Listening Effort and Its Relation to Spatial Localization, and Vestibular and Visual Impairment in Usher Syndrome—Our Experience
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Design
2.2.1. Each Patient Enrolled Underwent
- -
- The age they first started walking in months.
- -
- A questionnaire to verify the presence of balance and instability issues (balance questionnaire—BQ) developed by the authors of this study. The survey included 10 questions, each one investigating the presence of balance problems in 10 different areas: running; riding a bike; roller skating; walking in the dark; walking on uneven surfaces; walking on sand; carsickness; gymnastics and physical activity; turning their head right and left as they ride a bike; and keeping balance under the shower. Each question should be answered with “yes” (1 point), “no” (0 point) or “don’t know” (0 point), obtaining a total score from 0 to 10. It was administered to parents.
- -
- Clinical examination to assess the presence of spontaneous and/or positional nystagmus, positivity of head-shaking test (HST) and clinical head impulse test (HIT).
- -
- Video Head Impulse Test (VHIT) [18] using a VOG device (ICS Impulse, GN Otometrics, Taastrup, Denmark), able to measure the gain of VOR (Vestibular-Oculomotor Reflex) in both sides. We evaluated only the horizontal canals with the patient sitting upright and fixating on a visual target in front of him. Clinicians standing behind the patient generated head impulses by moving it abruptly and unpredictably in the horizontal plane. VOR gain was automatically calculated by the system as the ratio of head to eye velocity. We considered normal as: VOR gain >0.8 for each side and gain asymmetry between the two sides < 20%.
2.2.2. Ophthalmologic Examination
- -
- Best corrected visual acuity (BCVA).
- -
- Automated static perimetry (ZEISS, Humphrey Visual Field HFA 750, Oberkochen, Germany) with SITA Fast 30-2 protocol used to investigate the visual field sensitivity in decibel (dB) investigating retinal sensitivity presenting light spots of different luminance. We calculated the mean of the four quadrants (nasal inferior, nasal superior, temporal inferior, temporal superior) for each eye. We considered the worse eye to compare patients.
- -
- Tomographic retinal evaluation using Optical Coherence Tomography (OCT Optovue AngioVue, Visionix, USAt in cooperative patients, and OCT Optovue iVue 80, for evaluations under sedation). The foveal margin can be typically seen as a ring-like reflection of the internal limiting membrane that measures around 1500 μm in diameter and a normal thickness of about 239 μm [19]. The parafovea is a belt that surrounds the foveal margin and measures around 0.5 mm in thickness, while the perifovea surrounds the parafovea and is 1.5 mm wide.
- -
- Finally, we used fundus photography and autofluorescence to highlight alterations in the pigmented epithelium and accumulations or dispersions of lipofuscin. Fundus photography uses a series of mirrors and lenses to focus a donut-shaped light beam that enters the eye through the cornea, taking a picture of it. Fundus autofluorescence is a non-invasive exam that does not require the administration of exogenous dyes, but instead relies on the presence of naturally fluorescent substances in the retina, such as lipofuscin, to create an image. Abnormalities in FAF are defined as any pattern that differs from the classic appearance [20].
2.3. Statistical Analysis
3. Results
3.1. Patients
3.2. Audiological Assessment
3.3. Localization Test
3.4. Vestibular Examination
3.5. Ophthalmologic Examination
3.6. Vanderbilt Fatigue Scale
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lieu, J.E.C.; Kenna, M.; Anne, S.; Davidson, L. Hearing Loss in Children: A Review. JAMA 2020, 324, 2195–2205. [Google Scholar] [CrossRef]
- Watkin, P.; Baldwin, M. The longitudinal follow up of a universal neonatal hearing screen: The implications for confirming deafness in childhood. Int. J. Audiol. 2012, 51, 519–528. [Google Scholar] [CrossRef]
- Wroblewska-Seniuk, K.E.; Dabrowski, P.; Szyfter, W.; Mazela, J. Universal newborn hearing screening: Methods and results, obstacles, and benefits. Pediatr. Res. 2017, 81, 415–422. [Google Scholar] [CrossRef]
- Li, M.M.; Tayoun, A.A.; DiStefano, M.; Pandya, A.; Rehm, H.L.; Robin, N.H.; Schaefer, A.M.; Yoshinaga-Itano, C.; ACMG Professional Practice and Guidelines Committee. Clinical evaluation and etiologic diagnosis of hearing loss: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2022, 24, 1392–1406. [Google Scholar] [CrossRef]
- Reiners, J.; Nagel-Wolfrum, K.; Jürgens, K.; Märker, T.; Wolfrum, U. Molecular basis of human Usher syndrome: Deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp. Eye Res. 2006, 83, 97–119. [Google Scholar] [CrossRef]
- Delmaghani, S.; El-Amraoui, A. The genetic and phenotypic landscapes of Usher syndrome: From disease mechanisms to a new classification. Hum. Genet. 2022, 141, 709–735. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, A.; Möller, C. Usher Syndrome. Audiol. Res. 2022, 12, 42–65. [Google Scholar] [CrossRef]
- Bess, F.H.; Hornsby, B.W. Commentary: Listening can be exhausting--fatigue in children and adults with hearing loss. Ear Hear. 2014, 35, 592–599. [Google Scholar] [CrossRef]
- Kyong, J.S.; Kwak, C.; Han, W.; Suh, M.W.; Kim, J. Effect of Speech Degradation and Listening Effort in Reverberating and Noisy Environments Given N400 Responses. J. Audiol. Otol. 2020, 24, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Obleser, J.; Wöstmann, M.; Hellbernd, N.; Wilsch, A.; Maess, B. Adverse listening conditions and memory load drive a common α oscillatory network. J. Neurosci. 2012, 32, 12376–12383. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, N.P.; Brown, C.J.; Wu, Y.H. Comparisons of the Sensitivity and Reliability of Multiple Measures of Listening Effort. Ear Hear. 2021, 42, 465–474. [Google Scholar] [CrossRef]
- Hornsby, B.W.Y.; Camarata, S.; Cho, S.J.; Davis, H.; McGarrigle, R.; Bess, F.H. Development and Evaluation of Pediatric Versions of the Vanderbilt Fatigue Scale for Children With Hearing Loss. J. Speech Lang. Hear. Res. 2022, 65, 2343–2363. [Google Scholar] [CrossRef]
- Abboud, S.; Hanassy, S.; Levy-Tzedek, S.; Maidenbaum, S.; Amedi, A. EyeMusic: Introducing a “visual” colorful experience for the blind using auditory sensory substitution. Restor. Neurol. Neurosci. 2014, 32, 247–257. [Google Scholar] [CrossRef]
- Netzer, O.; Heimler, B.; Shur, A.; Behor, T.; Amedi, A. Backward spatial perception can be augmented through a novel visual-to-auditory sensory substitution algorithm. Sci. Rep. 2021, 11, 11944. [Google Scholar] [CrossRef] [PubMed]
- Wahlqvist, M.; Möller, C.; Möller, K.; Danermark, B. Similarities and Differences in Health, Social Trust, and Financial Situation in People With Usher Syndrome, a Bio-Psychosocial Perspective. Front. Psychol. 2020, 11, 1760. [Google Scholar] [CrossRef]
- Puglisi, G.E.; Warzybok, A.; Hochmuth, S.; Visentin, C.; Astolfi, A.; Prodi, N.; Kollmeier, B. An Italian matrix sentence test for the evaluation of speech intelligibility in noise. Int. J. Audiol. 2015, 54 (Suppl. S2), 44–50. [Google Scholar] [CrossRef]
- Gulli, A.; Fontana, F.; Aruffo, A.; Orzan, E.; Muzzi, E. ‘Previous Binaural Experience Supports Compensatory Strategies in Hearing- Impaired Children’s Auditory Horizontal Localization’. PLoS ONE 2024, 19, e0312073. [Google Scholar] [CrossRef]
- Halmagyi, G.M.; Chen, L.; MacDougall, H.G.; Weber, K.P.; McGarvie, L.A.; Curthoys, I.S. The Video Head Impulse Test. Front. Neurol. 2017, 8, 258. [Google Scholar] [CrossRef] [PubMed]
- Oderinlo, O.; Bogunjoko, T.; Hassan, A.O.; Idris, O.; Dalley, A.; Oshunkoya, L.; Odubela, T. Normal central foveal thickness in a thousand eyes of healthy patients in sub Saharan Africa using fourier domain optical coherence tomography. Niger. J. Clin. Pract. 2023, 26, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Pole, C.; Ameri, H. Fundus Autofluorescence and Clinical Applications. J. Ophthalmic Vis. Res. 2021, 16, 432–461. [Google Scholar] [CrossRef]
- Amorim, A.M.; Ramada, A.B.; Lopes, A.C.; Duarte Silva, E.; Lemos, J.; Ribeiro, J.C. Vestibulo-ocular reflex dynamics with head-impulses discriminates Usher patients type 1 and 2. Sci. Rep. 2024, 14, 3701. [Google Scholar] [CrossRef]
- Yao, L.; Zhang, L.; Qi, L.S.; Liu, W.; An, J.; Wang, B.; Xue, J.H.; Zhang, Z.M. The Time Course of Deafness and Retinal Degeneration in a Kunming Mouse Model for Usher Syndrome. PLoS ONE 2016, 11, e0155619. [Google Scholar] [CrossRef] [PubMed]
- Amorim, A.M.; Ramada, A.B.; Lopes, A.C.; Figueiredo, H.B.; Lemos, J.; Ribeiro, J.C. Vestibular Phenotype-Genotype Correlation in a Cohort of 35 European Usher Syndrome Patients. Am. J. Audiol. 2025, 34, 502–515. [Google Scholar] [CrossRef] [PubMed]
- Guidetti, G.; Guidetti, R.; Manfredi, M.; Manfredi, M. Vestibular pathology and spatial working memory. Acta Otorhinolaryngol. Ital. 2020, 40, 72–78. [Google Scholar] [CrossRef]
- Perrault, T.J., Jr.; Stein, B.E.; Rowland, B.A. Non-stationarity in multisensory neurons in the superior colliculus. Front. Psychol. 2011, 2, 144. [Google Scholar] [CrossRef]
- Grover, S.; Fishman, G.A.; Brown, J., Jr. Patterns of visual field progression in patients with retinitis pigmentosa. Ophthalmology 1998, 105, 1069–1075. [Google Scholar] [CrossRef]
- Krueger, M.; Schulte, M.; Brand, T.; Holube, I. Development of an adaptive scaling method for subjective listening effort. J. Acoust. Soc. Am. 2017, 141, 4680. [Google Scholar] [CrossRef]
- McGarrigle, R.; Munro, K.J.; Dawes, P.; Stewart, A.J.; Moore, D.R.; Barry, J.G.; Amitay, S. Listening effort and fatigue: What exactly are we measuring? A British Society of Audiology Cognition in Hearing Special Interest Group ‘white paper’. Int. J. Audiol. 2014, 53, 433–440. [Google Scholar] [CrossRef]
- Saksida, A.; Ghiselli, S.; Picinali, L.; Pintonello, S.; Battelino, S.; Orzan, E. Attention to Speech and Music in Young Children with Bilateral Cochlear Implants: A Pupillometry Study. J. Clin. Med. 2022, 11, 1745. [Google Scholar] [CrossRef]
- Saksida, A.; Živanović, S.; Battelino, S.; Orzan, E. Let’s See If You Can Hear: The Effect of Stimulus Type and Intensity to Pupil Diameter Response in Infants and Adults. Ear Hear. 2025, 46, 1111–1124. [Google Scholar] [CrossRef]
- Magliulo, G.; Iannella, G.; Gagliardi, S.; Iozzo, N.; Plateroti, R.; Plateroti, P.; Re, M.; Vingolo, E.M. Usher’s Syndrome: Evaluation of the Vestibular System with Cervical and Ocular Vestibular Evoked Myogenic Potentials and the Video Head Impulse Test. Otol. Neurotol. 2015, 36, 1421–1427. [Google Scholar] [CrossRef] [PubMed]

| a. USH1 | Allele 1 | Allele 2 | ||||||||||||
| Patient ID | Sex | Age (yrs) | Gene | Reference Sequence | cDNA Position | AA Change | Inheritance | ACMG Classification | Reported | cDNA Position | AA Change | Inheritance | ACMG Classification | Reported |
| 2 | m | 6 | CDH23 | NM_022124.6 | c.9433C>T | p.(Gln3145*) | pat | P (5) | Y | c.5712G>A | p.(Thr1904Thr) | mat | P (5) | Y |
| 7 | f | 16 | MYO7A | NM_000260.4 | c.3719G>A | p.(Arg1240Gln) | pat | P (5) | Y | c.6028G>A | p.(Asp2010Asn) | mat | P (5) | Y |
| 9 | f | 3 | CDH23 | NM_022124.6 | c.3646_3647delCT | p.(Leu1216Glyfs*41) | pat | LP (4) | N | c.4562A>G | p.(Asn1521Ser) | mat | LP (4)/P (5) in ClinVar/P (5) in DVD, but associated with NSHL; VUS (3) in HGMD | Y |
| 17 | f | 3 | USH1C | NM_005709.4 | c.711delT | p.(Phe237Leufs*5) | mat | LP (4) | N | c.711delT | p.(Phe237Leufs*5) | pat | LP (4) | N |
| 18 | m | 17 | CDH23 | NM_022124.6 | c.5985C>A | p.(Tyr1995*) | mat | P (5) | Y | c.5985C>A | p.(Tyr1995*) | pat | P (5) | Y |
| b. USH2 | Allele 1 | Allele 2 | ||||||||||||
| 1 | m | 12 | ADGRV1 | NM_032119.4 | c.13655dupT | p.(Asn4553Glufs*18) | mat | P (5)/DM? in HGMD | Y | c.9447+1G>A | p.? | pat | LP (4) | N |
| 3 * | m | 14 | USH2A | NM_206933.4 | c.11864G>A | p.(Trp3955*) | pat | P (5) | Y | c.6705_6708del | p.(Asp2237Argfs*41) | mat | P (5) | Y |
| 4 * | m | 12 | USH2A | NM_206933.4 | c.11864G>A | p.(Trp3955*) | pat | P (5) | Y | c.6705_6708del | p.(Asp2237Argfs*41) | mat | P (5) | Y |
| 5 | f | 7 | USH2A | NM_206933.4 | c.2276G>T | p.(Cys759Phe) | pat | P (5) | Y | c.11864G>A | p.(Trp3955*) | mat | P (5) | Y |
| 6 | f | 6 | USH2A | NM_206933.4 | del of exons 5-->10 | mat | P (5) | Y | del of exons 5-- >10 | pat | P (5) | Y | ||
| 8 | f | 8 | ADGRV1 | NM_032119.4 | c.10084C>T | p.(Gln3362*) | pat | P (5) | Y | c.13655dup | p.(Asn4553Glufs*18) | mat | P (5) | Y |
| 10 * | m | 17 | USH2AP | NM_206933.4 | c.11864G>A | p.(Trp3955*) | mat | P (5) | Y | c.11864G>A | p.(Trp3955*) | pat | P (5) | Y |
| 11 * | m | 15 | USH2AP | NM_206933.4 | c.11864G>A | p.(Trp3955*) | mat | P (5) | Y | c.11864G>A | p.(Trp3955*) | pat | P (5) | Y |
| 12 | f | 4 | USH2A | NM_206933.4 | c.232T>G | p.(Phe78Val) | pat | LP (4)/VUS (3) | Y | c.13392G>A | p.(Trp4464*) | mat | P (5)/LP (4) | Y |
| 13 * | f | 3 | USH2A | NM_206933.4 | c.5199delATATGTTTC AT | p.(Tyr1730Trpfs*6) | pat | P (5) | Y | c.9270C>A | p.(Cys3090*) | mat | P (5) | Y |
| 14 * | m | 9 | USH2A | NM_206933.4 | c.5199delATATGTTTC AT | p.(Tyr1730Trpfs*6) | pat | P (5) | Y | c.9270C>A | p.(Cys3090*) | mat | P (5) | Y |
| 15 | f | 11 | USH2A | NM_206933.4 | c.9270C>A | p.(Cys3090*) | pat | P (5) | Y | c.1876C>T | p.(Arg626*) | mat | P (5) | Y |
| 16 | m | 9 | USH2A | NM_206933.4 | c.2099_2120delGGA CAGTGGATGGAGATA TTAC | p.(Gly700Alafs*49) | pat | LP (4) | N | c.8167C>T | p.(Arg2723*) | mat | P (5) | Y |
| 19 | f | 12 | ADGRV1 | NM_032119.4 | c.13655dupT | p.(Asn4553Glufs*18) | pat | P (5) | Y | c.4378G>A | p.(Gly1460Ser) | mat | P (5) | Y |
| 20 | m | 8 | USH2AP | NM_206933.4 | c.1055C>T | p.(Thr352IIe) | mat | P (5) | Y | c.1055C>T | p.(Thr352IIe) | pat | P (5) | Y |
| Patient ID | Age (yrs) | Sex | Diagnosis | Age HL Diagnosis (Months) | PTA—Worst Ear (dB HL) | First HA Use (Months) | Data Logging of Hearing Device | Localization Test—Head Movements (m) | Localization Test—Time (s) | VHIT Asymmetry (%) | Balance Questionnaire | Visual Field (dB) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| N1 | 12 | M | USH2C | 30 | 57 | 36 | 13 | 19 | 640 | 7 | 3 | 29.35 |
| N2 | 6 | M | USH1 | 0 | 90 | 20 | 12.4 | / | / | 15 | 5 | 0.00 |
| N3 | 14 | M | USH2A | 24 | 70 | 28 | 7 | 11.7 | 672.55 | 1 | 3 | 12.65 |
| N4 | 12 | M | USH2A | 0 | 90 | 60 | 6 | 22.52 | 782.15 | 11 | 4 | 20.87 |
| N5 | 7 | F | USH2A | 0 | 58 | 51 | 13 | 25 | 968.75 | 5 | 2 | 25.00 |
| N6 | 6 | F | USH2A | 0 | 61 | 53 | 11.7 | / | / | 10 | 2 | 30.00 |
| N7 | 16 | F | USH1B | 0 | 110 | 19 | 9 | 36.7 | 650 | 46 | 9 | 14.99 |
| N8 | 8 | F | USH2C | 0 | 58 | 8 | 10 | 32 | 543 | 12 | 3 | 12.00 |
| N9 | 3 | F | USH1D | 0 | 120 | 5 | 8 | / | / | / | / | 10.00 |
| N10 | 17 | M | USH2A | 60 | 47.5 | 60 | 14 | 7.73 | 313.95 | 14 | 1 | 18.34 |
| N11 | 15 | M | USH2A | 0 | 52.5 | 12 | 13 | 6.28 | 309.95 | 25 | 2 | 26.82 |
| N12 | 4 | F | USH2A | 0 | 58 | / | 13 | / | / | 3 | 2 | 29.00 |
| N13 | 3 | F | USH2A | 0 | 55 | 4 | 6 | / | / | / | / | 24.00 |
| N14 | 9 | M | USH2A | 0 | 55 | 6 | 8 | 6.21 | 355.15 | 1 | 4 | 28.12 |
| N15 | 11 | F | USH2A | 0 | 55 | 31 | 10.5 | 10.07 | 527.35 | 25 | 6 | 29.67 |
| N16 | 9 | M | USH2A | 54 | 64 | 69 | 7 | 21.78 | 715.55 | 5 | 2 | 14.00 |
| N17 | 3 | F | USH1C | 0 | 105 | 5 | 12.6 | / | / | / | / | 18.00 |
| N18 | 17 | M | USH1D | 0 | 120 | 27 | 10 | 142.26 | 1409.55 | 78 | 10 | 8.11 |
| N19 | 12 | F | USH2C | 48 | 70 | 66 | 11.8 | 18.28 | 622.95 | 11 | 4 | 27.68 |
| N20 | 8 | M | USH2A | 12 | 59 | 12 | 13 | 4.15 | 387.95 | 25 | 4 | 28.82 |
| USH1 | Hearing Loss > 90 db HL | Data Logging < 8 h/day | Localization Test (Head Movements > 30 m) | Localization Test (Time > 650 s) | VHIT Asymmetry > 20 | Balance Questionnaire ≥ 8 | Retinal Sensitivity < 20 dB | ||
|---|---|---|---|---|---|---|---|---|---|
| VFS-C ≥ 27 | % exposed cases | 50% | 75% | 75% | 50% | 100% | 50% | 50% | 75% |
| % exposed controls | 18% | 18% | 12% | 6% | 25% | 12% | 6% | 31% | |
| OR | 1.66 | 13 | 21 | 15 | 120 | 7 | 15 | 6.6 | |
| p value | 0.19 | 0.028 * | 0.009 * | 0.028 * | 0.007 * | 0.09 | 0.028 * | 0.11 | |
| CI | 0.4–44.4 | 0.1–172.9 | 1.4–314 | 0.9–251 | 0.2–70,528 | 0.6–81.7 | 0.9–251 | 0.5–80 | |
| VFS-P Physical ≥ 13 | % exposed cases | 50% | 75% | 75% | 50% | 100% | 50% | 50% | 75% |
| % exposed controls | 18% | 18% | 12% | 6% | 25% | 12% | 6% | 18% | |
| OR | 1.66 | 13 | 21 | 15 | 120 | 7 | 15 | 13 | |
| p value | 0.19 | 0.028 * | 0.009 * | 0.028 * | 0.007 * | 0.09 | 0.028 * | 0.028 * | |
| CI | 0.4–44.4 | 0.1–172.9 | 1.4–314 | 0.9–251 | 0.2–70,528 | 0.6–81.7 | 0.9–251 | 0.1–172.9 | |
| VFS-P Mental ≥ 15 | % exposed cases | 50% | 100% | 50% | 50% | 100% | 50% | 50% | 50% |
| % exposed controls | 25% | 11% | 11% | 11% | 11% | 22% | 5% | 33% | |
| OR | 3 | 160 | 8 | 8 | 160 | 3.5 | 17 | 2 | |
| p value | 0.32 | 0.003 * | 0.13 | 0.13 | 0.003 * | 0.37 | 0.04 * | 0.63 | |
| CI | 0.31–28.8 | 1.2–108,466 | 0.3–184.4 | 0.3–184.4 | 1.2–108,466 | 0.2–69.3 | 0.5–523.8 | 0.11–37.8 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Cesare, T.; Michieletto, P.; Bonati, M.T.; De Caro, F.; Cossu, P.; Torelli, F.; Orzan, E. Listening Effort and Its Relation to Spatial Localization, and Vestibular and Visual Impairment in Usher Syndrome—Our Experience. Audiol. Res. 2025, 15, 169. https://doi.org/10.3390/audiolres15060169
Di Cesare T, Michieletto P, Bonati MT, De Caro F, Cossu P, Torelli F, Orzan E. Listening Effort and Its Relation to Spatial Localization, and Vestibular and Visual Impairment in Usher Syndrome—Our Experience. Audiology Research. 2025; 15(6):169. https://doi.org/10.3390/audiolres15060169
Chicago/Turabian StyleDi Cesare, Tiziana, Paola Michieletto, Maria Teresa Bonati, Federica De Caro, Pietro Cossu, Francesco Torelli, and Eva Orzan. 2025. "Listening Effort and Its Relation to Spatial Localization, and Vestibular and Visual Impairment in Usher Syndrome—Our Experience" Audiology Research 15, no. 6: 169. https://doi.org/10.3390/audiolres15060169
APA StyleDi Cesare, T., Michieletto, P., Bonati, M. T., De Caro, F., Cossu, P., Torelli, F., & Orzan, E. (2025). Listening Effort and Its Relation to Spatial Localization, and Vestibular and Visual Impairment in Usher Syndrome—Our Experience. Audiology Research, 15(6), 169. https://doi.org/10.3390/audiolres15060169

