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Abstract: Multiple myeloma (MM) is an incurable hematologic malignancy characterized by a multi-
step evolutionary pathway, with an initial phase called monoclonal gammopathy of undetermined
significance (MGUS), potentially evolving into the symptomatic disease, often preceded by an inter-
mediate phase called “smoldering” MM (sMM). From a biological point of view, genomic alterations
(translocations/deletions/mutations) are already present at the MGUS phase, thus rendering their
role in disease evolution questionable. On the other hand, we currently know that changes in the bone
marrow microenvironment (TME) could play a key role in MM evolution through a progressive shift
towards a pro-inflammatory and immunosuppressive shape, which may drive cancer progression
as well as clonal plasma cells migration, proliferation, survival, and drug resistance. Along this
line, the major advancement in MM patients’ survival has been achieved by the introduction of
microenvironment-oriented drugs (including immunomodulatory drugs and monoclonal antibodies).
In this review, we summarized the role of the different components of the TME in MM evolution
from MGUS as well as potential novel therapeutic targets/opportunities.

Keywords: multiple myeloma; smoldering myeloma; monoclonal gammopathy of undetermined
significance; bone marrow microenvironment; tumor associated immune cells

1. Introduction

Multiple Myeloma (MM) is a malignant disease characterized by proliferation of
clonal plasma cells in the bone marrow, typically associated with organ damage due to the
expansion of malignant cells or to the production of the monoclonal paraprotein. It is the
second most common hematologic malignancy and the median age at diagnosis is 69 years,
but 75% of patients receive a diagnosis above the age of 55 years [1,2]. While a specific
etiology for MM could not be identified, age, gender, ethnicity, genetic predisposition,
lifestyle, and environmental factors play a pivotal role.

MM can be considered a prototype for multi-step cancers; in fact, it is consistently pre-
ceded by two asymptomatic phases known as monoclonal gammopathy of undetermined
significance (MGUS) and smoldering MM (SMM). Unfortunately, many cases of multiple
myeloma often arise de novo because of the absence of signs or symptoms that characterize
MGUS or SMM. Recent studies have shown how MGUS can be found in about 5% of the
population above the age of 40 [3], with a prevalence increasing with age and a rate of
progression from MGUS to MM of approximately 1% of patients per year [4]. On the other
hand, the probability of evolution from SMM to MM decreases over time [5].
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The clinical picture of MM is characterized by bone pain, kidney damage, anemia-
related asthenia, and infection. The symptoms and various clinical subtypes of monoclonal
gammopathies are described in detail in Table 1.

Table 1. Clinical subtypes of “premalignant” plasma cell disorders.

Plasma Cell Disorder Diagnosis Note

Non-IgM MGUS
(IgG, IgA, IgD)

Serum monoclonal protein < 3 g/dL)
Clonal plasma cells in the bone marrow < 10% *
Absence of end-organ damage (CRAB symptoms)
or amyloidosis that can be attributed to the plasma
cell proliferative disorder

Up to 85% of MGUS cases
Annual risk of progression of 1%
* Bone marrow can be deferred in patients with low-risk
MGUS (IgG type, M protein < 15 gm/L, normal free
light chain ratio) in whom there are no clinical features
concerning myeloma

IgM MGUS

Serum IgM monoclonal protein < 3 g/dL)
Clonal plasma cells in the bone marrow < 10%
No evidence of anemia, constitutional symptoms,
hyperviscosity, lymphadenopathy,
hepatosplenomegaly, or other end-organ damage
that can be attributed to the plasma cell
proliferative disorder

15% of MGUS cases

Light chain MGUS

Abnormal FCL ratio
Increased level of involved FLC
No immunoglobulin heavy chain expression on
immunofissation
Absence of CRAB symptoms or amyloidosis that
can be attributed to the plasma cell
proliferative disorder
Clonal plasma cells in the bone marrow < 10%
Urinary monoclonal protein < 500 mg/24 h

Monoclonal gammopathy of renal
significance (MGRS)

One or more renal lesions related to the
monoclonal immunoglobulin produced
The underlying B-cell or plasma cell clone neither
causes tumor complications nor meets any current
hematologic criteria for specific therapy
The diagnosis of MGRS can only be established
with renal biopsy

Based on consensus report of the International Kidney
and Monoclonal Gammopathy Research Group [6]

Monoclonal gammopathy of
neurologic significance (MGNS)

Chronic neuropathy with sensory ataxia, ocular,
and/or bulbar motor weakness in the presence of a
monoclonal IgM reacting against gangliosides
containing disialosyl epitopes
The diagnosis of MGNS is one of exclusion

Smoldering Multiple Myeloma

Serum monoclonal protein (IgM or IgA) ≥ 3 g/dL)
or urinary monoclonal protein ≥ 500 mg/24 h
Clonal plasma cells in the bone marrow 10–60%
Absence of MDE or amyloidosis

Based on Mayo 2018 criteria [7] there are three groups
of patients:

• High risk (47% risk of progression in the first
2 years)

• Intermediate risk (26% risk of progression in the
first 2 years)

• Low risk (10% risk of progression in the first
2 years)

Abbreviations: Ig, immunoglobulin; MGUS, monoclonal gammopathy of undetermined significance; CRAB
symptoms, hypercalcemia, renal insufficiency, anemia, and bone lesions; MDE, myeloma defining events; FLC,
free light chain.
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MM is still considered a treatable but incurable disease. However, the framework of the
life and care perspectives of MM patients have drastically changed in the last two decades,
thanks to the introduction of new diagnostic tools and innovative therapeutic agents.

From a biologic point of view, clonal plasma cells (cPCs) exhibit key genomic features
(such as chromosomal aberrations) that are present in both active MM as well as in MGUS
and SMM; however, only 1% of MGUS and 10% of SMM per year eventually evolve
to overt MM, supporting the idea that genomic alterations are not sufficient, alone, for
disease progression. Therefore, it is important to study epigenetic/phenotypic changes in
several “normal” cells within the MM bone marrow (BM) microenvironment (TME) to fully
understand the pathogenesis of MM and to improve its management and treatment [8].

Indeed, TME is characterized by a wide range of components such as hematopoi-
etic stem cells, progenitor cells, endothelial cells, immune cells, mesenchymal stromal
cells, osteoblasts, osteoclasts, adipocytes, extracellular matrix proteins, and growth factors
that play an important role in supporting MM disease on multiple levels, including MM
progression [9].

In this review, we analyze the central role of the bone marrow microenvironment in the
multistep model of evolution from MGUS and SMM to MM and the potential therapeutic
implications/opportunities.

2. Multiple Myeloma and Other Monoclonal Gammopathies: A Multistep Disease
Genomic Aspects

Current experimental data support the idea that MM results from a neoplastic trans-
formation that occurs in B cells of the post-germinative center, that is, in the terminal
stages of B cell maturation and differentiation, most likely involving a memory B cell or a
plasmablast.

Genetic alterations involved in the pathogenesis of MM involve cytogenetic aberrations
are often related to the translocations of the immunoglobulin heavy chain (IGH) locus
on 14q32 with different partners (often oncogenes) and could be found in 40–50% of
patients with monoclonal gammopathies [10]. These translocations mainly involve five
chromosomal loci 11q13, 6p21, 4p16, 16q23, and 20q11 that contain the CCND1, CCND3,
FGFR3/NSD2, MAF, and MAFB oncogenes, respectively. They lead to the overexpression
of the oncogene juxtaposed to the 3′ intronic IGH enhancer. In particular, translocations
t(11;14) and t(6;14) juxtapose the IGH enhancer with CCND1 (15–20%) and CCND3 (1–4%),
respectively [11,12]. The cyclin D dysregulation induced by both translocations inactivates
RB1 (retinoblastoma), allowing cell-cycle progression [12].

Translocations involving maf genes have been found in a minority of myeloma and
these derive from IGH rearrangements with a locus in chromosome 16, most commonly
t(14;16)(q32;q23) [13]. Further, studies have also suggested that the loss of chromosome 16
and/or increased expression of the FOPNL gene at 16p13 may be linked to poorer outcomes
in myeloma [14].

These cytogenetic lesions are essential for the development of gammopathy, while a
second event (“second hit”) is needed for neoplastic progression. These secondary lesions
include the loss of chromosome 13, activating mutations in the NRAS and KRAS oncogenes,
inactivating mutations or deletions of p53, and the inactivation of PTEN [15,16].

In the literature, many studies observed multiple significant mutations in the same
tumor sample, including mutations in oncogenes whose function might be expected to
be redundant [17]. For example, some patients had mutations in two of three oncogenes
(NRAS, BRAF, and KRAS) or two mutations in KRAS, despite the fact that these mutations
similarly activate the MAP kinase pathway. Both RAS mutations are associated with poor
prognosis, aggressive disease phenotype and lower survival rates [18]. KRAS and NRAS
mutations also promote the progression of MGUS in MM, and these oncogenes are mutated
in up to 40% of newly diagnosed MM cases [19].
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The secondary lesions mainly also affect MYC (8q24), whose rearrangements have
recently been recognized as an independent negative prognostic factor in newly diagnosed
MM patients [19]. It is uncommon in MGUS patients, but is present in 15% of SMM cases
and 50% of cases of advanced disease [18] Figure 1.
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to the neoplastic clone.  

In fact, according to the new theory of clonal evolution, genotypically different clones 
of plasma cells would coexist within the same patient [20]. Comparing the genetic charac-
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Figure 1. Genetic alterations involved in the pathogenesis of monoclonal gammopathies. Longitu-
dinal evolution of cPCs according to current knowledge [13]. For the malignant transformation of
a post-GC B cell to an MM cell, a genetic event is necessary, initiating the transition to the phase
of MGUS. Malignant plasma cell accumulates new genetic mutations over time, acquiring growth
advantage in a subclone and leading to further expansion of some clones (orange/red) and to the
extinction of others (white, yellow). Abbreviations: cPCs, clonal plasma cells; post-GC, post-germinal
center; MM, multiple myeloma; MGUS, monoclonal gammopathy of undetermined significance.

Evidence that the mutations described above are already present in the early stages of
the disease calls into question the process of linear tumorigenesis, which is characterized
by the progressive acquisition of different mutations that confer a selective advantage to
the neoplastic clone.

In fact, according to the new theory of clonal evolution, genotypically different clones
of plasma cells would coexist within the same patient [20]. Comparing the genetic char-
acteristics of cells involved at different stages of the natural history of the disease, it was
found that in about half of the cases the clone evidenced at relapse is genetically different
from the clone present at diagnosis. Clonal evolution would therefore no longer be linear
and involving a single clone of neoplastic cells, but branched and involving multiple clones
whose balance depends on the ability of one of them to take over as a consequence of
genetic instability and the acquisition of genetic abnormalities favorable to it [21].
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In monoclonal gammopathies, sequencing and gene expression profiling studies have
also identified numerous epigenetic defects, including the locus-specific DNA hypermethy-
lation of cancer-related and B cell specific genes, genome-wide DNA hypomethylation and
genetic defects, copy number variations, and/or abnormal expression patterns of various
chromatin modifying enzymes. Importantly, these so-called epimutations contribute to
genomic instability, disease progression, and a worse outcome [22].

Cytogenetic alterations play an important role in the risk of progression from SMM to
active myeloma. First, in 2018, the Mayo Clinic group proposed a progression risk model
based on three factors: FLCr > 20, BMPC > 20%, and serum M protein > 20 g/L. This model
has been called “20/20/20” and considers patients with 0, 1, or ≥2 risk factors at low, inter-
mediate, and high risk of progression, respectively [7]. Then, however, the International
Myeloma Working Group (IMWG) recently conducted a multicenter retrospective study
of patients with SMM to develop a robust risk stratification model in which to include
high-risk cytogenetic abnormalities as a fourth risk factor in this model to further improve
its accuracy [23]. This modified version of the 20/20/20 model is based on the evidence
that certain cytogenetic abnormalities (t(4;14) translocation, t(14;16), gain of 1q, del13q, and
monosomy 13) are an independent risk factor for progression [24]. Based on these new risk
factors for progression, it has also been proposed that patients with high-risk SMM should
be treated with survival benefits [16]. There is therefore a growing interest in identifying
high-risk patients to explore treatment options in this specific subgroup. To understand
the factors that determine an increased risk of disease progression and refractoriness to
existing therapies, it is necessary to study not only the role of cytogenetic and molecular
alterations, but also the complex interactions between plasma cells and cells of the bone
marrow microenvironment.

3. The Cellular and Humoral Compartment of the Bone Marrow Niche

The BM niche appears to play an important role in the differentiation, migration,
proliferation, survival, and drug resistance of cPCs [25]. The complexity of these processes
is further supported by the bidirectional network between the TME and cPCs; indeed,
the latter could interact with the microenvironment and modify its structure to favor the
selection and expansion of subclones with precise phenotypic features [26].

In Table 2, we want to describe the cellular components of the bone marrow microen-
vironment.

Table 2. Cellular component of the bone marrow microenvironment in MM pathogenesis.

Cellular Component Function References

MDSCs

Hamper the anti-tumor immune response by multiple mechanisms dependent on:

• direct cell-to-cell contact.
• exosome intercellular communication promoting their expansion and activation through

STAT-1 and STAT-3 pathways and increasing the release of nitric oxide, enhancing their
suppressive activity on T cells.

Inhibit T and NK cell activation and effector functions through several mechanisms:

• amino acid depletion (e.g., arginine and cysteine) and production of immunosuppressive
metabolites (e.g., kynurenine).

• generation of reactive oxygen species, reactive nitrogen species, and peroxynitrite.
• immunosuppressive cytokine production, such as IL-6, IL-10, and IL-1β.
• direct engagement of T cell inhibitory and apoptotic receptors (e.g., PD-1, TIM-3, Fas).
• inhibition of naïve T cell homing to the lympho nodes due to cleavage of L-selectin/CD62L

by disintegrin and ADAM17.
• production of extracellular adenosine and their accumulation and migration mediated by

S100 calcium-binding protein A8/A9.
• anergy of NK cell is induced through membrane-bound TGF-β1.

Promote tumor angiogenesis by MMP secretion or direct differentiation into endothelial cells.
Induce Treg development
Differentiate into osteoclasts, contributing to the formation of osteolytic lesions

[27–32]
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Table 2. Cont.

Cellular Component Function References

BMSCs

Generate premetastatic niche:

• Release of cytokines and growth factors.
• Remodelling cell–cell contacts.

Establish a crosstalk with MM cells:

• Increased expression of adhesion molecules (e.g., VLA-4, LFA-1, MUC-1, CD40).
• Induction of MM cells proliferation, inhibiting pro-apoptotic signaling pathways.

Impair the osteogenic differentiation:

• Decreased expression of bone formation markers and transcriptional factors.
• Overexpression of cytokines that negatively affected osteogenic function.

[8,33–36]

Osteoclasts

Create an immunosuppressive microenvironment:

• Inhibition of activated CD4+ and CD8+ T cells proliferation.
• Increased expression and secretion of immune checkpoint molecules (e.g., PDL-1, galectin-9,

APRIL, HVEM, CD200, IDO, CD38) resulting in T cell apoptosis.

Degradation of bone matrix:

• Extra- and intra-proteolytic activity.
• Inhibition of bone marrow reabsorption, inhibiting osteoblasts differentiation.

Higher differentiation due to:

• Hyperactivation of RANK-RANKL-OPG signaling.
• Overexpression of proinflammatory cytokines such as IL-6.

Formation of osteolytic lesions

[37–39]

Dendritic cells

Immunosuppressive and tumor-promoting actions:

• Impaired antigen presentation capacities.
• Defective IFN-γ production.
• Promote Th17 differentiation and following IL-17 accumulation, indirectly favoring the

osteoclastogenesis.
• Proteasome subunit downregulation decreases the expression of tumor antigen peptides on

tumor plasma cells, enabling them to escape from CD8+ T cell recognition and killing using
CD80/86/CD28 signaling.

• Promote tumor plasma cell growth, survival, and drug resistance.
• Express high levels of PD-L1.

[40,41]

TAMs

Support MM cells proliferation and survival through activation of the IL-6/JAK/STAT3 pathway.
Decrease T cell proliferation and activation through the downregulation of IFN-γ, IL-2, and TNF-α
secretion.
Immune suppressive activity mediated by their secretion of IL-6, IL-10, activating Tregs and M2
macrophages, and TGF-β, inhibiting both cytotoxic T-cells and NK cells
Angiogenic and vasculogenic activities:

• Angiogenic cytokines and proliferation markers positively correlate with IL-10 secretion.
• Promotion of HUVECs proliferation, migration, and tube formation in vitro.
• Neovascularization by vasculogenic mimicry and, indirectly, by secreting a broad range of

proangiogenic factors (e.g., VEGF, IL-8, FGF-2, MMPs, COX-2, and CSF-1).

Induce immune escape via the macrophage immune checkpoint SIRPα which binds CD47
overexpressed in CD138+ tumor cells.

[25,42]

Neutrophils

Overexpress IFN-γ, resulting in increased autophagy flux and JAK-2/STAT3 pathway activation,
which supports their promotion of pro-inflammatory and survival signals within MM niches.
Produce arginase that inhibits T cell activation and proliferation.
Reduced lysozyme activity and increased secretion of the amino acid degrading enzyme.

[9,43]

T cells

Th17 cells:

• Induce myeloma cell growth and colony formation via IL-17 receptor.
• Inhibit Th1 immune response.
• Plays a role in osteoclast-mediated lytic bone disease.

T-cell exhaustion associated with high expression of immune-checkpoint ligands on MM cells are
responsible for the immune evasion.

[44,45]

Abbreviations: MDSCs, myeloid-derived suppressor cells; BMSCs, bone marrow stromal cells, NK, natural killer;
ADAM17, metalloproteinase domain-containing protein 17; MM, multiple myeloma; TAMs, tumor-associated
macrophages; VLA-4, integrins alpha-4/beta-1; LFA-1, lymphocyte function-associated antigen 1; MUC-1, mucin 1;
RANK, receptor activator of nuclear factor-κB; RANKL, receptor activator of nuclear factor-κB ligand; OPG, osteo-
protegerin; PD-L1, programmed death-ligand 1; APRIL, proliferation-inducing ligand; HVEM, herpesvirus entry
mediator; IDO, indoleamine 2,3-dioxygenase; HUVECs, human umbilical vein endothelial cells; VEGF, vascular
endothelial growth factor; FGF-2, fibroblast growth factor-2; MMPs, metalloproteinases; COX-2, cycloxygenase-2;
CSF-1, colony-stimulating factor-1; SIRPα, signal-regulatory protein alpha.
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The BM niche is composed of two large cell components, often referred to as immune
and non-immune compartment or hematopoietic and non-hematopoietic cells, which
together with the non-cellular counterparts cooperate for the maintenance, retention, and
proliferation of HSC pools and their cells descendants [46–48] (Figure 2).
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the modification they undergo during disease evolution [26]. MM is characterized by quantitative
and functional abnormalities related to immune cells such as inverted the CD4+/CD8+ T cell and
T cells/neutrophils ratio. TAMs more dramatically increase in patients with advanced MM than
in those with MGUS, supporting tumor cell proliferation and drug resistance. Moreover, as MM
progresses, Th1 and ILC1 decrease, while Th17 increase. Due to the inhibition of T and NK cell
activation and effector functions, as well as the promotion of Treg development or their differentiation
into osteoclasts, MDSCs play a role in the progression of MM by obstructing the anti-tumor immune
response and causing osteolytic lesions. Dysfunctional effector functions of cytotoxic T cells (e.g.,
CD8+ T cells and γδ T cells) contribute to impaired anti-tumor immune response. Among non-
immune cells, BMSCs play a critical role in MM pathogenesis by cell contact, secretion of cytokines,
growth factors, and extracellular vesicles. Osteoclast precursors differentiate into bone-resorbing
osteoclasts due to the interaction between RANKL, expressed by BMSCs and upregulated during
MM progression, and its receptor RANK on osteoclasts. BMSCs secrete cytokines, such as IL-
6, that promote the expression of survival proteins, inducing the growth and survival of MM
cells. These alterations, associated with exhaustion/senescence, and the increased expression of
inhibitory receptors, cooperate to tumor growth, drug resistance, and immune escape in the context
of MM. Abbreviations: MM, multiple myeloma; MGUS, monoclonal gammopathy of undetermined
significance; TAMs, tumor-associated macrophages; MDSC, myeloid-derived suppressor cells; Th1,
T helper 1; ILC1, innate lymphoid cells 1; Th17, T helper 17; Treg, T regulatory cells; BMSCs, bone
marrow stromal cells; RANK, receptor activator of nuclear factor-κB.
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3.1. Non-Immune Compartment
3.1.1. Stromal Cells

BM stromal cells (BMSCs), also known as marrow mesenchymal stem cells (MSCs),
are part of a non-hematopoietic multipotent cell pool able to differentiate into osteocytes,
chondrocytes, adipocytes, tenocytes, as well as myocytes, neurons, and hepatocytes [49]. Al-
though they represent a small part in the BM (only 0.01 to 0.001% of mononuclear cells) [50],
they play a crucial role in supporting the upkeep and differentiation of hematopoietic
lineages, regulating bone homeostasis, and contributing to the spatial delimitation of cel-
lular niches [35,51]. Unfortunately, in pathological conditions, BMSCs, together with the
components of the extracellular matrix, are essential for the generation of malignant niches,
by releasing cytokines and growth factors and remodeling cell–cell contacts, making it fa-
vorable to the growth and survival of cPCs [34]. Specifically, MM cells interact with stromal
cells through adhesion molecules such as VLA-4, LFA-1, MUC-1, or CD40: this cross-talk
activates several pathways that induce cell cycle progression and inhibits pro-apoptotic
signaling [52–55]. Compared with their normal counterparts, MM-BMSCs are characterized
by increased cell size, reduced proliferation rate, and characteristic expression of senescence
markers, together with the higher secretion of angiogenic factors [36,56]. Additionally, MM-
BMSCs overexpress cytokines, which typically negatively affect osteogenic function [57–59],
and reduce matrix mineralization and alkaline phosphatase activity [60]. It is also of note
that transcriptomic analysis of MM-associated BMSCs highlighted clear differences with
their non-myeloma counterparts, suggesting undergoing epigenetic modifications, that
cause long-term phenotypic changes potentially associated with MM evolution [61,62].

3.1.2. Bone Remodeling: Osteoblasts, Osteoclasts and Osteocytes

Other cell populations influencing MM evolution include osteoclasts (OCLs) and
osteoblasts (OBLs). OCLs, derived from monocyte-macrophage lineage, are mainly re-
sponsible for bone resorption while OBLs, originating from MSCs, play a central role in
bone formation. Physiologically, these cells interact with each other to maintain mineral
homeostasis in a fine-tuned balance, strongly impaired in the presence of MM cells [38]. In
fact, osteolytic lesions represent a major hallmark of multiple myeloma, which is almost
completely absent in precursor conditions. This impairment of bone remodeling occurs due
to an increase in pro-osteoclastic and anti-osteoblastic soluble factors, but also due to the
direct cell–cell contacts established between MM cells and osteoclasts themselves [37,63,64].

The Receptor Activator of Nuclear Factor κ B (RANK) pathway is involved in this
process. RANKL, expressed by OBLs, BMSCs and Th17, binds to its receptor RANK on
osteoclast precursors and promotes their differentiation into bone-resorbing osteoclasts.
This process is finely regulated by osteoprotegerin (OPG), a decoy receptor for RANKL
released by osteoblasts, blocking osteoclast function and keeping the balance of bone
formation and resorption. In the context of MM progression, RANKL is upregulated [65].
Particularly, MGUS patients showed higher RANK/OPG ratios than controls, but lower
than MM patients. Thus, this highlights an early involvement of this pathway and an
increase in osteoclastogenesis in early stages of disease, even in the absence of clinically
relevant bone disease [66].

Bone lesions are identified by low-intensity total-body CT (WBLD-CT), PET-CT, and
MRI. WBLD-CT allows comprehensive skeletal assessment in the search for osteolytic
lesions and has the potential to clinically significantly change the definition that is assigned
to myeloma at diagnosis, i.e., the difference between smoldering and active [67].
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MRI plays a key role in staging the patient with SMM for proper clinical definition,
especially where there is a negative conventional radiographic examination for bone in-
volvement; as well as in staging patients with solitary bone plasmacytoma. In addition,
MRI is a key examination both in discriminating between osteoporotic-based or myeloma-
related vertebral failures and in accurately describing cord or nerve root compression, an
essential implication for a possible surgical approach [68].

PET-CT is an instrumental examination that combines the identification of bone lesions
by CT with a functional assessment of the metabolic activity of tumor cells [69].

A recent study has shown how the microenvironment could influence the activity of
osteoblasts and osteoclasts through exosomes, which are often involved in generating a
niche conducive to tumor growth in many tumors. Moreover, it is also known that the
Notch3 signaling pathway is very important for MM cells’ growth and proliferation, and
this pathway is upregulated upon binding to osteocytes [70]. This field is currently under
active investigation and the understanding of changes in the role of the bone remodeling
compartment during disease evolution will be of utmost importance for the design of novel
agents able to prevent the instauration of bone lytic lesions.

3.2. The Immune Compartment
3.2.1. Myeloid Cells

Several studies describe infiltrating tumor-associated macrophages (TAMs), which
resemble M2-polarized macrophages, as important players in MM onset and progression,
supporting tumor cell proliferation and resistance to drug-induced apoptosis. TAMs fre-
quency dramatically increase in patients with advanced MM as compared with patients in
partial/complete remission or subjects with MGUS, and associate to worse progression-free
(PFS) and overall survival (OS) [9,71–79]. Indeed, a single-cell RNA sequencing study
showed that mature CD14+ monocytes/macrophages showed defective antigen presenta-
tion due to the loss of HLA-II molecules, resulting in T cell suppression, already evident
as early as the pre-neoplastic MGUS stage [80]. Moreover, myeloid-derived suppressor
cells (MDSCs), a heterogeneous subset of immature myeloid cells, are involved in MM pro-
gression and treatment resistance with bidirectional interaction with myeloma cells within
the TME [81–85]. Indeed, monocytic MDSCs (CD11b+ CD33+ CD15- CD14+ HLA-DR
low/−) and polymorphonuclear MDSCs (CD11b+ CD33+ CD15+ CD14- HLA-DR low/−)
progressively increased from pre-neoplastic conditions through MM at diagnosis to relapse
and correlated with poor OS [86]. MDSCs hampered the anti-tumor immune response
by multiple mechanisms dependent on direct cell-to-cell contact or exosome intercellular
communication [87–89] The MDSC-mediated induction of the immunosuppressive milieu
in MM was strictly dependent on the inhibition of T and NK cells activation and effec-
tor functions as well as by inducing Treg development [90] or differencing themselves
into osteoclasts, contributing to the formation of osteolytic lesions [91]. Interestingly, in
MM patients, CD11b+CD13+CD16+ mature neutrophils should be considered the true
PMN-MDSCs [92]. Neutrophils have also been involved in MM progression and are sig-
nificantly different among healthy, MGUS, and MM subjects [93]. They may support the
increased susceptibility to infection and the impaired anti-tumor immune responses due to
defective phagocytosis and oxidative burst [94]. Furthermore, only mature neutrophils in-
fluenced the patient outcome in newly diagnosed MM patients [92]; indeed, a high mature
neutrophil/T-cell ratio was associated with reduced PFS [92,95,96]. The presence of mature
neutrophils decreased T-cell proliferation and, when depleted, the cytotoxic functions of
T cells increased, engaged by a BCMA × CD3-bispecific antibody [92]. The expression of
some genes (e.g., CSK, GSA, MEGF, PGM1, and PROK2), associated with the progression
from MGUS through active MM, have been upregulated in high-density neutrophils of
these patients [94].
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During MGUS to MM progression, the phenotypical and functional alterations of
dendritic cells (DC) have also been described. In MM patients, a 50% reduction of
myeloid DCs (BDCA1+) and plasmacytoid DCs (pDCs) (BDCA2+) within PBMCs was
observed [97–99], independently of disease stage, compared to healthy controls. Instead,
they have been demonstrated to accumulate in the BM of MM patients as compared
to those with MGUS (4–5), supporting the proliferation of cPCs [99–101]. Additionally,
they have been demonstrated to promote Th17 differentiation and the generation of a
pro-inflammatory TME which is prone to the development of lytic bone lesions [102].
Peripheral myeloid DCs and pDCs in MM patients were also characterized by the down-
regulated expression of CCR5, CCR7, DEC-205, HLA-DR, and co-stimulatory molecules,
and a defective IFN-γ production, associated with impaired T cell [97,98] proliferation
and activation which impair their migration and antigen-uptake capability. It is worth
nothing that, consistent with the progressive accumulation of DCs in the BM, a progressive
upregulation of CD28 expression, a receptor for CD80/CD86, was described on tumor
plasma cells during the MGUS-to-MM transition. Following CD28-mediated interaction
between plasma cells and BM myeloid DCs, the expression of proteasome subunits was
downregulated in these cells, favoring their escape from CD8+ T-cell killing. To be noted
that some studies described a normal numbers of DCs in MM patients [44,103].

3.2.2. Lymphoid Cells

T lymphocyte subsets play an active role in tumor immunosurveillance in MM
and their quantitative and functional abnormalities have been identified, beginning at
the MGUS stage [104,105]. Compared to MGUS/SMM patients or healthy individu-
als, BMMCs and PBMCs of MM patients were characterized by an inverted ratio of
CD4+:CD8+ T cells associated with lower PFS and OS, as well as a higher relapsing
probability [80,104,106–108]. Interestingly, CD4+ and CD8+ T cells were able to mount
an intensive response against autologous premalignant cells in MGUS patients but not in
those with MM, suggesting that these cells are functionally compromised [109,110]. On the
one hand, this could be explained by the fact that T lymphocytes from MM patients were
functionally exhausted/senescent and have a significantly higher expression of inhibitory
receptors than those with MGUS/SMM or healthy subjects [111–113]. The cytotoxic activity
of CD8+ T cells could be inhibited by the alterations in the antigen processing-presenting
machinery of transformed plasma cells [110]. Patients with MM were also characterized
by a depletion of memory CD8+ T cells [80] and a skewed Treg/Th17 ratio [114–118] com-
pared to MGUS patients, indicating a more suppressive environment and associated with
worse OS [84]. The presence of Th17 cells in the BM from MM patients correlated with
clinicopathological characteristics [119] and lytic bone disease development [117].

The role of Tregs is still a matter of debate and there are conflicting reports about
their [116,120–122] increased [120,121], decreased or unchanged frequency [123,124], and
correlation with survival parameters [125].

In fact, increased numbers of Tregs in bone marrow have been shown to correlate with
adverse clinical features, such as hypercalcemia, decreased normal plasma cell counts, and
IgA myeloma subtype [104,124].

The frequency’s discrepancy may be likely explained by the heterogeneity of samples
that have been studied (i.e., whole-blood compartment, peripheral-blood mononuclear
cells, bone marrow) and the variety of gating strategies of Tregs which may lead to different
results regarding Tregs frequencies in MM patients [126]. There is also no consistency on
how Tregs numbers are reported (either % frequencies or absolute values).

CTLA4+ or PD1+ Tregs were increased in the BM from MM patients compared to those
of MGUS/SMM or healthy donors [108,127].

In addition, a senescent Treg cell subset with partial suppressive function, identified
as CD28-CD4+FoxP3+, was significantly higher in PB and BM in MM patients than those
with MGUS [116,123,128]. It is therefore conceivable that most of the positive or negative
activity of these cells depends upon the microenvironment in which they are included:
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it is clear that for patients whose MM depends on an over-inflamed microenvironment
(especially if Th17-dependent), an increase in Tregs infiltration could be beneficial, while,
on the other hands, for non-inflamed tumors, the excess of Tregs could contribute to
the immune-exclusion.

Another one of the earliest cell subsets enriched in the TME during MM evolution
is innate lymphoid cells (ILCs), which could be detected as early as pre-neoplastic con-
ditions [129]. MGUS patients are characterized by increased bone marrow ILCs MGUS
patients are characterized by increased bone marrow ILCs showing a preva-lence of IFN-γ–
producing group 1 ILCs (declining in asymptomatic MM patients) and a reduction of IL-13
producing group 2 ILCs [130].

In particular, NK cells, the prototypic member of group 1 ILCs, decreased their fre-
quency in MM patients in advanced disease stages with poor prognosis compared to
controls and those with MGUS [131–135]. Due to a reduced expression of activating
receptors and their ligands (e.g., CD16, NCR3/NKp30, NKG2D, CD244/2B4/p38 and
DNAM-1) [136–138], and increased expression of the inhibitory receptors such as KIR2DL1,
PD1, TIM3 and TIGIT [139,140] by the surrounding TME, NK cell–mediated killing of cPCs
was impaired in MM patients. In light of this, restoring or enhancing the effector functions
of NK cells has been one of the recent immunotherapeutic approaches for the treatment of
MM [141].

Instead, there are no significant differences in γδ T cell counts between MGUS and
MM patients [142], but their accumulation was described at the SMM stage [80,143–153].

3.3. Soluble Factors Promoting Tumor Evolution

Apart from the cellular compartment, the BM niche is even composed by soluble
factors, such as cytokines and growth factors, and physical interactions with stromal cells
and extracellular matrix (ECM) molecules, all potentially involved in myeloma evolution.

Both normal and malignant plasma cells can reach and colonize BM using the sinu-
soids as an entry route [34]. The main molecule mediating homing, lodging, and retention
of those cells into the BM is the chemokine receptor CXCR4 [154,155]. Two other essen-
tial adhesion molecules for MM cells are CD49d and CD44, which contribute to the MM
cells’ trafficking to the final destination [156,157]. In contrast to normal plasma cells, cPCs
have higher expression levels of cell adhesion molecules (CAM) such as VLA-4, N-CAM
(CD56), CXCR4, and MAC-1. Among others, CXCR4 is a promising target for impairing
MM cell trafficking, and new agents are currently under investigation [158,159]. Once
reaching the BM niche, cPCs should re-educate the microenvironment. Chemokine and
cytokine reprogramming in order to maintain a favorable microenvironment represents
the first step in this direction [160]. Interestingly, monitoring these modulations could
serve as predictive markers for disease progression/evolution. For instance, an aberrant
expression of CCL2 and CCL3 is involved in chemoresistance development and correlates
with the disease stage [161]. In addition, both chemokines affect the macrophages’ infil-
tration and polarization into TAM in BM [162]. Along the same lines, another soluble
factor, IL-32, has been linked with worse survival and a more advanced clinical stage of
MM [163,164]. Indeed IL-32α induces IL-6 production in BM stromal cells which in turn
promotes MM cell growth and prevents apoptosis through JAK/STAT and RAS/MAPKs
pathway activation [165,166].
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Angiogenesis increases progressively along the spectrum of plasma cell disorders
from MGUS to smoldering MM to MM [122]. This phenomenon is further supported
by the overexpression of vascular endothelial growth factor (VEGF), hepatocyte growth
factor, and basic fibroblast growth in MM cell lines [167] as well as by the increase in
the surrounding notch signaling network between MM cells, bone marrow cells, and
endothelial cells [168]. In summary, enhancing homing chemokines, pro-inflammatory
factors as well as angiogenesis provides a suitable niche for supporting the tumor growth
and clinical evolution of monoclonal gammopathies, thus providing the rationale for
potential future therapeutic targeting.

4. Bone Marrow Modulating Agents: Clinical Applications

MGUS and SMM represent useful models for studying multiple myeloma precursor
disease as well as for developing early intervention strategies [169,170].

Currently, outside of clinical trials, the management of MGUS and SMM is represented
by watch and wait until a myeloma-defining event (MDE) occurs (lack of benefit with
old trials). Indeed, previous studies did not show a benefit in terms of reduction in pro-
gression and improvement of overall survival (OS). Both the study by Hjorth [171] and
subsequent attempts by Riccardi [172,173] had shown, in fact, the ineffectiveness of using
melphalan with prednisone in the treatment of MDE. Other attempts were made with
pamidronate [174,175], or zoledronic acid [176]. In both cases, antiproliferative, proapop-
totic, antiangiogenesis, and direct cytotoxicity effects were sought to be exploited [177].
However, compared with a reduction in the incidence of skeletal events, a positive impact
in overall survival was not achieved.

Thanks to progress in the understanding of disease biology and introduction of newer
therapies that can restore the immune system, with better efficacy and lower toxicity, it is
possible to reach deeper responses and improve longer survival for patients with active
MM. These advances [176] have also challenged the management of SMM, especially in
high-risk patients, raising the question of whether earlier treatment could: (1) avoid or
delay the progression to MM; (2) prevent the severe complications of end-organ damage;
and (3) hopefully cure some SMM patients.

Here, we report the most promising therapy in this setting, while others, investigated with
unclear results, are reported in Table 3 (e.g., siltuximab, ixazomib, pembrolizumab, ibrutinib).
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Table 3. Treatment options with novel agents for SMM.

Clinical Trial Phase Therapeutic Regimen Patients Follow-Up and Results

Lenalidomide-
Based

Treatments

QuiRedex-
NCT00480363 III RD +/− R maintenance for

2 years
119

High-risk SMM

Median FU: 10.8 years
HR OS: 46%
HR PFS: 73%
median TTP: 9.0 years (treatment arm)
vs. 2.1 years (control arm)
median OS: not reached (treatment
arm) vs. 7.8 years (control arm)

ECOG
E3A06-NCT01169337 III R 182

Intermediate/high-risk SMM

Median FU: 35 months
HR PFS: 72%
3 years PFS: 91% (treatment arm) vs.
66% (control group)

Proteasome
Inhibitor-Based

Treatments

NCT01572480 II KRd + R maintenance 18
High-Risk SMM

Median FU: 43.3 months
MRD-negative: 63%
Estimated 4 years PFS: 71%
Estimated 4 years OS: 100%

GEM-
CESARNCT02415413 II

KRd + high-dose Melphalan
and ASCT + Rd maintenance

for up to 2 years

90
High/ultra high-risk SMM

Median FU: 32 months
OS: 98%
PFS: 93%
biochemical relapses: 5 patients
ORR after induction: 98%
ORR after ASCT: 98%
ORR after consolidation: 100%
CR: 68.6% (55% of them achieving
MRD negativity)

NCT02916771 II IxRd + IxR mainteinance 26 (56 planned)
High-risk SMM

ORR: 89% (after at least 3 cycles of
treatment)
CR: 19.2%
No progression to active MM.

Monoclonal
antibody-Based

Treatments

CENTAURUS
NCT02316106 II

Dara (three different treatment
schedules: extended intense,
extended intermediate and

short dosing)

123
Intermediate/high-risk SMM

Median FU: 26 months
CR: 4.9%, 9.8%, 0% (respectively, in
the three treatment schedules)
2 years PFS: 89.9%, 82%, 75,3%
(respectively, in the three treatment
schedules)

NCT03236428 II Dara 28
Lower-risk SMM

PR: 53%
VGPR: 20%

NCT02960555 II Isatuximab 24
High-risk SMM

PR: 42%
VGPR:17%
CR with MRD negativity: 5%

NCT01441973 II Elo 31

FU > 28 months
Modest activity of Elo monotherapy.
ORR: 10%
2-year PFS: 69%

NCT02279394 II EloRd + EloR 50
High-risk SMM

PR: 84%
No progression to active MM.

NCT02603887 Pilot
study Pembrolizumab 13

Intermediate/high-risk SMM

After a median of 8 cycles: 85% CR,
15% progressed to active MM, 8%
MRD negativity (for up 27 months)

NCT01484275 Pilot
study Siltuximab 85

High-risk SMM

Median FU: 29.2 months
1-year PFS: 84.5% (siltuximab) vs.
74.4% (placebo)
median PFS: not reached (siltuximab)
vs. 23.5 months (placebo)
OS: not reached in both arms

Vaccines NCT01718899 I/IIa PVX410 +/− R 20
Intermediate/high-risk SMM

progressions: 3 (PVX-410-alone) vs. 1
(PVX-410 + R)
median TTP: 36 weeks
(PVX-410-alone) vs. not reached
(PVX-410 + R)

Ibrutinib NCT02943473 II Ibrutinib 9
High-risk SMM

poor efficacy
unfavorable risk/benefit ratio

Lenalidomide-Based Treatments for SMM.

Immunomodulatory drugs (IMiDs) mainly act by binding to CELEBRON, thus chang-
ing the conformation of the ubiquitination machinery and inducing the degradation
of Ikaros and Aiolos transcription factors in both normal immune cells and malignant
plasma cells.
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In turn, the final result mainly include the suppression of VEGF gene and pro-apoptotic
activity as well as the induction of several immune-activating cytokines such as IL2.

Two prospective phase III studies have provided results to support the use of lenalido-
mide (± dexamethasone) in high risk SMM patients. The pivotal Spanish QuiRedex phase
III trial (NCT00480363) randomized 119 patients with high risk SMM to receive nine
induction cycles with lenalidomide + dexamethasone followed by only observation or
maintenance with lenalidomide alone for 2 years [178,179]. Updated results after a median
follow-up of 10.8 years revealed a 46% reduction in the risk of death and 73% in the risk
of progression for early treatment as compared to observation [24]. This study pointed
to the fact that the immunomodulatory activity of lenalidomide induces a switch from a
tolerogenic to an effector microenvironment thus reactivating the immune surveillance
against the tumor cells of high-risk SMM patients [180]. This study suggests that early
treatment with lenalidomide does not induce chemoresistant clones and early therapy in
SMM does not negatively impact the following treatments.

The second trial, the ECOG E3A06 phase III trial (NCT01169337), assessed the efficacy
of lenalidomide monotherapy compared with observation in intermediate/high-risk SMM
patients [178,181]. Response to therapy was observed in 50% of patients in the lenalidomide
arm. With a median follow-up of 35 months, PFS was significantly longer with lenalidomide
than with observation, indicating a 72% decrease in the risk of progression, especially in
high-risk SMM patients. It is of note that both studies include patients who today (due
to the introduction of myeloma defining events) would have been classified as active
myeloma, making the generalization of these results very difficult.

4.1. Carfilzomib, Lenalidomide, Desametasone

The activity of carfilzomib is based on the irreversible binding to proteasome complex
which determine the induction of unfolded protein stress response [182].

In a US pilot study (NCT01572480), 18 high-risk SMM patients were treated with
the carfilzomib, lenalidomide + dexamethasone (KRd) regimen resulting in an ORR of
100% [183]. After a median follow-up of 43.3 months, 63% of patients remained MRD-
negative, with estimated 4-year PFS and OS rates of 71% and 100%, respectively. A
subsequent phase II study in 52 high-risk SMM patients, assessed eight cycles of KRd
followed by 2 years of lenalidomide maintenance (KRd-R) [184]. After a median follow-up
of 27.3 months, the ORR was 100%; only 10% of patients had developed MM after 5 years.

The GEM-CESAR trial is a phase II, single-arm trial focusing on high/ultra-high-risk
SMM patients [185]. After six induction cycles of KRd, followed by high-dose melphalan
and autologous stem cell transplantation (ASCT) as an intensification therapy, they received
two consolidation cycles with KRd and maintenance with Rd for up to 2 years. Updated
results [186] indicate that the ORR was 98% after induction, 98% after ASCT, and 100% after
consolidation; 68.6% of patients reached complete remission or better after consolidation,
with 55% of them achieving MRD negativity.

Unfortunately, none of these trials has a control arm so that we still do not know if it is
better to treat SMM patients early despite the cost of drug-related toxicities [187].

4.2. Zoledronate

Thanks to their specific characteristics, several studies evaluated the possibility to
apply γδ T cells as candidates for immunotherapeutic approaches in hematological ma-
lignancies, including MM [143]. In vitro expanded γδ T cells by BrHPP, or zoledronate
plus IL-2 or IL-15, exerted cytotoxicity against autologous MM cells as well as MM cell
lines [144–148], but this effect was abrogated by γδ T cell depletion [149] or by the
mevastatin-induced upstream blockade of the mevalonate pathway [150]. Moreover, the
in vivo administration of zoledronate-activated Vγ9Vδ2 T cells proved to be a safe and
promising immunotherapy strategy for the setting care of MM patients [151,152]. Un-
fortunately, the BM microenvironment in the context of MM is highly suppressive and
makes BM Vγ9Vδ2 T cells more dysfunctional. Before and after zoledronate stimulation,
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BM Vγ9Vδ2 T cells of MM patients expressed high levels of immune checkpoint receptor
PD-1, surrounded by PD-L1+ myeloma cells and increased numbers of PD-L1+ MDSC. The
BM Vγ9Vδ2 T cell dysfunction was already detected in patients with MGUS as well as
in those with MM in remission or relapse [153]. This suggests that Vγ9Vδ2 T cells, more
than other immune effector cells, were hampered by a suppressive microenvironment in
MM progression.

Interestingly, a study was conducted on treatment with IL2 and zoledronic acid
as a maintenance therapy after autologous transplantation in patients with multiple
myeloma [188]. However, these studies did not show a benefit compared with other
standard maintenance therapies, such as lenalidomide, because the effect of IL2 and zole-
dronic acid on T lymphocytes is greatly impaired by the immunosuppressive bone marrow
microenvironment in multiple myeloma.

4.3. Curcumin

Curcuma longa (turmeric) is a tropical plant native to southern and southeastern
tropical Asia. The most active component in turmeric is curcumin [189]. In a select group
of MGUS patients, oral curcumin at a dose of 4 g daily has been shown to:

• inhibit the proliferation and induce apoptosis in MM cells [190] through the downreg-
ulation of IL-6 and NF-kB;

• inhibit osteoclastogenesis [191] through the suppression of RANKL signaling;
• reduce bone turnover;
• decrease paraprotein load [192].

Between January and September 2010, 19 patients with MGUS and 17 patients with
SMM [193] who were not receiving chemotherapy or bisphosphonates, were enlisted into
a randomized, double-blind placebo-controlled study, followed by an open-label exten-
sion study using an 8 g dose to assess the effect of curcumin on FLC response and bone
turnover [194]. Phase 1 clinical trials indicate tolerability and safety at doses as high as
8 g/day [195,196]. In this study, curcumin (4 and 8 g daily) decreased the free light-chain
ratio (rFLC) (235 and 236%), the involved free light-chain (iFLC) (28 and 210%), and the
difference between clonal and nonclonal light-chain (dFLC) (29 and 211%) in both MGUS
and SMM patients. Significant reductions were also seen in total serum protein, serum cre-
atinine levels and random urinary protein concentrations, but not in the serum paraprotein
concentration. This is the first randomized study to show a potential beneficial effect of
curcumin on FLC in MGUS and SMM patients, maybe due to a prolonged tumor suppressor
effect, anti-inflammatory activity, immune-modulating and anti-angiogenetic effects.

Patients with an abnormal rFLC at baseline showed a greater response than patients
with a normal rFLC. A decrease in rFLC was accompanied by a significant increase (at 8 g)
in the uninvolved free light-chain.

In addition, patients were evaluated for tumor response every 8 weeks using computed
tomography or magnetic resonance imaging, as well as monthly chest radiographs, and for
changes in quality of life using the GLQ-C30 Quality of Life Questionnaire (version 2.0)
before treatment and monthly during treatment [197]. Three significant changes in quality
of life scores were recorded: one patient noted significant improvement after 1 month of
treatment; two patients worsened after 2 months of treatment, both with radiologically
progressive disease.
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Interestingly, none of the 25 patients who completed the 4 g study (which includes the
18 on 8 g/day) have progressed to active disease 1 year after the study has been completed.
These findings suggest that curcumin might have the potential to slow the disease process
in patients with MGUS and SMM and that future studies should assess the role of curcumin
in patients at risk of transformation.

5. Targeting MM Cells to Activate the Immune System: Monoclonal Antibodies
and Vaccines
5.1. Daratumumab and Isatuximab (Anti-CD38)

Daratumumab binds CD38 surface antigen on malignant plasma cells induces antibody-
dependent cellular cytotoxicity (ADCC), direct cytotoxicity, and bone remodeling. Dara-
tumumab also inhibits the adhesion between myeloma cells and BMSCs, releasing cell
adhesion-mediated drug resistance (CAM-DR), an important molecule for the adhesion of
tumor cell integrins to stromal fibroblasts or to components of the extracellular matrix [198].

The randomized phase II CENTAURUS study (NCT02316106) evaluated daratu-
mumab as a single agent in three different treatment schedules (extended intense, extended
intermediate, or short dosing) in 123 intermediate/high-risk SMM patients [199]. After
a median follow-up of 26 months, the complete remission rates were 4.9%, 9.8%, and
0%, respectively. Based on these data, the ongoing randomized phase III AQUILA study
(NCT03301220) is investigating the long dosing schedule in 360 high-risk SMM patients,
comparing subcutaneous daratumumab for up to 39 cycles versus watch and wait [200].
Preliminary results look promising, although adequate follow-up is needed to detect the
potential benefit on OS [201].

Another ongoing phase III randomized trial (NCT03937635, DETER-SMM) is compar-
ing lenalidomide + dexamethasone versus daratumumab, lenalidomide + dexamethasone
(DRd) in 280 high-risk SMM patients.

The ongoing, phase II ASCENT trial (NCT03289299) is evaluating 12 cycles of a
daratumumab, carfilzomib, lenalidomide and dexamethasone (DKRd) regimen, followed
by 12 cycles of Daratumumab + lenalidomide maintenance, without autologous stem cell
transplantation in high-risk SMM patients.

A single-arm phase II study (NCT03236428) is evaluating intravenous daratumumab
for up to 20 cycles as single agent in 28 lower-risk SMM patients [23]. Partial response and
at least very good partial response were achieved in 53% and 20%, respectively. No deaths,
progression, or therapy discontinuations due to toxicity have occurred.

Isatuximab is a CD38-targeting immunoglobulin G1 monoclonal antibody that elimi-
nates MM cells via antibody-dependent cellular cytotoxicity, antibody-dependent cellular
phagocytosis, complement-dependent cytotoxicity, and direct apoptosis. It may also af-
fect the tumor immunosuppressive environment via inhibition of CD38 adenosinergic
activity [202,203].

Regarding Isatuximab, a phase II study (NCT02960555) is exploring the efficacy of
intravenous isatuximab administered at decreasing intervals up to 30 weeks, in 24 high-
risk SMM patients [204]. Five patients interrupted treatment, two because of progression
to active MM. The best responses included partial remission (42%), very good partial
remission (17%), and complete remission with MRD negativity (5%).
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A phase III, randomized, multicenter study comparing isatuximab, lenalidomide + dexam-
ethasone (IRd) versus lenalidomide + dexamethasone in higher-risk SMM within 5 years is
about to start (NCT04270409) [24].

Overall, we still do not have any indication to support the use of anti-CD38 mAbs in
SMM patients.

5.2. Vaccines

PVX-410 is a vaccine carrying a combination of four peptides, specifically targeting
the highly overexpressed plasma cell antigens XBP1, CD138, and CS1/SLAMF7. A phase
I/IIa multicenter, dose-escalation study (NCT01718899) enrolled 22 intermediate/high-risk
SMM patients who received PVX410, with or without lenalidomide [205]. In the cohort
receiving PVX-410 alone, 3 of 12 patients progressed, with a median time to progression of
36 weeks. In the combination cohort, 5 of 12 patients showed a clinical response, with one
patient progressing and a median time to progression not reached. PVX-410 is also under
investigation in a phase I trial (NCT02886065) in SMM in combination with the selective
histone-deacetylase inhibitor citarinostat ± lenalidomide.

6. Conclusions

There is clear evidence that disease evolution from MGUS to SMM to active MM
depends upon complex genomic alterations of plasma cells coupled with extensive repro-
gramming of the BOM microenvironment. We know, therefore, that the cause of multiple
myeloma is a cytogenetic/molecular alteration affecting the plasma cell, but there is no
single factor that alone with a cause-and-effect relationship that determines the occurrence
of such mutations [206].

Unfortunately, the majority of the mechanisms underlying these evolutions are far
to be elucidated and many efforts should still be made to identify the biomarkers of
disease evolution as well as new therapeutic targets. The currently ongoing iMMunocell,
IstopMM, and NOmoreMGUS studies are clear efforts in this direction, with preliminary
results which are really promising. Along the same line, different trials are evaluating
the impact of early treatments on disease evolution. Further help will be provided by the
application of innovative imaging approaches (radiomic) to MGUS/SMM patients, aiming
to identify biological correlates able to predict disease progression and evolution [207].
However, while all ongoing studies seem to identify a survival benefit, they do not include
an untreated control group, thus no definitive conclusions can yet be reached. Still, more
and deep knowledge is needed aiming to identify patient-specific immune-profile and
to design, in a translational and personalized way, specific immunotherapies for MM
precursor diseases, finally overcoming the controversial “to treat or not to treat” question.
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