use
of antimalarial drugs, specifically hydroxychloroquine, has been linked to side effects in
SCD patients, such as ventricular arrhythmias and cardiac toxicity, as reported in other
COVID-19 patients [166].

However, there is no evidence of the extent of the side effects or complications in SCD
patients. Figure 3 depicts SARS-CoV-2 infection and the challenges of its management in SCD.
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3.12. Parasitic Infections
3.12.1. Malaria

Malaria is a highly vulnerable parasitic infection exhibiting fatal clinical manifestations,
such as impaired splenic function in homozygous (HbSS) patients compared to HbAS or
normal individuals. Individuals with HbAS show a protective effect and a lower frequency
of malaria infection compared to normal individuals due to the HbAS making an unfavor-
able environment for malaria parasites. Moreover, the phagocytic action of infected RBC
macrophages reduces infection rates [167–171]. Therefore, heterozygote individuals with the
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sickle cell gene are malaria-resistant compared to normal individuals. P. falciparum infection is
also lower due to impaired erythrocyte membrane protein 1 (PfEMP 1) binding [172].

In SCD homozygous patients, inadequate splenic functions increase the risk of P. fal-
ciparum infections, leading to death in children by increasing VOC [173]. However, the
effect of malaria parasite infection on HbSS is fatal due to the increased severity of the
already existing anemic condition and the associated pain [174]. Further severe oxidative
stress is another consequence of P. falciparum infection in SCD patients due to increased
intravascular hemolysis, ischemia–reperfusion injury, and chronic inflammation [175].

3.12.2. Other Parasitic Infections

In addition to Plasmodium, intestinal parasites such as Entamoeba histolytica, Entamoeba
coli, and Giardia lamblia, and some helminths, such as Ascaris lumbricoides, Ancylostoma
duodenale, Trichuris trichiura, and Strongyloides stercoralis, cause severe anemia in SCD
patients. A study in Nigerian patients found that patients without parasitic infections had
a significantly higher mean hematocrit level than patients with parasitic infections [176].

Mahdi et al. documented Blastocystis hominis and Giardia lamblia as the most common
intestinal parasites in patients with SCD in Iraq and the Mediterranean [177]. Furthermore,
SCD patients with schistosomiasis was found with elevated reticulocyte counts, lowered
hematocrits, and augmented bacterial UTIs and their severity [178].

3.13. Treatment of Infections in SCD

Bacterial infection and sepsis are common in SCD patients as their immune systems
are compromised. These should be treated with broad-spectrum antibiotics, including
third-generation cephalosporins like ceftriaxone, cefotaxime oxacillin, nafcillin, or cefazolin
vancomycin, and clindamycin. Penicillin, beta-lactam inhibitors, and amphotericin B de-
oxycholate, along with third-generation cephalosporins should be used for meningitis. For
Mycobacterium tuberculosis, the first two months of treatment include rifampin, isoniazid,
pyrazinamide, and ethambutol, followed by isoniazid and rifampin for the remaining
four months. Gastrointestinal infections are caused by enteric Gram-negative pathogens,
including Typhi and non-Typhi Salmonella, Enterococci, and anaerobic bacteria. These can be
treated by with piperacillin–tazobactam, a carbapenem, and cholecystectomy procedures
should be performed if the situation worsens. Influenza, rhinoviruses, para-influenza, S. pneu-
monia, H. influenza, Chlamydophila pneumonia, Mycoplasma pneumonia, and S. aureus are
common pathogens that cause respiratory tract infections. The treatment options for these
infections are oseltamivir, inhaled zanamivir, third-generation cephalosporins, vancomycin,
clindamycin, macrolides, and quinolones. For UTIs, third-generation cephalosporins are
used. Mosquitoes cause dengue and malaria, yet their causative agents are different. Non-
steroidal anti-inflammatory products, like ibuprofen and acetaminophen, are given for pain
and fever with a high intake of fluids via oral or intravenous fluids. Anti-viral medicines,
like chloroquine, favipiravir, and celgosivir, are continued until platelets rise to the normal
range. On the other hand, intravenous quinidine is given to SCD patients infected with
malaria until the parasite density is <1%.

Moreover, oral therapies are also given based on infecting parasite species. SCD patients
are also very susceptible to different parasitic infections; common medicines, like albendazole,
mebendazole, doxycycline, and ivermectin are given. Viral infections are very dangerous
for SCD patients, as they are already suffering from other disease complications. Treatment
options for viral diseases like HIV vary with antiretroviral drug resistance and adverse event
profiles, and consultation with an HIV expert is recommended. The emergence of COVID-19
from SARS-CoV-2 also put SCD patients into life-threatening conditions. Hydroxyurea, L-
glutamine, voxelotor, and crizanlizumab are the primary medications for preventing hemolysis
and VOC. Mechanical ventilation is given if oxygen saturation decreases; supplementation
with vitamins D and C and zinc also shows effective results. Convalescent plasma infusion
and remdesivir with intravenous dexamethasone are given if the severity increases. Infection
prevention and detailed treatment strategies are included in Table 1.
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Table 1. Most common microorganisms, prophylaxis, and treatment associated with infection in sickle cell disease with underlying mechanisms for predisposition;
updated from [67].

System/Infection Mechanism Microorganisms Involved Clinical Manifestation Prophylaxis Treatment Reference

Bacteremia/sepsis

Lack of IgG and IgM antibody
response, impairments in
splenic complement and

opsonophagocytic functions

S. pneumoniae, N. meningitides,
H. influenza,

E. coli, K. pneumonia, S. aureus,
Salmonella sp.

Septic shock with
multi-organ failure

Diphtheria/tetanus/pertussis/
HIB/polio/13-valent

pneumococcal vaccine;
penicillin V;

Salmonella typhi vaccine

S. pneumonia and other
Bacteroides: third-generation

cephalosporins;
S. aureus: oxacillin, nafcillin, or

cefazolin; vancomycin,
clindamycin

[67–70]

Tuberculosis (Mycobacterium
tuberculosis)

Cold agglutinations of
anti-I specificity,

hyperhaemolysis episodes
Mycobacterium tuberculosis

Vaso-occlusive pain episodes,
hemolysis, acute chest
syndrome; pulmonary

dysfunction, anemia, bone and
joint infections

Bacillus Calmette–Guerin
(BCG) vaccine

Rifampin, isoniazid,
pyrazinamide, and ethambutol

for the first 2 months, and
isoniazid and rifampin for the

remaining 4 months

[61,103–105]

Meningitis HLA polymorphism H. influenzae, H. meningitis,
E. coli, S. pneumonia

Renal dysfunction, stroke,
thrombosis, silent
cerebral infarction,

cognitive abnormalities

Diphtheria/tetanus/pertussis/
HIB/pneumococcal

vaccine/meningococcal
vaccine; S. pneumoniae 23-valent
vaccine; meningococcal vaccine;

penicillin V prophylaxis

Third-generation
cephalosporins; beta-lactam
antibiotics; amphotericin B;

intravenous acyclovir

[84,87,88]

Human immunodeficiency
infection Low CD4/CD8 ratio HIV-1 and HIV-2

Acute chest syndrome,
pneumonia, sepsis,

hemorrhagic stroke, abnormal
transcranial Doppler, and
pulmonary hypertension

Using protection while having
sex; blood should be screened

for HIV before transfusion;
using new and sterile needle for

injection, and not using same
needle for different persons

HIV expert consultation
is recommended [124]

Osteomyelitis
Abnormal opsonizing and

complement function;
HLA polymorphism

Staphylococcus, Pneumococcus,
and actinomycetes;

Typhi and non-typhi
Salmonella, Gram-negative

enteric bacteria, S. aureus

Avascular necrosis, leg
ulceration (skin), osteonecrosis,

bone inflammation,
bowel ischemia, and
vaso-occlusive crisis

Diphtheria/tetanus/pertussis/HIB;
S. pneumoniae 23-valent vaccine;

penicillin V prophylaxis

Ceftriaxone, cefotaxime;
S. aureus: oxacillin, nafcillin,

orcefazolin (MSSA);
vancomycin, clindamycin

[89,93,95,179]

Urinary tract infection Renal lesions, medullary
ischemia, and perturb

Gram-negative pathogens,
Staphylococcus species

E. coli

Impaired kidney function,
scarification, severe septicemia,

acute post-infection

Prevention against hypoxia,
acidosis, hypothermia,

infection, and hypovolemia,
which give rise to

vaso-occlusive crisis

Third-generation cephalosporin
(ceftriaxone, cefotaxime) [111–114]

Gastrointestinal
Accumulation of microbes and

their products activate
neutrophils, resulting in VOC

Gram-negative bacteria,
including Typhi and non-typhi
Salmonella, Enterococci, and

anaerobic bacteria

Common biliary duct
obstruction, cholestasis, hepatic

vaso-occlusive crisis, hepatic
sequestration, hepatic fibrosis,

and bowel infarcts

Prevention against hypoxia,
acidosis, hypothermia,

infection, and hypovolemia,
which give rise to

vaso-occlusive crisis; for
gallstone formation:

hydroxyurea, ursodiol,
ursodoxylic acid; Salmonella

typhi vaccine for typhoid fever

Piperacillin–tazobactam or a
carbapenem; third-generation
cephalosporin, piperacillin, or

trimethoprim-
sulfamethoxazole

[123–125]
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Table 1. Cont.

System/Infection Mechanism Microorganisms Involved Clinical Manifestation Prophylaxis Treatment Reference

Respiratory tract infection

Endothelial dysfunction caused
by hemolysis and release of free

hemoglobin, which depletes
endothelial nitric oxide,
resulting in increased

vasoconstriction, ischemia,
and free radicals

Influenza, S. pneumoniae,
Mycoplasma pneumoniae,
S. aureus, rhinoviruses,
human metapneumo,
and para-influenza

Acute chest syndrome,
pneumonia, chronic

lung disease,
pulmonary hypertension

Annual influenza vaccine;
diphtheria/tetanus/pertussis/
HIB/ 13-valent pneumococcal

vaccine; S. pneumoniae 23-valent
vaccine; penicillin V

prophylaxis, erythromycin if
penicillin allergy.

Influenza: oseltamivir, inhaled
zanamivir; S. pneumoniae,

H. influenza type B:
third-generation

cephalosporins; S. aureus:
oxacillin, nafcillin, or cefazolin;

vancomcyin, clindamycin;
Mycoplasma pneumoniae:
macrolides, quinolones

[123]

Dengue Imbalanced and dysregulated
cell-mediated immunity

Arbovirus (Flaviviridae family;
genus Flavivirus)

Headaches, fever, abdominal
pain, bleeding, myalgias,

capillary fragility,
vaso-occlusive pain, splenic

sequestration, leg ulcers, heart
block, plasma leakage,

secondary pulmonary and
brain edema, hemorrhage, and

multiorgan failure

Avoid mosquito exposure by
eliminating local mosquito

breeding sites by eliminating
standing water repositories;
clogged rain gutters must be
cleared; mosquito repellents:

(a) wear long-sleeved clothing;
(b) sleep with a mosquito net;

and (c) use mosquito repellents;
in Dengue-endemic areas,

avoid outdoor activities during
daylight hours;

Dengvaxia vaccine has been
approved by the FDA for

children aged 9 to 45.

High fluid intake; soft diet;
nonsteroidal anti-inflammatory

drugs (ibuprofen); blood
product transfusion (platelets);

steroids, anti-viral
therapy (chloroquine,
balapiravir, celgosivir)

[145–147,180]

Malaria

Hypoxia, acidosis, and sickling;
decreased deoxyhemoglobin

solubility ultimately
leads to VOC

P. falciparum, P. vivax, P. ovale,
P. malariae, and P. knowlesi

Vaso-occlusive pain episodes,
splenic sequestration, severe
anemia necessitating blood

transfusions causing
folate-deficiency anemia,
hypoglycemia, acidosis,
thrombocytopenia, and

multi-organ failure

Avoid mosquito exposure;
eliminate local mosquito

breeding sites by eliminating
standing water repositories;
clogged rain gutters must be
cleared; mosquito repellents:

(a) wear long-sleeved clothing;
(b) sleep with a mosquito net;

and (c) use mosquito repellents;
(d) avoid going outside at

dawn and dusk.

Intravenous quinidine until the
parasite density < 1% and able

to tolerate oral therapy; oral
therapy: based on the infecting

species, possible drug
resistance, and severity

of disease

[172,175]
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Table 1. Cont.

System/Infection Mechanism Microorganisms Involved Clinical Manifestation Prophylaxis Treatment Reference

Parasitic infections

Stimulation of the growth of
antibody-producing B cells

rather than stimulation of the
proliferation of specific

antiparasite B-cells;
proliferation of suppressor

T-cells and macrophages, which
inhibit the immune system by

excretion of regulatory
cytokines; production by the

parasite of specific
immune-suppressor substances;
damages host tissues, causing

the release of stimuli that
activate various cells, including

innate immune cells such as
macrophages, dendritic cells,

eosinophils, basophils,
and mast cells

Protozoa (other than malaria):
E. histolytica, E. coli

and G. lamblia
Helminths: Ascaris lumbricoides,
Ancylostoma duodenale, Trichuris
trichiura, Strongyloides stercoralis

Schistosomiasis (S. mansoni,
S. haematobium, S. japonicum),

Toxocara canis, filariasis
(Onchocerca volvulus)

Chronic Giardia infection with
secondary chronic intestinal
malabsorption and failure to

thrive; toxic megacolon,
fulminant colitis, ulcerations on
the colonic mucosa, secondary
perforation; hepatic, pleural,

lung, and pericardium
abscesses (E. histolytica);

vaso-occlusive pain episodes,
chronic iron deficiency, and

chronic eosinophilia;
malnutrition, delayed growth,

and cognitive deficit; acute
intestinal obstruction

accompanied by peritonitis and
intestinal perforation;

appendicitis; common bile duct
obstruction accompanied by

secondary biliary colic,
cholangitis, or pancreatitis;

hepatosplenomegaly, bloody
diarrhea, portal hypertension,

ascites, esophageal varices, and
hematemesis are all symptoms
of hepatosplenomegaly; visual

impairment/blindness
(filariasis, T. canis)

-E. histolytica:
(a) Asymptomatic cyst

excretion: paromomycin or
diiodohydroxyquino-

line/iodoquinol;
(b) invasive colitis or

extraintestinal disease:
metronidazole or tinidazole,
followed by diiodohydrox-
yquinoline/iodoquinol or

paromomycin; (c) percutaneous
or surgical aspiration of large

liver abscesses;
(d) piperacillin–tazobactam or

meropenem if peritonitis;
-Giardiasis: metronidazole,
nitazoxanide, or tinidazole;

hand hygiene after defecation;
sanitary disposal of fecal

material; treatment of drinking
water (boiling, chemical

disinfection with iodine or
chlorine, use of filters); avoid

using recreational water venues
(e.g., swimming pools, water

parks) until asymptomatic and
treatment is complete;

chemotherapy prophylaxis:
albendazole, mebendazole;

community-wide mass
ivermectin treatment

Albendazole, mebendazole,
pyrantel pamoate,

ivermectin, doxycycline
albendazole, mebendazole,

pyrantel pamoate,
ivermectin, doxycycline

[176–178,181,182]

COVID-19

Progressive endothelial
activation with the risk of

micro- and macrothrombi, and
disseminated intravascular

coagulation (DIC)

SARS-CoV-2

Acute chest syndrome, severe
pneumonia, hemolysis,

vaso-occlusive pain episodes,
stroke, reduced oxygen

saturation, fever, headache,
sore throat, mild to severe
cough, weakness, fatigue,

difficulty breathing

Frequent hand sanitization;
avoid touching face;

wear mask;
maintain at least 1 m distance

from other persons
to avoid infection

Hydroxyurea, L-glutamine,
voxelotor, and crizanlizumab

with vitamins D, C,
and zinc; azithromycin;
ivermectin; tocilizumab

dexamethasone;
convalescent plasma infusion;
remdesivir with intravenous

dexamethasone

[153,163,164,183]
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4. Future Perspective and Roadmap for Research and Implementation

In a nutshell, a roadmap for SCD research can be developed to diagnose symptoms and
design effective therapies to reduce complications in sickling patients. The goal of treatment
is to reduce the complications of symptoms that lead to hospitalization, suffering, and early
death, particularly in children. Research is being conducted to target various pathways
and mechanisms that lead to SCD complexity extensively. Rapid test kits for SCD, such
as the rapid Sickle SCAN® point-of-care (POC) test, are a less expensive, more affordable,
and more accurate early mode of diagnosis in economically underdeveloped areas, where
previously available SCD diagnostic methods required a well-equipped laboratory and
were time-consuming. Therefore, high-accuracy kits could be promoted in low-income
countries with endemic SCD.

A technology- and algorithm-based cost-effective screening of SCD (smartphone-based
microscope and deep-learning) has been proposed; similarly, research on the diagnosis of
infections could be a better non-invasive strategy. Physical examination and blood culture
determination of the extent of infections are insufficient, and the invasive methods are
painful. As a result, researchers advocate for using advanced non-invasive techniques,
such as ultrasonography and imaging techniques, to thoroughly diagnose the severity of
the infection and its clinical manifestation when the first symptoms of infection appear and
to plan appropriate treatment. Treatments with antibiotics to suppress the infection are not
sufficient for patients with high risk.

Consequently, many therapeutic strategies targeting the various pathways leading
to complications in SCD are currently in use. At the molecular level, medication based
on antibiotics or antibodies has proven to be a better therapeutic approach that reduces
mortality while decreasing pain in SCD patients. Antibiotics such as voxelotor have recently
been shown to prevent hemoglobin polymerization in SCD patients. Its concentration rises
in the blood, allowing oxygen to circulate throughout the body aiding. Oral administration
of pharmaceutical-grade l-glutamine has also been reported to reduce oxidative stress, and
thus, pain, with minimal or no toxic effect on patients, as has the administration of the
anti-P-selectin (P-selectin binds on endothelial cells and platelets) monoclonal antibody
crizanlizumab to reduce and delay the first vaso-occlusion crisis and the resulting pain.
Gene therapy or hematopoietic stem cell transplantation to form fetal hemoglobin to restore
normal hemoglobin in SCD patients could be one method of implementing a systematic
approach. The screening and resistance to antibiotics of new variants or mutant genetic
strains, such as the self-mutable highly pandemic coronavirus severe acute respiratory
syndrome coronavirus 2 on SCD patients, are currently some of the significant challenges.
As mutant variants have different degrees of resistance to antibiotics, the effect of immu-
nization against the coronavirus on SCD patients of varying age groups with existing
co-morbidities must be monitored carefully and meticulously. Research on many aspects,
such as incubation time and recovery period during viral or any other microbial infections,
are of great concern. Thus, research on molecular, antigen, serological, and internal physical
testing to determine the extent of the complications on different biological systems, the
effectiveness of immunization, and therapy is a priority.

5. Conclusions

Pneumonia, meningitis, osteomyelitis, and UTIs are prevalent among individuals
with SCD in developing countries, constituting the leading factors behind its morbidity
and mortality. It has also been observed that the primary infectious symptoms occur in
children under the age of five, necessitating the need for immediate treatment. Priorities
for the future management of infectious complications in SCD vary according to geography
and socioeconomic status. Susceptibility to infection varies among individuals and across
age groups. Some patients have chronic hemolytic anemia with vital organ failure due to
infarctive damage, while others have no or few medical problems. A better understanding
of the mechanisms underlying the increased susceptibility of these patients to infection may
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lead to interventions that address the underlying cause in the future. Meanwhile, the early
detection and treatment of infections with hydroxyurea and blood transfusions can help to
avoid severe complications and splenic dysfunction. Simultaneously, primary interventions,
such as penicillin prophylaxis and vaccinations, result in significant improvements in
SCD patients.

Nonetheless, these therapies are associated with substantial risks, making their routine
use inappropriate. However, if a more precise and comprehensive analysis of the genetic
variations conferring an increased risk of infection and testing could help stratify patients
into high-risk groups, the frequency of crises could be reduced by improving the QOL
of SCD patients. Additionally, it could help to postpone long-term challenges, thus also
enhancing life expectancy.
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