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Abstract: Background: Outcome measurement in lumbar surgery is traditionally performed using
patient questionnaires that may be limited by subjectivity. Objective gait analysis may supplement
patient assessment but must be clinically viable. We assessed gait metrics in lumbar spine patients pre-
and postoperatively using a small and lightweight wearable sensor. Methods: This was a prospective
observational study with intervention including 12 patients undergoing lumbar spine surgery and
24 healthy controls matched based on age and sex. All the subjects underwent gait analysis using the
single-point wearable MetaMotionC sensor. The lumbar spine patients also completed traditional
patient questionnaires including the Oswestry Disability Index (ODI). Results: The ODI score signifi-
cantly improved in the patients from the baseline to six weeks postoperatively (42.4 to 22.8; p = 0.01).
Simultaneously, the patients demonstrated significant improvements in gait asymmetry (asymmetry
in step length, swing time, single support time, and double support time, by 17.4–60.3%; p ≤ 0.039)
and variability (variability in gait velocity, step time, step length, stance time, swing time, single
support time, and double support time, by 21.0–65.8%; p ≤ 0.023). After surgery, changes in most
spatiotemporal (gait velocity, step length, stance time, swing time, and single limb support time) and
asymmetry (asymmetry in step time, stance time, swing time, and single limb support time) metrics
correlated strongly (magnitude of r = 0.581–0.914) and significantly (p ≤ 0.037) with changes in the
ODI. Conclusions: Gait analysis using a single-point wearable sensor can demonstrate objective
evidence of recovery in lumbar spine patients after surgery. This may be used as a routine pre- and
postoperative assessment during scheduled visits to the clinic.

Keywords: lumbar spine surgery; gait analysis; wearable sensor; preoperative assessment; postoperative
recovery; objective measurement; low back pain; metemotionc sensor; gait asymmetry; spinal pathologies

1. Introduction

Low back pain (LBP) is the leading cause of years lost to disability globally, accounting
for 60.1 million disability-adjusted life years in 2015 [1]. Patients with LBP may require
lumbar spine surgery, traditionally evaluated using patient-reported outcome measures
(PROMs) [2,3]. However, PROMs may be subjective, limiting comparisons across pa-
tients [4,5]. Walking (gait) metrics offer objective outcomes that can be used in addition to
PROMs to synergistically provide a more comprehensive surgical evaluation [6,7]. Single-
point wearable sensors likely represent the method of gait analysis with the most clinical
utility, being small, lightweight, and wearable during everyday activities [8].

1.1. Low Back Pain Is Commonly Caused by Lumbar Spine Pathologies

LBP commonly manifests secondary to spinal pathologies occurring in and around
the intraspinal lumbar canal, such as lumbar spinal stenosis (LSS) [9], lumbar disc her-
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niation (LDH) [10], and discogenic or mechanical low back pain (MLBP) [11,12]. These
are summarised in Figure 1. LSS refers to the narrowing of the intraspinal lumbar canal,
typically due to the intrusion of adjacent structures such as a hypertrophied ligamentum
flavum [9,13]. This may cause irritation or ischemia of the entrapped nerve roots, result-
ing in neurogenic claudication, a clinical syndrome of back or leg pain, weakness, and
paraesthesia which fluctuates with physical activity [9]. In a similar manner, LDH may also
cause the compression of neural tissue within the intraspinal lumbar canal but is instead
due to the extrusion of central nuclear disc material through the peripheral annulus fibro-
sus [10]. Unlike classical neurogenic claudication, symptoms tend to be unilateral and of a
greater intensity. Discogenic MLBP is caused by pain originating from the intervertebral
discs, and can be due to mechanical torsion injury, or degenerative changes [14], whilst
facetogenic MLBP originates from the lumbar zygapophyseal joint and can be caused by
osteoarthritis [11]. These pathologies may require surgical intervention [9,12].

Figure 1. Typical and pathological morphology of the intraspinal lumbar canal and its surrounding
structures. (a) Coronal view showing typical lumbar spine morphology with cauda equina. (b) Poste-
rior view of two adjacent lumbar vertebrae showing typical bony morphology. (c) Coronal view of
lumbar spinal stenosis. In this instance, a hypertrophied ligamentum flavum causes narrowing of the
intraspinal lumbar canal and compresses neural tissue within the cauda equina. (d) Coronal view of
lumbar disc herniation. Nuclear material herniates, typically posterolaterally, and compresses spinal
nerves within the cauda equina. (e) Posterior view of two adjacent lumbar vertebrae affected by
osteoarthritis. An osteophyte has formed at the zygapophyseal joint, one of the causes of facetogenic
mechanical low back pain. Additionally, the intervertebral disc has lost height as in intervertebral
disc degeneration, one of the causes of discogenic mechanical low back pain.

1.2. Patient-Reported Outcome Measures Have Drawbacks

Lumbar spine surgery is costly, with lumbar fusion alone averaging over $50,000 USD
per hospital admission in the United States over 2004–2015 [15]. Hence, surgical outcome
assessment is crucial for cost justification and surgical decision making.

Pre- and postoperative outcome assessment in lumbar surgery traditionally relies on
PROMs focused on the measurement of pain and functional disability [2,3]. PROMs have
the benefit of capturing the patient’s own perspective of their disease [16]. Commonly
used PROMs for lumbar spine surgery are the Oswestry Disability Index (ODI) [2]—the
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gold-standard, a ten-item questionnaire—and the Visual Analogue Scale (VAS) [3], a pain
rating scale. However, scores are influenced by an individual’s perception, which restricts
their comparability between patients [4,5]. Even the effectiveness of PROMs in tracking a
single patient’s progress over time and through various interventions becomes complex
due to patients potentially altering their responses to identical questions as they adapt to
their new health state [17,18].

Moreover, PROMs are only collected at discrete timepoints, typically when patients
present to a clinic, and do not capture day-to-day fluctuations in health status that occur
between visits [16]. These limitations have directed research interest towards objective
outcome assessments.

1.3. Gait Analysis Can Objectively Assess Lumbar Spine Patients

Human gait, influenced by neurological and musculoskeletal systems [19], is often
altered in patients with lumbar spine pathologies as they adjust their torso, pelvis, and
leg positions to mitigate pain or compensate for weakness [20]. Routine gait analysis
typically involves clinician observation sometimes integrated with clinical tests such as the
Timed Up and Go Test [21]. However, these semi-subjective approaches lead to considerable
interobserver variability and fail to provide a detailed understanding of gait kinematics [22].

Technological advancements have facilitated the development of two objective tech-
niques of gait analysis: optoelectronic stereophotogrammetry [23] and wearable devices
containing accelerometers, sometimes integrated with gyroscopes and magnetometers in
an inertial measurement unit (IMU) [19]. Both methods break down gait into measurable
elements, such as distance- and time-related (spatiotemporal) metrics (including gait veloc-
ity, step time, and step length). Gait asymmetry can be calculated as the left versus right
discrepancy in the spatiotemporal metrics and gait variability as the standard deviation
(SD) [24] or coefficient of variation (CoV) [7,25] of the spatiotemporal metrics across a
walking bout.

1.4. Single-Point Wearable Sensors Are the Most Clinically Viable Form of Objective Gait Analysis

Optoelectronic stereophotogrammetry, despite being a standard, is limited by cost and
practicality [26]. Wearable devices containing IMUs offer a feasible alternative, being cheap,
small, and accurate for long-term use [19] whilst also maintaining comparable accuracy to
optoelectronic stereophotogrammetry systems (r > 0.83) [27–30]. Single-point IMU systems,
like in smartphones, are likely to be widely adopted in clinical settings.

1.5. Research Problem

Lumbar spine patients have demonstrated altered gait metrics compared to healthy
controls. This includes spatiotemporal metrics such as gait velocity [7,31–36] (slower), step
time [7,31,34,37] (longer), step length [7,31–35] (shorter), and asymmetry (increased) [7,31],
though findings surrounding gait variability have been inconsistent [7,24,38,39]. However,
only four studies have examined these metrics post lumbar surgery [31–33,38]. No study
has investigated a collection of spatiotemporal, asymmetry, and variability metrics together.
Furthermore, two studies used basic equipment for gait analysis (stopwatch and pedome-
ter) [32,33], limiting their accuracy, while others had either a bulky [38] or multi-point
IMU system [31], limiting their clinical viability. Importantly, no study has used a small
and lightweight single-point IMU system, precluding the clinical uptake of IMUs in the
assessment of surgical lumbar spine patients.

Our goal was to use a single-point wearable IMU system to measure a complete range
of gait metrics—spatiotemporal, asymmetry, and variability metrics—in lumbar spine
patients, both pre- and post surgery, compared to healthy controls. We also aimed to assess
changes in these metrics post surgery and correlate them with changes in the ODI.

We hypothesize that, pre surgery, gait metrics will differ significantly from those of
the healthy controls, but not post surgery, and that these changes will moderately correlate
with ODI changes.
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2. Methodology

The present study was approved by the South Eastern Sydney Local Health District
Ethics Committee with reference code 17/184 (approved on 25 July 2017).

This was a prospective observational study with intervention.

2.1. Study Population

The lumbar spine patients were 12 attendees to a neurosurgery clinic (NeuroSpine
Clinic, Suite 7, Level 7, Prince of Wales Private Hospital) from March 2021 to June 2021 who
were scheduled to undergo lumbar spine surgery. The eligibility criteria for this cohort of
patients are summarised in Table 1.

Table 1. Eligibility criteria for our cohort of lumbar spine patients.

Inclusion Criteria

Clinical diagnosis of either lumbar spinal stenosis, lumbar disc herniation, or mechanical low back pain

Be medically suitable for lumbar spine surgery
Have not improved with non-surgical treatment

Age greater than 18 years

Exclusion criteria

Inability to walk independently
Women who are pregnant

Concurrent serious spinal pathology such as cancer, cauda equina syndrome, spinal fracture, and inflammatory arthritis
Present with active Paget’s disease of the spine

Presence of significant lumbar scoliosis (Cobb angle ≥ 25◦) or other spinal deformities
Meyerding classification grade 2 or greater spondylolisthesis

Symptomatic hip disease with symptoms reproduced with external or internal rotation of the hip joint
Cognitive impairment of inadequate English language skills that interfere with the patient’s ability to give fully informed consent

or complete baseline or follow-up assessments

The healthy controls with no gait-altering disease were 24 members from the commu-
nity recruited using verbal outreach and matched based on age and sex.

2.2. Wearable Device

The wearable IMU used in this study was the MetaMotionC device developed by
Mbientlab Inc., San Jose, CA 95124, USA. This device contains a 100 Hz accelerometer
for the measurement of linear acceleration, a 100 Hz gyroscope for the measurement of
angular acceleration, and a 25 Hz magnetometer to assess the orientation of the sensor
relative to the Earth’s magnetic field. It is also small (2.6 cm × 2.6 cm × 2.6 cm) and
lightweight (5 g), as shown in Figure 2. The data captured by the MMC were transmitted
via BluetoothTM to an Android smartphone running the “IMUGait” application developed
for this study. A modified version of the GaitPY Python package [40] developed by Czech
and Patel—the “IMUGaitPY” program—was used to convert the data into interpretable gait
metrics. This process is expanded upon in Appendix A. The GaitPY program was modified
to account for our placement of the MMC at the sternum, instead of the pelvis, to enhance
patient comfort [41,42] and, hence, clinical viability. The captured gait metrics included
spatiotemporal metrics, from which asymmetry and variability metrics were derived, as in
Table 2. The IMUGait application setup instructions and further information surrounding
the derivation of asymmetry and variability metrics are provided in Appendix B.
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Figure 2. The wearable MetaMotionC sensor used in the present study. The sensor is positioned on
the skin overlying the sternal angle. The sensor measures approximately 2.6 cm × 2.6 cm × 0.5 cm
and is shown next to a ruler (with numbers depicted in centimetres) for size comparison. The sensor
weighs 5 g.

Table 2. Definition of each gait metric used in this study.

Base a Metric Definition (Units) Type b Derivative
Metrics c Definition (Units) Type b

Gait velocity Distance travelled per
second (m/s)

Combined
spatiotemporal

Gait velocity
variability d

Step-to-step variability
in gait velocity (sm−1) Variability

Step time

Time between two
consecutive contacts of

any foot with the
ground (s)

Temporal

Step time
asymmetry

Average of difference in
time between successive

steps on the left and
right foot (s)

Asymmetry

Step time
variability d

Step-to-step variability
in step time (s−1) Variability

Step length

Distance between two
consecutive contacts of

any foot with the
ground (m)

Spatial

Step length
asymmetry

Average difference in
length between

successive steps on the
left and right foot (m)

Asymmetry

Step length
variability d

Step-to-step variability
in step length (m−1) Variability

Stance time

For each foot the time
between the first point

of contact with the
ground to the last
point of contact (s)

Temporal

Stance time
asymmetry

Average difference in
stance time between

successive steps on the
left and right foot (s)

Asymmetry

Stance time
variability d

Step-to-step variability
in stance time (s−1) Variability
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Table 2. Cont.

Base a Metric Definition (Units) Type b Derivative
Metrics c Definition (Units) Type b

Swing time

For each foot the time
between the last point

of contact with the
ground to the first
point of contact (s)

Temporal

Swing time
asymmetry

Average difference in
swing time between

successive steps on the
left and right foot (s)

Asymmetry

Swing time
variability d

Step-to-step variability
in swing time (s−1) Variability

Single
support time

Time where only one
foot is in contact with

the ground (s)
Temporal

Single support
time asymmetry

Average difference in
single support time
between successive
steps on the left and

right foot (s)

Asymmetry

Single support
time variability d

Step-to-step variability
in single support

time (s−1)
Variability

Double
support time

Time where both feet
are in contact with the

ground (s)
Temporal

Double support
time asymmetry

Average difference in
double support time
between successive

steps (s)

Asymmetry

Double support
time variability d

Step-to-step variability
in double support

time (s−1)
Variability

a Base metrics are directly calculated by the MetaMotionC sensor. b Spatial metrics are related to distance;
temporal metrics are related to time; gait velocity is the only combined spatiotemporal metric; asymmetry metrics
are related to differences between the left and right feet; and variability metrics are related to differences between
steps over the course of the walking bout. c Derivative metrics are mathematically derived from the base metrics
and not directly measured by the MetaMotionC sensor. d All variability metrics are defined as the coefficient of
variation (standard deviation divided by the mean) of the set of values taken from each step of the walking bout.

2.3. Procedure

After providing informed written consent, demographic data were obtained from
the participants during a structured interview. The lumbar spine patients also completed
PROMs (ODI and VAS). As depicted in Figure 2, the MMC device was then attached
to the skin overlying the sternal angle using double-sided medical-grade adhesive tape
and connected via Bluetooth to the IMUGait application. After a three-second pause to
calibrate the device, the participants walked at a self-selected pace along an unobstructed
and straight corridor over a self-selected distance of at least 15 m and, at most, 120 m.
The self-selected nature of the walk was intended to capture the subject’s natural walking
pattern whilst accommodating for the patients who were incapable of walking continuously
for 120 m. Gait analysis of the lumbar spine patients was performed preoperatively, at most
two weeks before their scheduled surgery, and again at their scheduled six-week follow-up
visit. Gait analysis of the healthy controls was performed once, at the time of recruitment.

2.4. Statistical Analysis

All the variables (demographic and gait-related) were assessed for normality using
the Shapiro–Wilk test and the visual inspection of histograms. Continuous demographic
variables were compared between the groups using the Student’s t test for the normal
data and the Mann–Whitney U test for the non-normal data. Categorical demographic
variables were compared between the groups using the Chi-Square test of independence.
Gait metrics between our three groups of data (pre- and postoperative lumbar spine patient
data and healthy control data) were compared using linear mixed models with the fixed
effects group, age, and gender and a random effect accounting for each triplet (patient and
their two matched controls). The correlation between the change in gait metrics and the
change in the ODI after surgery was assessed using the Pearson’s correlation coefficient for



Surg. Tech. Dev. 2024, 13 64

the normal data and the Spearman’s rank correlation coefficient for the non-normal data.
The level of statistical significance was set to p = 0.05. We did not calculate the minimum
sample size required to detect a statistically significant change in gait metrics after surgery
due to the paucity of available data in the field. All the statistical analyses were performed
using IBM SPSS Statistics Version 26.0 (IBM, New York, NY, USA).

3. Results

Forty-seven patients were eligible for this study (Figure 3). Of these, 12 patients
completed baseline and follow-up assessments. Two patients declined participation; one
was unable to walk independently; one trial was discarded due to an IMUGaitPY program
bug; two patients were pain-free after surgery and did not present to the follow-up; and
29 patients did not present in-person to the follow-up due to the COVID-19 pandemic.
Of the 12 patients with complete preoperative and postoperative data, six had LSS and
underwent simple decompression, four had LDH and underwent microdiscectomy, and
two had combinations of discogenic and facetogenic MLBP, with one undergoing anterior
lumbar interbody fusion with total disc arthroplasty and the other undergoing anterior
lumbar interbody fusion with posterior fixation. The mean follow-up time was 40.2 days.
The patients had a mean age of 61.0 years, a mean body mass index of 27.9 kg/m2, and
58.3% of them were female (seven out of twelve). No statistically significant differences in
the baseline demographic characteristics were found between the patients and the healthy
controls, with the healthy controls having a mean age of 60.7 years, a mean body mass index
of 26.7 kg/m2, and 58.3% of them were female (14 out of 24). Additional demographic
characteristics are described in Table 3.

Figure 3. Cohort flowchart of lumbar spine patients. ODI, Oswestry Disability Index; VAS, Visual
Analogue Scale; MMC, MetaMotionC device; n, number of participants.
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Table 3. Demographic features of the lumbar spine patient and healthy control cohorts, and patholog-
ical features of the lumbar spine patient cohort.

Demographic Variables Lumbar Spine Patients
(n = 12) Healthy Controls (n = 24)

Continuous mean
{[range, (SD)]}

Age (years) 61.0 [41–86 (16.8)] 60.7 [42–91 (13.6)]
BMI (kg/m2) 27.9 [19.5–36.4 (5.45)] 26.7 [21.1–39.9 (4.59)]
Height (m) 1.70 [1.50–1.88 (0.115)] 1.65 [1.50–1.79 (0.0892)]

Categorical [n, (percentage
of total)]
Gender

Male 5 (41.7) 10 (41.7)
Female 7 (58.3) 14 (58.3)

Daily smoker 0 (0) 1 (4.17)
Diabetic 0 (0) 1 (4.17)

Fall in previous year 2 (16.7) 2 (8.33)

Pathology [n, (percentage
of total)]

Lumbar spinal stenosis 6 (50.0) -
Lumbar disc herniation 4 (33.3) -

Discogenic and/or facetogenic
mechanical Low back pain 2 (16.7) -

BMI, body mass index; n, number of data entries. Every-day smoker was defined as a person who has smoked at
least 100 cigarettes in their lifetime and who now smokes every day.

3.1. Comparison of Outcome Measures between Groups

Tables 4 and 5 show the outcome measures in the lumbar spine patients and the
healthy controls. The patient-reported outcome measures improved significantly in the
lumbar spine patients after surgery. The ODI decreased by 19.8% (p = 0.01) and the VAS by
55% (p = 0.001).

Table 4. Outcome measure in lumbar spine patients and healthy controls.

Metric Preoperative Postoperative Healthy Controls

ODI 42.4 (19.0) 22.8 (18.3) -
VAS 7.00 (5.50–8.00) 1.50 (0–4.50) -

Spatiotemporal
Gait velocity (ms−1) 1.03 (0.308) 1.13 (0.358) 1.29 (0.197)

Step time (ms) 573 (537–616) 573 (556–673) 514 (38.9)
Step length (mm) 591 (120) 637 (153) 656 (97.6)

Stance (ms) 741 (124) 736 (130) 642 (49.8)
Swing (ms) 464 (112) 440 (78.7) 389 (27.9)

Double support time (ms) 284 (31.2) 296 (52.8) 257 (21.4)
Single support time (ms) 446 (413–545) 448 (82.6) 390 (28.8)

Asymmetry
Step time (ms) 43.2 (9.08–77.4) 27.1 (19.8–73.5) 37.1 (26.6–60.8)

Step length (mm) 59.6 (43.9–114) 49.2 (41.2–69.5) 57.0 (44.6–75.2)
Stance time (ms) 63.1 (22.7–89.5) 25.0 (20.7–90.6) 32.4 (25.3–49.5)

Swing (ms) 61.7 (23.8–95.3) 24.5 (19.1–90.4) 29.6 (25.7–57.8)
Single support time (ms) 65.6 (35.5–144) 32.8 (22.4–90.2) 34.9 (28.1–63.7)

Double support time (ms) 15.0 (11.6–28.4) 10.6 (7.26–22.7) 12.9 (8.18–16.8)

Variability
Gait velocity (sm−1) 10.8 (2.38) 8.53 (1.97) 10.2 (3.49)

Step time (s−1) 13.2 (9.69–17.5) 6.03 (3.73–8.88) 11.8 (6.00)
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Table 4. Cont.

Metric Preoperative Postoperative Healthy Controls

Step length (m−1) 12.5 (8.13–20.5) 8.31 (7.92–13. 9) 9.40 (7.61–11.2)
Stance time (s−1) 9.49 (6.30–12.1) 6.72 (5.30–9.31) 8.67 (4.17)
Swing time (s−1) 20.0 (11.6) 8.26 (6.14–14.7) 13.4 (7.05–21.4)

Single support time
(s−1) 44.2 (24.1) 16.8 (12.1–36.0) 22.6 (10.4–35.1)

Double support time
(s−1) 17.9 (7.67–28.1) 6.12 (4.63–19.0) 10.2 (5.71–16.6)

ODI, Oswestry Disability Index; VAS, Visual Analogue Scale. Normally distributed variables are given as the
mean (standard deviation) and otherwise as the median (interquartile range).

Table 5. Percentage differences in outcome measures between groups.

Within Patients Patients–Controls

Metric Postoperative–Preoperative Preoperative Postoperative

ODI −46.2 (0.01) - -
VAS −78.6 (0.001) - -

Spatiotemporal
Gait velocity 9.71 (0.195) −20.2 (0.008) −12.4 (0.095)

Step time −0.000103 (0.468) 10.3 (0.006) 11.5 (0.001)
Step length 7.78 (0.123) −9.91 (0.121) −2.90 (0.643)
Stance time −0.67 (0.828) 15.4 (0.003) 14.6 (0.005)
Swing time 5.17 (0.193) 19.3 (0.002) 13.1 (0.026)

Single support time 0.448 (0.065) 14.4 (0.001) 14.9 (0.044)
Double support time 4.23 (0.255) 10.5 (0.027) 15.2 (0.002)

Asymmetry
Step time −37.3 (0.066) 16.4 (0.063) −27.0 (0.983)

Step length −17.4 (0.016) 4.56 (0.097) −13.7 (0.904)
Stance time −60.4 (0.053) 94.8 (0.037) −22.8 (0.594)
Swing time −60.3 (0.039) 108 (0.036) −17.2 (0.699)

Single limb support −50.0 (0.012) 88.0 (0.009) −6.02 (0.650)
Double limb support −29.3 (0.027) 16.3 (0.017) −17.8 (0.845)

Variability
Gait velocity −21.0 (0.011) 5.88 (0.564) −16.4 (0.134)

Step time −54.3 (0.001) 11.9 (0.110) −48.9 (0.094)
Step length −33.5 (0.011) 33.0 (0.019) −11.6 (0.929)

Stance −29.2 (0.023) 9.46 (0.171) −22.5 (0.550)
Swing −58.7 (0.004) 49.3 (0.182) −38.4 (0.265)

Single limb support −62.0 (0.001) 95.6 (0.009) −25.7 (0.751)
Double limb support −65.8 (0.014) 75.5 (0.048) −40.0 (0.675)

ODI, Oswestry Disability Index. VAS, Visual Analogue Scale. Values are reported as percentage differences with
p-values from linear mixed model analysis in brackets. Bolded p-values indicate statistically significant results.
Metric units are not provided because values are percentages.

3.1.1. Lumbar Spine Patients Had Altered Gait Metrics Preoperatively

Before surgery, the lumbar spine patients had altered (9.91–20.2%) spatiotemporal
metrics compared to the healthy controls, reaching statistical significance in all the metrics
except for step length: gait velocity (p = 0.008), step time (p = 0.006), stance time (p = 0.003),
swing time (p = 0.002), single support time (p = 0.001), and double limb support time
(p = 0.027). The patients also had increased gait asymmetry (4.56–108%), reaching signifi-
cance in most metrics: stance time asymmetry (p = 0.037), swing time asymmetry (p = 0.036),
single support time asymmetry (p = 0.009), and double support time asymmetry (p = 0.017).
Similarly, the patients had increased gait variability (5.88–95.6%), reaching significance in
some metrics: step length variability (p = 0.019), single support time variability (p = 0.009),
and double support time variability (p = 0.048). These differences are summarised in
Figure 4.
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Figure 4. Radar plot representing the change in gait metrics after surgery relative to healthy controls.
The red line plots the gait metrics of lumbar spine patients preoperatively. The green line plots the
gait metrics of lumbar spine patients postoperatively. The grey line plots the gait metrics of healthy
controls. Percentage values represent the magnitude of the difference between the gait metrics of
lumbar spine patients (preoperatively and postoperatively) and healthy controls. The deviation of
the red and green lines is only shown for metrics that are statistically significantly different between
lumbar spine patients and healthy controls. After surgery, all gait asymmetry and variability metrics
reached normal values.

3.1.2. Lumbar Spine Patients Demonstrated Reduced Gait Asymmetry and Variability
after Surgery

Changes in gait metrics after surgery relative to the healthy controls are represented
in Figure 4. No spatiotemporal metrics improved significantly, with percentage changes all
under 10%. Consequently, most spatiotemporal metrics were still significantly different
to the controls after surgery: step time (p = 0.001), stance time (p = 0.005), swing time
(p = 0.026), single support time (p = 0.044), and double support time (p = 0.002). How-
ever, the patients demonstrated improved gait asymmetry (17.4–60.4%), with significant
reductions in most metrics: step length asymmetry (p = 0.016), swing time asymmetry
(p = 0.039), single support time asymmetry (p = 0.012), and double support time asymmetry
(p = 0.027). Accordingly, no asymmetry metrics were significantly different compared to
the controls postoperatively. Similarly, the patients demonstrated improved gait variability
(21.0–65.8%), reaching significance in all the metrics: gait velocity variability (p = 0.011),
step time variability (p = 0.001), step length variability (p = 0.011), stance time variability
(p = 0.023), swing time variability (p = 0.004), single support time variability (p = 0.001),
and double support time variability (p = 0.014). No variability metrics were significantly
different to the controls postoperatively.

3.2. Changes in Spatiotemporal and Asymmetry Metrics Correlate Well with Changes in the ODI
after Surgery

Changes in most spatiotemporal metrics correlated strongly and significantly with
changes in the ODI: gait velocity (r = −0.914, p < 0.001), step length (r = −0.862, p < 0.001),
stance time (r = 0.902, p < 0.001), swing time (r = 0.835, p = 0.001), and single support
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time (r = 0.869, p < 0.001). Changes in most asymmetry metrics correlated strongly and
significantly with changes in the ODI: step time asymmetry (r = 0.581, p = 0.047), stance time
asymmetry (r = 0.666, p = 0.018), swing time asymmetry (r = 0.623, p = 0.030), and single
support time asymmetry (r = 0.606, p = 0.037). Changers in variability metrics correlated
predominantly insignificantly with changes in the ODI, with only step length variability
reaching significance (r = 0.596, p = 0.041). This is summarised in Table 6 and summarised
in Figure 5.

Figure 5. Strength of correlation between change in gait metrics and change in Oswestry Disability
Index. Blue bars represent statistically significant correlations and grey bars represent correlations
that did not reach statistical significance. Changes in most spatiotemporal and asymmetry metrics cor-
related strongly and significantly with changes in the ODI. Changes in variability metrics correlated
predominantly insignificantly with changes in the ODI.

Table 6. Correlation between changes in each gait metric and the ODI after surgery.

Gait Metric Correlation Coefficient p-Value

Spatiotemporal
Gait velocity −0.914 <0.001

Step time 0.557 0.060
Step length −0.862 <0.001

Stance 0.902 <0.001
Swing 0.835 0.001

Single limb support 0.869 <0.001
Double support * 0.445 0.147

Asymmetry
Step time * 0.581 0.047

Step length * 0.434 0.158
Stance * 0.666 0.018
Swing * 0.623 0.030

Single limb support * 0.606 0.037
Double limb support * 0.438 0.155
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Table 6. Cont.

Gait Metric Correlation Coefficient p-Value

Variability
Gait velocity * 0.459 0.134

Step time * 0.452 0.140
Step length variability 0.596 0.041

Stance * 0.434 0.158
Swing * 0.434 0.158

Single limb support * 0.175 0.586
Double limb support * 0.231 0.470

Changes in metrics with an asterisk (*) formed a non-normal distribution, and, hence, a correlation analysis was
performed using Spearman’s rank correlation coefficient. Otherwise, Pearson’s correlation coefficient was used.
Bold indicates significant findings.

4. Discussion

Gait metrics, objectively assessed with single-point wearable sensors, enhance lumbar
spine patient evaluations when combined with PROMs scores. This study is the first to
assess pre- and postoperative gait metrics using such sensors. Post surgery, the patients in
our study showed improved gait asymmetry and variability, supporting the clinical use of
single-point IMU systems for routine assessments in lumbar spine surgery.

4.1. Preoperative Assessment of Lumbar Spine Patients Compared with Healthy Controls

Before surgery, the lumbar spine patients exhibited severe functional disability (mean
ODI score: 42.4) and moderate pain (median VAS: 7.00), with significantly altered gait met-
rics compared to the healthy controls, including increased gait asymmetry and variability.

4.1.1. Spatiotemporal Gait Metrics

In the present study, all the spatiotemporal metrics, except for step length, were
significantly altered in the lumbar spine patients compared to the healthy controls, with
an 11% mean reduction in step length. Other studies [24,31,34,35,43] with larger sample
sizes found reductions of similar magnitudes (12–26%) to be significant, suggesting that
our study lacked the statistical power to detect a significant difference.

The patients in our study walked 20% slower and presented an 11% increase in
step time, consistent with other research works showing 13–24% decreases in gait ve-
locity [7,24,31,36] and 8–16% increases in step time [7,31,37]. We also noted significant
increases in double limb support time (11%), single limb support time (14%), stance time
(15%), and swing time (15%). Besides our study, only Kang et al. [37] have investigated
these metrics in lumbar spine patients (LDH specifically) relative to healthy controls. They
found no significant changes in these metrics, potentially due to the older age of their
control group. Overall, our findings underscore the altered spatiotemporal metrics (lower
spatial and higher temporal metrics) in lumbar spine patients, highlighting their importance
in patient assessment.

4.1.2. Asymmetry and Variability Gait Metrics

In our study, the lumbar spine patients showed significantly increased asymmetry and
variability in gait metrics compared to the healthy controls. The patients had a significantly
increased asymmetry in stance time (95%), swing time (108%), single support time (88%),
and double support time (16%). Although limited, existing research predominantly sup-
ports these findings. Loske et al. [31] similarly reported significantly increased asymmetry
in stance time (131%), swing time (170%), single support time (131%), and double support
time (24%). Betteridge et al. [7] did not investigate these asymmetry metrics but instead
found significantly increased asymmetry in step time (153%) and step length (68%). This
contrasts our study, which did not find significant differences in these asymmetry metrics.
This may be attributed to differing study populations, with our study including LSS, LDH,
and MLBP patients and Betteridge et al.’s study only investigating LSS patients. Nonethe-
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less, our study and the wider literature together show that lumbar spine patients have an
overall asymmetrical gait.

Furthermore, the lumbar spine patients in our study demonstrated significantly in-
creased variability in step length (33%), single support time (96%), and double support
time (75%). Previous studies analysing gait variability in lumbar spine patients have
mixed results. Papadakis et al. [39] found significantly increased variability in LSS patients
compared to controls (0.811 versus −0.216 nats; p < 0.001), contrasting with Betteridge
et al. [7] who found no significant differences. Lamoth et al. [24] reported less variable
stride length (48%) in MLBP patients over a short walkway, suggesting that pain may
lead to a more rigid gait. However, studies involving longer walking distances reflect a
deterioration in gait metrics due to fatigue and discomfort. This highlights the importance
of assessing gait variability in lumbar spine patients over extended walking periods for a
comprehensive evaluation.

4.2. Changes in Outcome Measures after Surgery and Comparisons with Healthy Controls

Post surgery, the patients demonstrated objective evidence of recovery with reductions
in gait asymmetry and gait variability. The patients’ ODI improvements (from 42.4 to 22.8;
p = 0.01) correlated well with changes in spatiotemporal and asymmetry metrics but poorly
with variability metrics.

4.2.1. Spatiotemporal Gait Metrics

The present study found no significant post-surgery improvements in spatiotemporal
metrics, which remained significantly different to the controls (step time, stance time,
swing time, single support time, and double support time). In contrast, Ghent et al. [32]
(investigating LDH patients) and Mobbs et al. [33] (investigating LSS patients) observed
significant improvements in gait velocity and step length in their longer follow-up studies
(nine weeks and three months, respectively). However, Loske et al. [31] did not report
improvements, even after a 12-month follow-up period. These discrepant findings suggest
that recovery patterns in spatiotemporal metrics may depend on follow-up duration and
postoperative care, indicating a need for tailored rehabilitation programs.

4.2.2. Asymmetry and Variability Gait Metrics

Post surgery, significant improvements were observed in the asymmetry and vari-
ability metrics. The patients demonstrated significant reductions in the asymmetry in
step length (17%), swing time (60%), single support time (50%), and double support
time (29%), along with improvements in the variability in gait velocity (21%), step time
(54%), step length (34%), stance time (29%), swing time (59%), single support time (62%),
and double support time (66%). These changes brought patients to normal levels of gait
asymmetry and variability after surgery. Supporting these findings, Loske et al. [31] and
Papadakis et al. [38] also reported significant post-surgical improvements in these metrics,
with Loske et al. finding all asymmetry metrics to reach normal values and Papadakis et al.
observing a 54% improvement in gait variability. Overall, this evidence suggests that gait
asymmetry and variability are reliable indicators of recovery following lumbar surgery.

4.2.3. Correlation between Changes in Gait Metrics and Changes in the Oswestry
Disability Index

Changes in the ODI correlated strongly with most spatiotemporal metrics (gait ve-
locity, step length, stance time, swing time, and single limb support time; r = 0.835–0.914,
p ≤ 0.001) and asymmetry metrics (step time asymmetry, stance asymmetry, swing asym-
metry, and single limb support time asymmetry; magnitude of r = 0.581–0.666, p ≤ 0.047).
Supporting this, Ghent et al. [32] and Mobbs et al. [33] found similar significant strong
correlations between changes in the Gait Posture index (a composite score which includes
the spatiotemporal metrics gait velocity and step length) and the ODI (Pearson’s correla-
tion coefficient, r = 0.56 and 0.682, respectively (p < 0.01). Loske et al. [31] also identified
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strong correlations between specific spatiotemporal metrics and the ODI. These findings
suggest that patients perceive compromised spatiotemporal and asymmetry gait metrics
as functional limitations, reinforcing the importance of monitoring patient recovery in
these metrics.

The present study, possibly the first of its kind, found an insignificant correlation
between variability metrics and the ODI, with only step length variability showing signifi-
cance (r = 0.596, p = 0.041). This should be interpreted with caution given our small sample
size but suggests that gait variability might represent an aspect of functional status not
fully captured by the ODI, offering a more comprehensive assessment of surgical lumbar
spine patients.

4.3. Justification of Study Techniques

The present study replicated Betteridge et al.’s methodology [7], using a chest-based
MMC sensor for gait metrics’ measurement. This sensor demonstrated over 92% agreement
with a reference standard (videography), showing high accuracy (ICC > 0.86, p < 0.001) in
both lumbar spine patients and healthy controls. The chest placement, unlike conventional
IMU placements on the lower back [38,44–47], ankle [46,48], wrist [49], or thigh [47], offers
easy, repeatable attachment and minimal daily activity interference, enhancing clinical
utility [41,50]. Additionally, we chose to report step-by-step data as recommended by
Galna et al. [51], rather than stride-by-stride data, due to its higher within-person reliability
(ICC = 0.598–0.819) in continuous walking, providing a more consistent measurement of
gait metrics. Considering future applications, exploring the efficacy of IMU-based gait
parameters in other patient populations could further validate and expand the utility of
this technology. Additionally, investigating alternative sensor placements might optimize
gait metric accuracy across varied conditions and patient groups.

4.4. Strengths and Limitations

The present study’s strengths include a comprehensive gait analysis using spatiotem-
poral, asymmetry, and variability metrics in lumbar spine patients, providing greater depth
compared to similar studies [31–33,38]. The use of a small, unobtrusive wearable sensor
for natural-setting measurements enhanced internal validity and mitigated the white-coat
effect common in laboratory settings [24,34,37].

An additional advantage is our inclusion of a healthy control cohort matched by age
and sex. This enabled us to compare the post-surgery gait metrics with normal values and
account for age- and sex-related gait changes [52]. This is important because age and sex
can affect gait metrics, as evidenced by a meta-analysis showing that gait velocity decreases
by 0.07–0.10 m/s with each decade after age 50 [52]. The same study showed that women
walk 0.02–0.15 m/s slower than men in each corresponding ten-year age group [52].

However, our study has some limitations. Our small sample size of 12 lumbar spine
patients restricted our ability to perform regression analyses on subcategories or surgical
details. Additionally, this study was conducted by a single surgeon at one hospital, limiting
the findings’ generalizability. We also had a relatively short follow-up time of six weeks,
leaving uncertainty about the long-term recovery of spatiotemporal metrics.

While the single-point MMC sensor allowed for more natural environment mea-
surements, this did not replicate a person’s most natural everyday environment, and the
white-coat effect may still have influenced the results [53,54]. Its limited data storage
capacity restricted the analysis to specific timepoints, preventing the observation of gait
pattern fluctuations over time.

4.5. Future Directions

Future studies are needed to leverage the potential for a single-point wearable sensor
to monitor the gait patterns of lumbar spine patients during everyday activities. This may
now be possible using the new MetaMotionS sensor that has a two-day continuous gait
recording capacity [55]. Software engineering techniques could extend this data capture
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window further, up to two weeks; for instance, the device can be programmed to sample
five seconds of gait data per minute that the user is walking. This would reduce the
white-coat effect [19] and allow remote tracking of day-to-day gait fluctuations for the early
detection of postoperative complications.

Additionally, future studies should aim for larger sample sizes (30+ patients per
subcategory) and perform regression analyses to account for spinal pathology occurring at
different anatomical levels. Participants should also be recruited from multiple hospitals
across various surgeons to ensure external validity and explore optimal sensor placements
for accurate gait measurement. Finally, extended follow-up periods of at least two months
are also recommended to evaluate long-term gait recovery trends post surgery.

5. Conclusions

This study is the first to use a single-point wearable IMU to objectively demonstrate
recovery in patients post lumbar spine surgery. Post surgery, the patients showed signifi-
cant improvements in gait asymmetry and variability, aligning with normal values. The
observed correlation between changes in spatiotemporal and asymmetry metrics with the
Oswestry Disability Index (ODI) indicates that patients perceive these gait aspects to be
closely related to their functional and pain status. However, the mostly insignificant correla-
tion between the variability metrics and the ODI suggests that, while objective gait analysis
may not replace subjective patient assessments like PROMs, it adds a valuable dimension
for a more thorough evaluation of patients’ health status. These results support the use of
clinically practical single-point IMUs in lumbar spine patient assessments. Future research
should focus on utilizing advanced sensor technologies to monitor daily gait patterns of
lumbar spine patients in real-life settings.
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CoV Coefficient of variation
COVID-19 Novel coronavirus disease
ICC Intraclass correlation coefficient
IMU Inertial measurement unit
LBP Low back pain
LDH Lumbar disc herniation
LSS Lumbar spinal stenosis
MMC MetaMotionC
MLBP Mechanical low back pain
ODI Oswestry Disability Index
p Probability value
PROM Patient-reported outcome measure
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r Pearson’s correlation coefficient
SD Standard deviation
VAS Visual Analogue Scale

Appendix A. Data Processing Workflow

Figure A1. Flowchart of data processing workflow. While worn by the subject, the MetaMotionC de-
tects raw acceleration signals. A python script—the IMUGaitPY program—is used to detect gait cycle
events and extract spatiotemporal gait metrics from the raw data. Asymmetry and variability metrics
are also mathematically derived from the spatiotemporal metrics. The collection of spatiotemporal,
asymmetry, and variability metrics is uploaded as a csv file for interpretation.

Appendix B. Additional Information Regarding the IMUGaitPY Program

Additional information regarding the IMUGaitPY program is contained within the
following link created by LWS accessed on 6 July 2022: https://lsy3.gitlab.io/IMUGaitPy/
index.html.

References
1. Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; et al. Global,

regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic
analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [CrossRef]

2. Fairbank, J.C.; Pynsent, P.B. The Oswestry Disability Index. Spine 2000, 25, 2940–2952. [CrossRef]
3. Mannion, A.F.; Balagué, F.; Pellisé, F.; Cedraschi, C. Pain measurement in patients with low back pain. Nat. Clin. Pract. Rheumatol.

2007, 3, 610–618. [CrossRef]
4. Stienen, M.N.; Smoll, N.R.; Joswig, H.; Snagowski, J.; Corniola, M.V.; Schaller, K.; Hildebrandt, G.; Gautschi, O.P. Influence of the

mental health status on a new measure of objective functional impairment in lumbar degenerative disc disease. Spine J. 2017, 17,
807–813. [CrossRef]

5. Merrill, R.K.; Zebala, L.P.; Peters, C.; Qureshi, S.A.; McAnany, S.J. Impact of depression on patient-reported outcome measures
after lumbar spine decompression. Spine 2018, 43, 434–439. [CrossRef] [PubMed]

6. Haddas, R.; Ju, K.L.; Belanger, T.; Lieberman, I.H. The use of gait analysis in the assessment of patients afflicted with spinal
disorders. Eur. Spine J. 2018, 27, 1712–1723. [CrossRef] [PubMed]

7. Betteridge, C.; Mobbs, R.J.; Fonseka, R.D.; Natarajan, P.; Ho, D.; Choy, W.J.; Sy, L.W.; Pell, N. Objectifying clinical gait assessment:
Using a single-point wearable sensor to quantify the spatiotemporal gait metrics of people with lumbar spinal stenosis. J. Spine
Surg. 2021, 7, 254–268. [CrossRef] [PubMed]

8. Muro-de-la-Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait analysis methods: An overview of wearable and non-
wearable systems, highlighting clinical applications. Sensors 2014, 14, 3362–3394. [CrossRef] [PubMed]

9. Siebert, E.; Prüss, H.; Klingebiel, R.; Failli, V.; Einhäupl, K.M.; Schwab, J.M. Lumbar spinal stenosis: Syndrome, diagnostics and
treatment. Nat. Rev. Neurol. 2009, 5, 392–403. [CrossRef]

10. Raj, P.P. Intervertebral disc: Anatomy-physiology-pathophysiology-treatment. Pain Pract. 2008, 8, 18–44. [CrossRef] [PubMed]
11. van Kleef, M.; Vanelderen, P.; Cohen, S.P.; Lataster, A.; Van Zundert, J.; Mekhail, N. Pain originating from the lumbar facet joints.

Pain Pract. 2010, 10, 459–469. [CrossRef]
12. Borenstein, D. Mechanical low back pain—A rheumatologist’s view. Nat. Rev. Rheumatol. 2013, 9, 643–653. [CrossRef] [PubMed]

https://lsy3.gitlab.io/IMUGaitPy/index.html
https://lsy3.gitlab.io/IMUGaitPy/index.html
https://doi.org/10.1016/S0140-6736(16)31678-6
https://doi.org/10.1097/00007632-200011150-00017
https://doi.org/10.1038/ncprheum0646
https://doi.org/10.1016/j.spinee.2016.12.004
https://doi.org/10.1097/BRS.0000000000002329
https://www.ncbi.nlm.nih.gov/pubmed/28704333
https://doi.org/10.1007/s00586-018-5569-1
https://www.ncbi.nlm.nih.gov/pubmed/29610989
https://doi.org/10.21037/jss-21-16
https://www.ncbi.nlm.nih.gov/pubmed/34734130
https://doi.org/10.3390/s140203362
https://www.ncbi.nlm.nih.gov/pubmed/24556672
https://doi.org/10.1038/nrneurol.2009.90
https://doi.org/10.1111/j.1533-2500.2007.00171.x
https://www.ncbi.nlm.nih.gov/pubmed/18211591
https://doi.org/10.1111/j.1533-2500.2010.00393.x
https://doi.org/10.1038/nrrheum.2013.133
https://www.ncbi.nlm.nih.gov/pubmed/24018549


Surg. Tech. Dev. 2024, 13 74

13. Lee, B.H.; Moon, S.-H.; Suk, K.-S.; Kim, H.-S.; Yang, J.-H.; Lee, H.-M. Lumbar spinal stenosis: Pathophysiology and treatment
principle: A narrative review. Asian Spine J. 2020, 14, 682–693. [CrossRef] [PubMed]

14. Vlaeyen, J.W.S.; Maher, C.G.; Wiech, K.; Van Zundert, J.; Meloto, C.B.; Diatchenko, L.; Battié, M.C.; Goossens, M.; Koes, B.; Linton,
S.J. Low back pain. Nat. Rev. Dis. Primers 2018, 4, 52. [CrossRef] [PubMed]

15. Martin, B.I.; Mirza, S.K.; Spina, N.; Spiker, W.R.; Lawrence, B.; Brodke, D.S. Trends in lumbar fusion procedure rates and
associated hospital costs for degenerative spinal diseases in the United States, 2004 to 2015. Spine 2019, 44, 369–376. [CrossRef]
[PubMed]

16. McCormick, J.D.; Werner, B.C.; Shimer, A.L. Patient-reported outcome measures in spine surgery. J. Am. Acad. Orthop. Surg. 2013,
21, 99–107. [CrossRef] [PubMed]

17. Schwartz, C.E.; Bode, R.; Repucci, N.; Becker, J.; Sprangers, M.A.G.; Fayers, P.M. The clinical significance of adaptation to
changing health: A meta-analysis of response shift. Qual. Life Res. 2006, 15, 1533–1550. [CrossRef] [PubMed]

18. Oort, F.J.; Visser, M.R.; Sprangers, M.A. An application of structural equation modeling to detect response shifts and true change
in quality of life data from cancer patients undergoing invasive surgery. Qual. Life Res. 2005, 14, 599–609. [CrossRef] [PubMed]

19. Chen, S.; Lach, J.; Lo, B.; Yang, G.Z. Toward pervasive gait analysis with wearable sensors: A systematic review. IEEE J. Biomed.
Health Inform. 2016, 20, 1521–1537. [CrossRef]

20. DeFroda, S.F.; Daniels, A.H.; Deren, M.E. Differentiating radiculopathy from lower extremity arthropathy. Am. J. Med. 2016, 129,
1124.e1–1124.e7. [CrossRef]

21. Stienen, M.N.; Maldaner, N.; Joswig, H.; Corniola, M.V.; Bellut, D.; Prömmel, P.; Regli, L.; Weyerbrock, A.; Schaller, K.; Gautschi,
O.P. Objective functional assessment using the “Timed Up and Go” test in patients with lumbar spinal stenosis. Neurosurg. Focus
2019, 46, e4. [CrossRef]

22. Saleh, M.; Murdoch, G. In defence of gait analysis. Observation and measurement in gait assessment. J. Bone Jt. Surg. 1985, 67,
237–241. [CrossRef] [PubMed]

23. Cappozzo, A.; Della Croce, U.; Leardini, A.; Chiari, L. Human movement analysis using stereophotogrammetry. Part 1: Theoretical
background. Gait Posture 2005, 21, 186–196. [PubMed]

24. Lamoth, C.J.C.; Stins, J.F.; Pont, M.; Kerckhoff, F.; Beek, P.J. Effects of attention on the control of locomotion in individuals with
chronic low back pain. J. Neuroeng. Rehabil. 2008, 5, 23–40. [CrossRef] [PubMed]

25. Gaßner, H.; Jensen, D.; Marxreiter, F.; Kletsch, A.; Bohlen, S.; Schubert, R.; Muratori, L.M.; Eskofier, B.; Klucken, J.; Winkler, J.; et al.
Gait variability as digital biomarker of disease severity in Huntington’s disease. J. Neurol. 2020, 267, 1594–1601. [CrossRef]
[PubMed]

26. Shahar, R.T.; Agmon, M. Gait analysis using accelerometry data from a single smartphone: Agreement and consistency between a
smartphone application and gold-standard gait analysis system. Sensors 2021, 21, 7497. [CrossRef]

27. Washabaugh, E.P.; Kalyanaraman, T.; Adamczyk, P.G.; Claflin, E.S.; Krishnan, C. Validity and repeatability of inertial measurement
units for measuring gait parameters. Gait Posture 2017, 55, 87–93. [CrossRef]

28. Kluge, F.; Gaßner, H.; Hannink, J.; Pasluosta, C.; Klucken, J.; Eskofier, B.M. Towards mobile gait analysis: Concurrent validity
and test-retest reliability of an inertial measurement system for the assessment of spatio-temporal gait parameters. Sensors 2017,
17, 1522. [CrossRef] [PubMed]

29. Rantalainen, T.; Pirkola, H.; Karavirta, L.; Rantanen, T.; Linnamo, V. Reliability and concurrent validity of spatiotemporal stride
characteristics measured with an ankle-worn sensor among older individuals. Gait Posture 2019, 74, 33–39. [CrossRef]

30. Phan, K.; Mobbs, R.J. Long-term objective physical activity measurements using a wireless accelerometer following minimally
invasive transforaminal interbody fusion surgery. Asian Spine J. 2016, 10, 366–369. [CrossRef]

31. Loske, S.; Nüesch, C.; Byrnes, K.S.; Fiebig, O.; Schären, S.; Mündermann, A.; Netzer, C. Decompression surgery improves gait
quality in patients with symptomatic lumbar spinal stenosis. Spine J. 2018, 18, 2195–2204. [CrossRef]

32. Ghent, F.; Mobbs, R.J.; Mobbs, R.R.; Sy, L.; Betteridge, C.; Choy, W.J. Assessment and post-intervention recovery after surgery for
lumbar disk herniation based on objective gait metrics from wearable devices using the Gait Posture Index. World Neurosurg.
2020, 142, e111–e116. [CrossRef]

33. Mobbs, R.J.; Mobbs, R.R.; Choy, W.J. Proposed objective scoring algorithm for assessment and intervention recovery following
surgery for lumbar spinal stenosis based on relevant gait metrics from wearable devices: The Gait Posture index (GPi). J. Spine
Surg. 2019, 5, 300–309. [CrossRef] [PubMed]

34. Suda, Y.; Saitou, M.; Shibasaki, K.; Yamazaki, N.; Chiba, K.; Toyama, Y. Gait analysis of patients with neurogenic intermittent
claudication. Spine 2002, 27, 2509–2513. [CrossRef] [PubMed]

35. Perring, J.; Mobbs, R.; Betteridge, C. Analysis of patterns of gait deterioration in patients with lumbar spinal stenosis. World Neu-
rosurg. 2020, 141, e55–e59. [CrossRef] [PubMed]

36. Lee, C.E.; Simmonds, M.J.; Etnyre, B.R.; Morris, G.S. Influence of pain distribution on gait characteristics in patients with low
back pain: Part 1: Vertical ground reaction force. Spine 2007, 32, 1329–1336. [CrossRef]

37. Kang, X.; Li, K.; Li, J.; Wei, N.; Yue, S. Abnormal gait and neuromuscular dysfunction analysis in patients with lumbar disc
herniation. IFAC-PapersOnLine 2020, 53, 244–249. [CrossRef]

38. Papadakis, N.C.; Christakis, D.G.; Tzagarakis, G.N.; Chlouverakis, G.I.; Kampanis, N.A.; Stergiopoulos, K.N.; Katonis, P.G. Gait
variability measurements in lumbar spinal stenosis patients: Part B. Preoperative versus postoperative gait variability. Physiol.
Meas. 2009, 30, 1187–1195. [CrossRef]

https://doi.org/10.31616/asj.2020.0472
https://www.ncbi.nlm.nih.gov/pubmed/33108834
https://doi.org/10.1038/s41572-018-0052-1
https://www.ncbi.nlm.nih.gov/pubmed/30546064
https://doi.org/10.1097/BRS.0000000000002822
https://www.ncbi.nlm.nih.gov/pubmed/30074971
https://doi.org/10.5435/JAAOS-21-02-99
https://www.ncbi.nlm.nih.gov/pubmed/23378373
https://doi.org/10.1007/s11136-006-0025-9
https://www.ncbi.nlm.nih.gov/pubmed/17031503
https://doi.org/10.1007/s11136-004-0831-x
https://www.ncbi.nlm.nih.gov/pubmed/16022055
https://doi.org/10.1109/JBHI.2016.2608720
https://doi.org/10.1016/j.amjmed.2016.06.019
https://doi.org/10.3171/2019.2.FOCUS18618
https://doi.org/10.1302/0301-620X.67B2.3980533
https://www.ncbi.nlm.nih.gov/pubmed/3980533
https://www.ncbi.nlm.nih.gov/pubmed/15639398
https://doi.org/10.1186/1743-0003-5-13
https://www.ncbi.nlm.nih.gov/pubmed/18439264
https://doi.org/10.1007/s00415-020-09725-3
https://www.ncbi.nlm.nih.gov/pubmed/32048014
https://doi.org/10.3390/s21227497
https://doi.org/10.1016/j.gaitpost.2017.04.013
https://doi.org/10.3390/s17071522
https://www.ncbi.nlm.nih.gov/pubmed/28657587
https://doi.org/10.1016/j.gaitpost.2019.08.006
https://doi.org/10.4184/asj.2016.10.2.366
https://doi.org/10.1016/j.spinee.2018.04.016
https://doi.org/10.1016/j.wneu.2020.06.104
https://doi.org/10.21037/jss.2019.09.06
https://www.ncbi.nlm.nih.gov/pubmed/31663040
https://doi.org/10.1097/00007632-200211150-00016
https://www.ncbi.nlm.nih.gov/pubmed/12435983
https://doi.org/10.1016/j.wneu.2020.04.146
https://www.ncbi.nlm.nih.gov/pubmed/32387784
https://doi.org/10.1097/BRS.0b013e318059af3b
https://doi.org/10.1016/j.ifacol.2021.04.104
https://doi.org/10.1088/0967-3334/30/11/004


Surg. Tech. Dev. 2024, 13 75

39. Papadakis, N.C.; Christakis, D.G.; Tzagarakis, G.N.; Chlouverakis, G.I.; Kampanis, N.A.; Stergiopoulos, K.N.; Katonis, P.G. Gait
variability measurements in lumbar spinal stenosis patients: Part A. Comparison with healthy subjects. Physiol. Meas. 2009, 30,
1171–1186. [CrossRef]

40. Czech, M.; Patel, S. GaitPy: An open-source python package for gait analysis using an accelerometer on the lower back. J. Open
Source Softw. 2019, 4, 1778. [CrossRef]

41. Nazarahari, M.; Rouhani, H. Detection of daily postures and walking modalities using a single chest-mounted tri-axial accelerom-
eter. Med. Eng. Phys. 2018, 57, 75–81. [CrossRef] [PubMed]

42. Di Tocco, J.; Raiano, L.; Sabbadini, R.; Massaroni, C.; Formica, D.; Schena, E. A wearable system with embedded conductive
textiles and an IMU for unobtrusive cardio-respiratory monitoring. Sensors 2021, 21, 3018. [CrossRef] [PubMed]

43. Betteridge, C.; Mobbs, R.J.; Ho, D. Proposed objective scoring algorithm for walking performance, based on relevant gait metrics:
The Simplified Mobility Score (SMoS™)-observational study. J. Orthop. Surg. Res. 2021, 16, 419. [CrossRef]

44. Romijnders, R.; Warmerdam, E.; Hansen, C.; Welzel, J.; Schmidt, G.; Maetzler, W. Validation of IMU-based gait event detection
during curved walking and turning in older adults and Parkinson’s Disease patients. J. Neuroeng. Rehabil. 2021, 18, 28. [CrossRef]
[PubMed]

45. Mancini, M.; Chiari, L.; Holmstrom, L.; Salarian, A.; Horak, F.B. Validity and reliability of an IMU-based method to detect APAs
prior to gait initiation. Gait Posture 2016, 43, 125–131. [CrossRef] [PubMed]

46. Hansen, C.; Beckbauer, M.; Romijnders, R.; Warmerdam, E.; Welzel, J.; Geritz, J.; Emmert, K.; Maetzler, W. Reliability of
IMU-derived static balance parameters in neurological diseases. Int. J. Environ. Res. Public Health 2021, 18, 3644. [CrossRef]
[PubMed]

47. Hsu, W.-C.; Sugiarto, T.; Lin, Y.-J.; Yang, F.-C.; Lin, Z.-Y.; Sun, C.-T.; Hsu, C.-L.; Chou, K.-N. Multiple-wearable-sensor-based gait
classification and analysis in patients with neurological disorders. Sensors 2018, 18, 3397. [CrossRef]

48. Baghdadi, A.; Cavuoto, L.A.; Crassidis, J.L. Hip and trunk kinematics estimation in gait through kalman filter using IMU data at
the ankle. IEEE Sens. J. 2018, 18, 4253–4260. [CrossRef]

49. Tripuraneni, K.R.; Foran, J.R.H.; Munson, N.R.; Racca, N.E.; Carothers, J.T. A smartwatch paired with a mobile application
provides postoperative self-directed rehabilitation without compromising total knee arthroplasty outcomes: A randomized
controlled trial. J. Arthroplast. 2021, 36, 3888–3893. [CrossRef]

50. Heydari, F.; Ebrahim, M.P.; Redoute, J.-M.; Joe, K.; Walker, K.; Yuce, M.R. A chest-based continuous cuffless blood pressure
method: Estimation and evaluation using multiple body sensors. Inf. Fusion 2020, 54, 119–127. [CrossRef]

51. Galna, B.; Lord, S.; Rochester, L. Is gait variability reliable in older adults and Parkinson’s disease? Towards an optimal testing
protocol. Gait Posture 2013, 37, 580–585. [CrossRef] [PubMed]

52. Bohannon, R.W.; Williams Andrews, A. Normal walking speed: A descriptive meta-analysis. Physiotherapy 2011, 97, 182–189.
[CrossRef] [PubMed]

53. Ardestani, M.M.; Hornby, T.G. Effect of investigator observation on gait parameters in individuals with stroke. J. Biomech. 2020,
100, 109602. [CrossRef] [PubMed]

54. Robles-García, V.; Corral-Bergantiños, Y.; Espinosa, N.; Jácome, M.A.; García-Sancho, C.; Cudeiro, J.; Arias, P. Spatiotemporal gait
patterns during overt and covert evaluation in patients with Parkinson’s disease and healthy subjects: Is there a Hawthorne
effect? J. Appl. Biomech. 2015, 31, 189–194. [CrossRef]

55. Mbientlab. MetaMotionS. 2021. Available online: https://mbientlab.com/metamotions/?gclid=Cj0KCQiA47GNBhDrARIsAKfZ2
rCXRMpZxFutmRVfwEbY0yH4sVZiro9DIW0J0Gn3i63A7uqQtxVnj_8aAuljEALw_wcB (accessed on 9 December 2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1088/0967-3334/30/11/003
https://doi.org/10.21105/joss.01778
https://doi.org/10.1016/j.medengphy.2018.04.008
https://www.ncbi.nlm.nih.gov/pubmed/29691130
https://doi.org/10.3390/s21093018
https://www.ncbi.nlm.nih.gov/pubmed/33923071
https://doi.org/10.1186/s13018-021-02546-8
https://doi.org/10.1186/s12984-021-00828-0
https://www.ncbi.nlm.nih.gov/pubmed/33549105
https://doi.org/10.1016/j.gaitpost.2015.08.015
https://www.ncbi.nlm.nih.gov/pubmed/26433913
https://doi.org/10.3390/ijerph18073644
https://www.ncbi.nlm.nih.gov/pubmed/33807432
https://doi.org/10.3390/s18103397
https://doi.org/10.1109/JSEN.2018.2817228
https://doi.org/10.1016/j.arth.2021.08.007
https://doi.org/10.1016/j.inffus.2019.07.001
https://doi.org/10.1016/j.gaitpost.2012.09.025
https://www.ncbi.nlm.nih.gov/pubmed/23103242
https://doi.org/10.1016/j.physio.2010.12.004
https://www.ncbi.nlm.nih.gov/pubmed/21820535
https://doi.org/10.1016/j.jbiomech.2020.109602
https://www.ncbi.nlm.nih.gov/pubmed/31955871
https://doi.org/10.1123/jab.2013-0319
https://mbientlab.com/metamotions/?gclid=Cj0KCQiA47GNBhDrARIsAKfZ2rCXRMpZxFutmRVfwEbY0yH4sVZiro9DIW0J0Gn3i63A7uqQtxVnj_8aAuljEALw_wcB
https://mbientlab.com/metamotions/?gclid=Cj0KCQiA47GNBhDrARIsAKfZ2rCXRMpZxFutmRVfwEbY0yH4sVZiro9DIW0J0Gn3i63A7uqQtxVnj_8aAuljEALw_wcB

	Introduction 
	Low Back Pain Is Commonly Caused by Lumbar Spine Pathologies 
	Patient-Reported Outcome Measures Have Drawbacks 
	Gait Analysis Can Objectively Assess Lumbar Spine Patients 
	Single-Point Wearable Sensors Are the Most Clinically Viable Form of Objective Gait Analysis 
	Research Problem 

	Methodology 
	Study Population 
	Wearable Device 
	Procedure 
	Statistical Analysis 

	Results 
	Comparison of Outcome Measures between Groups 
	Lumbar Spine Patients Had Altered Gait Metrics Preoperatively 
	Lumbar Spine Patients Demonstrated Reduced Gait Asymmetry and Variability after Surgery 

	Changes in Spatiotemporal and Asymmetry Metrics Correlate Well with Changes in the ODI after Surgery 

	Discussion 
	Preoperative Assessment of Lumbar Spine Patients Compared with Healthy Controls 
	Spatiotemporal Gait Metrics 
	Asymmetry and Variability Gait Metrics 

	Changes in Outcome Measures after Surgery and Comparisons with Healthy Controls 
	Spatiotemporal Gait Metrics 
	Asymmetry and Variability Gait Metrics 
	Correlation between Changes in Gait Metrics and Changes in the Oswestry Disability Index 

	Justification of Study Techniques 
	Strengths and Limitations 
	Future Directions 

	Conclusions 
	Appendix A
	Appendix B
	References

