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Abstract: Cartilage conduction (CC) is a form of conduction that allows a relatively loud sound to
be audible when a transducer is placed on the aural cartilage. The CC transmission mechanism has
gradually been elucidated, allowing for the development of CC hearing aids (CC-HAs), which are
clinically available in Japan. However, CC is still not fully understood. This review summarizes
previous CC reports to facilitate its understanding. Concerning the transmission mechanism, the
sound pressure level in the ear canal was found to increase when the transducer was attached to the
aural cartilage, compared to an unattached condition. Further, inserting an earplug and injecting
water into the ear canal shifted the CC threshold, indicating the considerable influence of cartilage–air
conduction on the transmission. In CC, the aural cartilage resembles the movable plate of a vibration
speaker. This unique transduction mechanism is responsible for the CC characteristics. In terms
of clinical applications, CC-HAs are a good option for patients with aural atresia, despite inferior
signal transmission compared to bone conduction in bony atretic ears. The advantages of CC, namely
comfort, stable fixation, esthetics, and non-invasiveness, facilitate its clinical use.

Keywords: cartilage conduction; airborne sound; aural atresia; hearing aid; bone conduction; bone-
anchored hearing aid; conductive hearing loss

1. Introduction

The sound transmission pathway to the cochlea is generally classified into air and
bone conduction (AC and BC). For AC, sound generated outside the ear travels to the
eardrum through the ear canal and is transduced into vibrations of the ossicles to reach
the cochlea. For BC, skull bone vibrations induced by a transducer are transmitted to
the cochlea, involving at least five components [1–3]. Sound can also be perceived by
body part vibrations other than the skull bone [4–6], and the transmission mechanisms are
unique from one another. When the transducer is placed on the aural cartilage, particularly
on the tragus, a relatively loud sound is audible [7]. This form of conduction is referred
to as cartilage conduction (CC) [8]. Generally, hearing through non-osseous soft tissue
conduction is not as clear as conventional BC. However, a clear sound is audible in CC,
and it is perceived louder than when a transducer is placed on the mastoid or forehead [9].

The hypothesized CC mechanism is different from AC and BC [10,11]. For a vibration
speaker, the sound signal increases by a movable plate, and the amplified signal is transmit-
ted via AC. For CC, the vibration of the cartilaginous portion of the ear canal induced by a
transducer generates sound in the ear canal. In this transduction, the cartilaginous portion
of the ear canal functions like the movable plate of a vibration speaker, and thus the signal
in the ear canal increases in amplitude compared to when the transducer is unattached to
the aural cartilage. The airborne sound in the canal is subsequently transmitted via the
eardrum in the same manner as with AC. The signal is predominately transmitted via the
eardrum and ossicles, although CC delivers the signals by vibrating a transducer, similar to
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BC or non-osseous BC. Therefore, the conduction characteristics resemble AC rather than
BC. In contrast to AC, CC uses the aural cartilage in the same way as the moveable plate of
a vibration speaker to generate airborne sound. In other words, a part of the human body
(aural cartilage) contributes to airborne sound generation. This hypothesis underlying the
generation of airborne sound in CC is unique and currently not fully understood. Due to
the unique characteristics of CC, acoustic devices utilizing CC may potentially provide
benefits that cannot be obtained with AC or BC devices. To develop CC devices further,
the mechanism underlying the conduction must be established. With this review, we aim
to summarize previous reports regarding CC that we found on PubMed (search term
“cartilage conduction hearing”) to facilitate its understanding.

2. The Theoretical CC Transmission Pathway

There are three possible transmission pathways when a transducer is placed on the
aural cartilage, as presented in Figure 1 [10,11]. In the first pathway, transducer vibrations
directly produce airborne sound, some of which reach the ear canal and are transmitted to
the cochlea via the conventional AC pathway. This pathway is termed “direct-AC” and has
the same transduction mechanism as AC. In the second pathway, aural cartilage vibrations
are transmitted to the cartilaginous portion of the ear canal. These vibrations induce an
acoustic signal in the canal that reaches the eardrum, transmitted via the ossicles. This
pathway, which uses the aural cartilage as a movable plate, is termed “cartilage-AC” and
is a transduction mechanism different from those of AC and BC. In the third pathway,
aural cartilage vibrations are transmitted via the skull. This pathway is termed “cartilage-
BC,” and is considered similar to BC because the delivered mechanical signal is directly
transmitted via the skull bone.
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Figure 1. Possible cartilage conduction pathways. (Figure 1 was originally presented in Nishimura
et al. 2015, Figure 1 [11]).

3. Sound Pressure Level in the Ear Canal via CC

A loud sound is audible when a transducer is attached to the aural cartilage. There are
no standard evaluation methods for CC hearing. The measurement of the sound level in
the ear canal similar to real-ear measurements [12] contributes towards understanding the
phenomenon. Shimokura et al. objectively demonstrated the loudness increase by measur-
ing the sound pressure level in the ear canal using a probe microphone (Figure 2) [13]. The
sound pressure level in the ear canal improved when the transducer was attached to the
aural cartilage compared to the unattached condition in all participants. The improvements
from the attached condition were largest at low to mid frequencies, with gains reaching
approximately 40 dB at frequencies between 500 Hz and 1000 Hz. Conversely, to repro-
duce the difference in the sound pressure level in the ear canal between the attached and
unattached conditions, not only the bony portion of the ear canal but also the cartilaginous
portion was necessary to consider [14]. The airborne sound generated by a simulated
cartilaginous portion (movable plate) played an important role in the reproduction of the
sound pressure level in a simulated ear canal. These findings suggest the predominance of
the cartilage-AC pathway in CC in the attached condition.
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4. Hearing Threshold Measurements via CC
4.1. Threshold Shift with an Earplug

In a previous study, an earplug was used to show differences in the characteristics
between CC and AC or BC [9]. Thresholds with and without the earplug were measured at
500–4000 Hz using a transformed up-down procedure (two-alternative forced-choice) [15].
The earplug interferes with both AC and direct-AC in CC. For AC, the thresholds worsened
with the earplug for all frequencies. For CC, the threshold worsened with the earplug
above 2 kHz, but the thresholds at low to mid frequencies did not; they were stable at
1000 Hz and improved at 500 Hz. These observations demonstrate that direct-AC is not the
predominant pathway in CC. Furthermore, for BC the thresholds at mid to high frequencies
were stable with the earplug, which also disagreed with the CC results.

A transducer can be placed in various ways on the aural cartilage. Another study
evaluated the effect of an earplug on the thresholds when a transducer without a static
force was placed on the tragus, soft tissue (pre-tragus region), and mastoid [16]. Thresholds
with and without the earplug were measured at 500–4000 Hz using a transformed up-down
procedure [15]. The thresholds for the tragus placement were significantly better than for
other placements, both with and without the earplug, except with the earplug at 4000 Hz.
The threshold elevations with the earplug for the tragus placement were significantly larger
than those for the mastoid placement at 2000 and 4000 Hz. These results demonstrate that
placing the transducer on the aural cartilage contributes to hearing improvement. Low-
frequency boost can influence speech perception. Although there was no deterioration in
speech recognition in the open ear, excessive low-frequency boost in the occluded condition
reduced the scores, even in individuals with normal hearing [17]. Frequency adjustment
may be necessary for the occluded ear when excessive low-frequency boost deteriorates
speech perception [18].
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4.2. Threshold Shift with Water Injected into the Ear Canal

Previous studies using earplugs have contributed to establishing the conduction
mechanism of CC [9,16,17]. Earplugs generate an occlusion effect, which influences low-
frequency thresholds. Thus, previous studies used ear canal water injections instead of
earplugs to avoid the occlusion effect [11]. AC, BC, and CC thresholds were measured
at 500–4000 Hz with water injected into the ear canal using a transformed up-down
procedure [15]. To measure the thresholds in the water-injected condition, subjects laid on a
bed in a lateral recumbent position with the entrance of the ear canal facing the ceiling and
the head fixed to avoid water fluctuations in the canal. Figure 3 illustrates the influence of
water injections on three theoretical CC components. If the cartilaginous portion vibrations
are dominant, the thresholds will increase when the water stays within the bony portion
of the ear canal (Figure 3A), and then decrease when the water reaches the cartilaginous
portion (Figure 3B). If the threshold improves when the water level is so high that it reaches
the transducer (Figure 3C), then transmission through the cartilaginous portion is likely
not the dominant pathway. Thus, the relationship between the threshold and water volume
demonstrates the relative contribution of the three possible pathways to CC. The results of
these studies revealed that injecting water into the ear canal elevated the AC thresholds by
22.6–53.3 dB, and the threshold shifts for BC were within 14.9 dB [11]. For CC, when the
water was within the bony portion of the ear canal (i.e., 40% of the ear canal length in the
previous study; Figure 3A), the thresholds were elevated by the same degree as AC. When
the water line reached the cartilaginous portion (i.e., 80% of the ear canal length in the
previous study; Figure 3B), the thresholds at 500 and 1000 Hz decreased by 27.4 and 27.5 dB,
respectively. Additionally, despite blocking the ear canal with water, the force levels of the
CC transducer at the thresholds measured with an artificial mastoid were clearly lower
than those of the BC transducer at the threshold. The vibrations of the cartilaginous portion
contributed to sound transmission, particularly in the low-frequency range. Although the
airborne sound radiates into the ear canal in BC and CC, the generation mechanisms are
different. CC generates airborne sounds in the canal more efficiently than BC.
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water vibrations. (Figure 3 was originally presented in Nishimura et al. 2015, Figure 1 [11]).
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The effect of water in the ear canal was also evaluated at 500–2000 Hz for five different
placements of the transducer: the tragus, intertragal incisure, anti-tragus, pre-tragus, and
mastoid [19]. Among the CC conditions (tragus, intertragal incisure, and anti-tragus), the
results showed the same amount of threshold shifts when water was injected into the ear
canal, and the fixation placement did not affect the threshold shifts by water injection.
Thus, the cartilage-AC characterizes the acoustic properties of CC.

5. CC in Pathological Ears

The transmission pathway or mechanism may change in pathological ears, e.g., the
atretic ear whose condition is quite different from that of the normal ear. In the bony atretic
ear, the AC route is not present, and most signals are transmitted to the cochlea via the
skull bone. For CC, cartilage-BC is considered the predominant pathway instead of direct-
and cartilage-AC (Figure 1) in the bony atretic ear. The impedance mismatch between the
soft tissue and skull bone obstructs transmission. As the transducer is placed without a
static force, CC and AC do not have conduction efficacy advantages over BC. Conversely,
the transmission conditions in ears with fibrotic aural atresia are quite different. Vibrations
are transmitted to the cochlea via fibrotic tissues instead of the skull bone. This fibrotic
pathway allows the signals to travel to the cochlea, avoiding the large impedance mismatch
between the soft tissue and skull bone. Some patients with fibrotic aural atresia have much
better thresholds with CC (30–50 dB at low frequency compared to BC) [20]. Hence, CC
has a transmission advantage over BC in the case of the fibrotic pathway.

6. CC Applications

Acoustic devices that utilize CC, including smartphones and hearing aids, have been
developed [8,21–23]. CC hearing aids (HA; CC-HA) have already been used in clinical
practice in Japan since 2017. When direct- and cartilage-AC are functional (such as for
sensorineural hearing loss), a commercially available CC-HA (Figure 4) could provide
adequate amplification for mild to moderate hearing loss, as estimated by measuring the
output level using a simulator which can evaluate the airborne sound in CC [24]. When
direct- and cartilage-AC are not functional, patients who receive the most benefits from
CC-HAs are patients with aural atresia. These patients require BC-HAs or implantable
devices to achieve sufficient amplification [25–31]. However, conventional BC-HAs have
disadvantages associated with their fixation style; the transducer is fixed with a headband
using static force, which can lead to discomfort, pain, and irritation [26]. The fixation of
the transducer can cause poor esthetics. Surgical procedures, such as implanting bone-
anchored hearing aids (BAHAs), are additional options [25–31] but involve various risks,
such as adverse medical and surgical events, infection, and follow-up surgery [32,33].
Some patients also refuse BAHA implantation because of cosmetic considerations [34]. In
contrast, the CC transducer is fixed without a static force, mitigating some of the fixation
problems with BC-HAs, and it does not require surgery. In contrast to AC, CC mechanical
signals can be delivered directly to the tissue. CC also has transmission advantages in the
atretic ear over AC because it avoids the impedance mismatch between air and skin. Thus,
CC-HAs are a possible alternative for patients with aural atresia.
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6.1. CC-HA Characteristics

CC-HAs are behind-the-ear HAs (Figure 4), with the transducer placed on the au-
ral cartilage and the signal delivered through the cartilaginous tissue [35]. The trans-
ducer, optimized to transmit vibrations to the aural cartilage, is small and lightweight
(11.9 × 7.8 × 4.7 mm, 1.4 g). It is easily attached to the ear because of the conchal cartilage
stiffness, even when only a small cavity is present on the ear surface (Figure 5A). In the
absence of a sufficiently large cavity, CC-HA transducers can be attached with double-sided
tape (Figure 5B). Therefore, neither a high contact pressure nor a headband is required for
attachment. There is little risk of skin irritation, as experienced by patients who use con-
ventional BC-HAs, or infection, as experienced by patients with implanted BAHAs [36,37],
and they can be used from infancy. In Japan, CC-HA has become an option for treating
atretic ears. The Oto-Rhino-Laryngological Society of Japan puts the information related
to CC hearing aids along with that related to BAHAs, Vibrant Soundbridge (VSB), and
cochlea implants at its website [38], and the guidelines for implantable devices such as
BAHAs, VSB and Bonebridge authorized by the Japan Otological Society [39] require CC
hearing aids to be tested before the decision of their indication.
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clinical practice. 

Figure 5. Examples of ears with and without cartilage conduction hearing aid (CC-HA). Some
patients wear CC-HA in the same manner as conventional behind-the-ear hearing aids (A). For other
patients, double-sided tape is needed for fixation of the hearing aids (B). (Figure 5 was originally
presented in Nishimura et al. 2018, Figure 1 [40]).

6.2. CC-HA Benefits

CC-HAs were first reported in 2010 [21], and benefits for patients with chronic otitis
media and aural atresia were reported in 2013 [22]. A clinical study with 41 patients
(21 with bilateral aural atresia, 15 with unilateral aural atresia, and five with other diseases)
demonstrated that CC-HAs can provide audiometric benefits equivalent to those of other
devices (AC-HAs, BC-HAs, and BAHAs) without any serious adverse effects [40]. After the
trial, 95% and 93% of the patients with bilateral and unilateral aural atresia, respectively,
continued using their CC-HAs. Most patients who tried CC-HAs reported improvements
in communication abilities in noisy environments and sound localization. Another study
reported that laterality judgements significantly improved in bilateral aural atresia patients
with CC-HAs [41]. Sakamoto et al. evaluated CC-HA benefits in patients with unilateral
congenital atretic ears [42] and reported that speech recognition scores improved in a noisy
environment. Nishiyama et al. investigated adult candidates for CC-HA treatment [43]
and concluded that patients with ear canal stenosis or atretic ears were the most suited
candidates. They also reported good outcomes in children with the same ear conditions [44].
To investigate the clinical use of CC-HAs in Japan, a survey was performed in nine medical
institutions with 256 patients who tried CC-HAs [35]. Similar to previous studies, the
survey demonstrated that the candidates for CC-HAs were patients with aural atresia.
Sixty-five patients with bilaterally and 124 patients with unilaterally closed ears (aural
atresia or severe canal stenosis) tried CC-HA use. The purchase rate after the trial was
86% and 78%, respectively, for these two groups of patients. Patients with refractory
continuous otorrhea who experienced difficulties with AC-HA use also showed a high
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purchase rate (78%). In contrast, the purchase rate for patients who had no difficulty
with AC-HA use, such as patients with sensorineural hearing loss, was significantly lower
(37%). Finally, there were no differences between the CC-HAs and the patients’ own
hearing devices regarding audiometric results in the atretic ears, such as aided threshold,
functional gain, and speech recognition [34,40]. Even though CC transmission is inferior to
BC transmission in bony atretic ears, the audiometric outcomes were comparable [35,40],
and other advantages, such as comfort, stable fixation, cosmetics, and non-invasiveness,
may explain the high acceptance.

6.3. Limitations

CC-HAs have only been used in clinical practice since 2017, which is not long enough
to thoroughly establish their indication criteria, fitting technique, and benefits. Furthermore,
comparisons between CC-HAs and implantable devices have not been performed yet.
Further investigations are therefore required for establishing CC-HAs in clinical practice.

7. Conclusions

In CC, the aural cartilage plays a similar role to the movable plate of a vibration
speaker. This transduction mechanism, unique from AC and BC, is responsible for the CC
characteristics. CC can be applied to various acoustic devices, and there have been rapid
advances in HA development using CC. CC-HAs can be a beneficial option for patients
with aural atresia, although CC does not always surpass BC in terms of transmission
efficacy in bony atretic ears.
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