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Abstract: Salinity stress is among the key challenges for sustainable food production. It is contin-
uously increasing against the backdrop of constant climate change and anthropogenic practices
leading to a huge drop in soil, water, and cultivated crop quality and productivity. Halotolerant
plants represent hot spots for endophytic bacteria which may have mechanisms to overcome salt
stress. This research initiative aims to highlight the possible exploitation of bacterial endophytes as a
microbial biotechnology tool in the productive success of plants exposed to saline stress. We started
by solely studying the mechanisms of stress tolerance by plants and halotolerant bacteria. After that,
we focused on the beneficial mechanisms of endophytic bacteria in salt stress mitigation. On one side,
potent bacterium works by promoting plant performances by facilitating the plant’s nutrient uptake
(P, K, Zn, N, and Fe) and by promoting the production of growth hormones (IAA and CKs). On the
other side, they balance stress phytohormones (ABA, JA, GA, and ACC) produced by plants in case
of soil salt augmentation. The selected potent endophytic bacteria could be exploited and applied to
ameliorate the production and salt tolerance of food crops. Lastly, we elucidated deeper advanced
technologies including (i) genomics unveiling the plant’s culture-dependent and culture-independent
microbiomes, (ii) metabolomics focusing on genes’ metabolic pathways to discover novel secondary
metabolites, (iii) transcriptomics studying gene expression, and (iv) proteomics delimiting proteins
expressed in stress alleviation. These technologies have been used to understand the plant–bacterial
mechanisms of interaction to combat salt stress.

Keywords: saline soil; stress mitigation; plant–endophytes interaction; microbial biotechnology;
phytohormones; omics

1. Introduction

The human population is projected to reach around 10 billion people within the next
30 years [1–3]. This inflation of population threatens global food security and human
nutrition, especially since agricultural production is subjected to multiple environmental
factors, such as salinity [4], temperature [5], drought [6], presence of toxic metals, and/or
organic contaminants among various other stresses [3]. Excess salt concentrations affect
7% of the world’s land involving 20% of cultivable fields and approximately 70% of dry
land [7,8]. Salt accumulation is increasing constantly owing to anthropogenic practices and
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global warming coupled with natural disasters [9–11], leading to a huge drop in soil, water,
and cultivated crop quality and productivity [12]. Excess in Na+, Ca2+, Mg2+, and SO4

2−

ions and alkaline pH constitutes a prevalent indicator of a hypersaline environment [13–15].
Soil salinization is often measured by calculating electrical conductivity (EC), and when
it exceeds 4 deci-Siemens per meter (dS × m−1) the soil is considered saline [16]. Man-
ishankar et al. [17] cited in their review that, depending on the soil type, the increase in
sodium concentrations is responsible for modifying the soil texture by decreasing its dis-
persion, porosity, and permeability to air, water, and fertilizers [17]. Likewise, depending
on the plant species and the growth stage, it may be affected by ionic and osmotic stresses
(~200 mM NaCl) sometimes leading to its subsequent mortality [18–21]. The osmotic
stress alters the cell’s water content; it is triggered by plants immediately after excess NaCl
detection. Ionic stress takes place days after NaCl occurrence; it depends on the frequency
of Na+ and Cl− ions accumulated inside the plant cells [22]. Spontaneously growing plants
in saline biotopes are known as halophytes and they developed various mechanisms of
adaptation to high-salt concentrations (>400 mM) [23,24]. The common processes of soil
desalinization by halophytic plants are uptake, accumulation, and/or exclusion of excess
salts, maintaining ionic balance using Na+/K+ transporters, lowering the transpiration
rate, hydraulic conductance, and stomatal openings, as well as the expression of genes
responsible for salt stress alleviation [25,26]. Thus, to conduct healthy, cost-effective, and bi-
ological salt-tolerant agriculture, it is important to use naturally salt-tolerant plants and/or
to exploit the plant’s associated rhizospheric and endophytic microorganisms in order to
enhance endogenous and exogenous plant salt stress tolerance [24,27,28]. These beneficial
microbes promote host plant tolerance to soil salinity, increase soil fertility, promote plant
growth, and eliminate excess salt in their host plants [29,30]. The mechanisms used by
these microorganisms to induce tolerance are osmotic balance, compatible solutes synthe-
sis, exopolysaccharides production, a lipidic layer of Gram-negative bacteria, bacterial
consortium interactions, and genetic improvement/modifications of secondary metabo-
lites by regulating the expression of plant stress genes [31–40] as will be further explored
throughout this review.

2. Effects of Salinity on Plants

Plants subjected to high concentrations of salt show several symptoms at all stages
of their growth [41]. The morphological reduction of plant growth rate may be caused by
a tremendous decrease in the root and leaf surfaces leading to a deficiency in water and
nutrient assimilation and a disturbance in photosynthesis, respectively [42,43]. Halophytic
plants have an astonishing ability to cope with extreme hypersaline environments contrary
to glycophytes being salt sensitive. Vaishnav et al. [22] stated that most vegetable plants
are glycophytes and most cereals and legumes are halophytes (Figure 1).

The plant’s response to salt stress starts with discerning stress signals via membrane
receptors. These signals act harmonically to alleviate harmful salt concentrations. The study
of biochemical responses gives an in-depth knowledge of the plant’s immune response
to salt stress. For instance, oxidative stress is activated in case of anionic and osmotic
damage [44,45]. It induces changes in the plant’s physiological response by producing phy-
tohormones, namely ethylene, auxin, cytokinin, gibberellic, and abscisic acids [46,47]. These
plant disorders generate high concentrations of ROS (Reactive Oxygen Species) including
hydroxyl radicals (OH−), hydrogen peroxide (H2O2), lipid peroxidation, superoxide (O−),
and singlet oxygen (O2) which are responsible for plant cells, proteins, and DNA dam-
ages [48–50]. ROS overproduction occurs in mitochondria, chloroplasts, peroxisomes, and
apoplast organs [51]. When they exceed the threshold level, ROS become harmful to plant
organs, tissues, and principal cell constituents (proteins, lipids, chlorophylls, nucleic acids,
etc.) [52,53]. Stressed plants produce antioxidant compounds to lower ROS concentrations
by breaking down and eliminating free radicals [54–56]. Enzymatic antioxidants include
catalase (CAT), superoxide dismutase (SOD), peroxidases (POX), glutathione reductase
(GR), and glutathione transferase (GT) [57–59]. They work in an organized system to
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alleviate oxidative damage caused by ROS [60–62]. Other non-enzymatic antioxidants and
osmolytes, namely carotenoids, proline, glutathione, ascorbic acid, phenols, flavonoids,
and α-tocopherol are involved in ROS scavenging by promoting osmotic balance and pre-
serving the plant’s protein structures [63–65]. These resistance mechanisms work together
to improve plant adaptation to salt damage [66,67] (Figure 1).
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Figure 1. Plant salt stress repercussions and mechanisms of salt alleviation. (a) symptoms of plant
salt damage. (b) plant responses to salt stress.

3. Effects of Salinity on Plant Microbiomes

Salt stress shapes rhizospheric and resident endophytic microbiota in plants [68].
Therefore, numerous studies have targeted the microbiomes of halophytes and glycophytes
revealing a unique microbiome population that is selected by plants grown under salt
stress [69,70]. Salinity has also been documented to be among the main factors regulating
the bacterial community associated with the roots of halophytes [71]. The microbiomes
of plants under salt stress are supposed to provide candidates that can help efforts to
counteract salt stress’s harmful effects on cultivated crops [70].

4. Genes Involved in Plant Protection against Salt

Plant tolerance to salinity has been linked to the presence in their genomes of genes
that limit salt uptake by the roots from the soil, limit salt transport throughout the plant,
adjust ionic and osmotic balance in plant cells, and regulate the onset of senescence [72].
Therefore, genes that control sodium uptake and transport regulation have been docu-
mented in rice [73]. In lentil salt stress, tolerance has been linked to genes that enhance
proline accumulation and modulate photosynthetic traits [74]. Numerous genes for salt
stress tolerance are now being isolated from halophytes, glycophytes, and plants’ wild
relatives [70,75,76].

5. Bacterial Adaptation to High Salt Levels

Bacteria are endowed with various acclimatization mechanisms to hypersaline con-
ditions [5]. For example, osmotic pressure is a phenomenon occurring between bacterial
intracellular and extracellular mediums to maintain an equivalent ion efflux across the
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cellular membrane [42,67]. When bacteria absorb extra amounts of salt, Na+ ions remain
blocked in the extracellular medium until achieving an osmotic balance [31]. Otherwise,
several bacteria could accumulate and/or synthesize compatible solutes including amino
acids with their derivatives (proline, betaine, choline, glutamate, etc.), polyols (mannitol,
sorbitol, glycerol, etc.), and sugars in huge amounts [32,33]. These compatible solutes
do not have a specific charge, and they do not interfere with osmosis. Instead, they act
by increasing the volume of cytoplasm and water in bacteria allowing them to grow and
tolerate extreme conditions [77–79]. Certain groups of bacteria produce exopolysaccha-
rides (EPS) to form biofilms responsible for maintaining bacterial moisture in case of high
NaCl concentrations [36]. Furthermore, the lipid layer existing in the membrane of Gram-
negative bacteria helps them improve salinity tolerance [37]. Numerous scientists have
also demonstrated that the synergetic interactions in a bacterial consortium are a powerful
tool for salt stress mitigation [38]. The genetic improvement/modification of secondary
metabolites responsible for salt stress toleration in halotolerant bacteria helps improve
their adaptability [2]. Other mechanistic lines of bacterial salt resistance are still not fully
understood because endophytic metabolites are constantly changing depending on internal
and external conditions [36] (Figure 2).
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6. Plants–Endophytes–Salt Interactions

Apart from the plant and bacteria’s separate mechanisms of salt adaptation, plants
could improve their salt stress tolerance through symbiotic associations with rhizospheric
and endophytic bacterial communities [23,27,37]. Soil salinity affects rhizosphere commu-
nities and creates a natural selection pressure that is positive for halotolerant bacteria [39].
Soil salinity affects rhizospheric communities and creates a positive selection of halotol-
erant bacteria. This specific group has a significant role in improving both soil and plant
health [80].

The rhizosphere is the primary source of endophytes [27], where competitive bacteria
are attracted by plant exudates engaging only powerful and beneficial bacteria [39,81].
Bacterial entrance into the host plant occurs either by the secretion of specific enzymes
such as cellulase and pectinase which allows them to break down the root cortex [28], or
by wounds existing naturally during the propagation of secondary roots and/or caused
by phytopathogens [82]. The most common definition of endophytic bacteria includes all
those that, during part or all of their life cycle, invade the internal tissues of plants (leaves,
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flowers, seeds, stems, and roots) without causing disease and that can confer benefits to
their host [83]. For a more detailed definition and history of endophytes, I invite you to
read the book chapter in Slama et al. [30]. Shastry et al. [84] reported that the endophytic
Enterobacter cloacae gene Ghats I encodes pectinesterases and cellulases enzymes having a
crucial role in bacterial entry inside the host plant’s tissues [84].

Rhizospheric and endophytic bacteria positively implicate their associated plants using
similar mechanisms [82,85]. However, endophytes have attracted the greatest attention due
to their direct interaction with the host plant, less competition with other microbes, and
better performance to remove biotic and abiotic stresses [86,87]. In this mutual interaction,
plants benefit from bacterial abilities by enhancing nutrient availability and uptake apart
from the amelioration of their adaptive and immune systems [48]. Bacteria benefit from
available nutrients and protection from external aggressions [29].

Considerable attention has been recently dedicated to applicable projects focusing on
the screening of bacterial endophytes as natural biofertilizers and plant protectors [24,28].
In the case of salt stress, it is preferable to use halophytic plants growing in saline envi-
ronments [88,89]. They constitute the best model for the isolation of bacterial endophytes
helping in the elimination of excess salt concentrations [24,90–93]. The isolated halotolerant
bacteria could be inoculated to non-halophytic and/or domestic crops to help them cope
with excess salt problems [39,94,95]. It is an effective, eco-friendly, economical, and safe
approach [96–98]. For instance, the endophytic Enterobacter sp. isolated from the halo-
phytic plant Psoralea corylifolia L. enhanced the seed vigor index and salt tolerance of the
non-host plant Triticum aestivum [97]. Sun et al. [37] used the endophytic bacterium Pantoea
alhagi NX-11 to mitigate salt concentrations of rice seedlings. Similarly, Pantoea agglomerans
conferred salt stress resistance of durum wheat and improved its growth in such a harsh
environment [45] (Figure 3). An in silico study conducted by Dąbrowska et al. [98] of the
RSH (RelA/SpoT Homologs) Gene family and expression analysis in response to PGPR
bacteria and salinity in Brassica napus provide a strong basis for future studies targeting
plant salt tolerance. The strain Staphylococcus epidermis (P-30) proved effective under 20%
salt concentration and was endowed with multiple PGP potential [99,100]. In another study,
the strain Brevibacterium linens RS16 was able to enhance rice salt resistance [101].
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7. Diversification of Endophytic Bacteria Colonizing Halotolerant Plants
7.1. Endophytic Lifestyle and Taxonomic Diversification

Endophytic bacterial communities are strongly diversified depending on their lifestyle
into obligate and facultative categories [102]. Obligate bacteria are those connected to plants
during their entire lifespan. They are related to the host plant in nutrition and they are
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transmitted by seeds or vectors only [103]. Facultative bacteria are more autonomous, they
could grow inside and outside the host plant without being affected [104]. In most cases,
obligate endophytes are culture-independent unlike facultative bacteria being culture-
dependent [39].

Saline soil comprises a microbiome belonging to the domains of bacteria, archaea, and
eukarya (fungi). Particularly, the domain of bacteria dominates due to its high halotoler-
ant bacterial diversification [105]. The most prevalent bacterial phyla in host plants are
Proteobacteria (~50%) comprising the bacterial genera Pseudomonas 42P4 and Enterobacter
64S1 alleviating tomato saline stress [106], Firmicutes (~10%) such as Bacillus sp. isolated
from mangrove trees, which improved the percentage of germination and seedling growth
when inoculated to rice plants [107] and halotolerant Bacillus subtilis Y16 which enhanced
Helianthus annuus L. to manage salt stress [108], Bacteroidetes (~10%) including the Flavobac-
terium crocinum HYN0056T species having an upregulation potential of salt and drought
stresses of Arabidopsis [109], and Actinobacteria (~10%) namely Streptomyces jiujiangensus
isolated from mangrove trees promote the growth of Oryza Sativa seedlings subjected to
200 mM NaCl salinity [110].

7.2. Factors Influencing the Bacterial Colonization

The endophytic bacterial diversification is mainly influenced by the host plant’s
species, physiological status growth stage, and surrounding environment [111]. For in-
stance, Frank et al. [112] illustrated that the endophytic composition varies based on the
type of colonized plant tissue, where a remarkable difference could be noticed between
species colonizing underground or aerial plant tissues. Plants growing in soil containing
high-salt concentrations recruit endophytic bacteria with the capacity to tolerate and allevi-
ate such stress [24]. Borruso et al. [113] conveyed that in harsh environments, the identity of
the plant species plays a minor role when compared to the soil contribution in shaping the
endophytic communities. However, Szymańska et al. [114] demonstrated that the bacterial
composition of a halophytic plant (Salicornia europaea) was not affected by high salt levels
in the soil.

8. Endophytic Bacterial Mechanisms of Salt Mitigation

On the one hand, endophytic bacteria improve crop growth and yield, and, on the
other, stimulate plant defense mechanisms [115,116]. The following section will give a better
understanding of endophytic bacterial strategies to assist their host plant in enhancing salt
mitigation.

8.1. Nutrient Uptake Amelioration under Salt Stress

Bacterial mechanisms to ameliorate plant performances at high-salt concentrations
involve the contribution of essential nutrient acquisition and the stimulation of plant
biomass production. For instance, zinc (Zn), phosphate (P), and potassium (K) exist mostly
in insoluble forms in the soil [24,28]. Therefore, bacterial nutrient solubilization is crucial
for plant growth [117]. Various bacterial genera ensured P, Zn, and K solubilization. They
include Bacillus, Azotobacter, Pantoea, Pseudomonas, Proteus, Providencia, Serratia, Klebsiella,
Enterobacter, Acidothiobacillus, Paenibacillus, and many other genera [15,27,118,119]. Nitrogen
(N) is another fundamental element for plants. Biological N-fixation occurs by transforming
the atmospheric nitrogen into a plant-assimilable form [7]. Rhizobium is the most well-
known bacterial genera responsible for N-fixation, and, even in the presence of high NaCl
concentrations, it forms nodules in the roots of its host plant where nitrogen is transformed
into ammonia using a nitrogenase enzyme [120]. Hanin et al. [121] proved the intervention
of halotolerant N-fixing bacteria in preserving membrane ionic balance. Iron predominantly
exists in an insoluble form (Fe3+) in soil and is implicated in several enzymatic reactions
in plants and bacteria [39]. Endophytic bacteria produce siderophores to chelate iron
and facilitate its plant uptake [122]. For instance, numerous scientists demonstrated the
effectiveness of Bacillus genera in iron chelation under a saline environment [123]. Moreover,
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Slama et al. [28] conducted a large siderophore screening study on 117 endophytic bacteria
isolated from the halophytic plant Limoniastrum monopetalum. The results showed that
95% of these bacteria produced siderophores with most of them being of the Bacillus sp.
species [28] (Figure 4).
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8.2. Phytohormone Production and Regulation under Salt Stress

Phytohormones are organic compounds produced at low concentrations by plants and
beneficial microbes to boost plant growth and yield [124]. The modulation of phytohormone
levels helps in plant proliferation [125].

Auxin indole-3-acetic acid (IAA) is a significant phytohormone produced by a vast
array of endophytic bacterial genera colonizing halophytic plants such as Marinobacterium,
Bacillus, Sinorhizobium, Arthrobacter, and Pseudomonas [126]. In the case of salinity stress,
IAA acts by increasing plant seed germination, root proliferation, and cell permeability to
water, and by decreasing cell wall pressure [22]. In another study, Soleimani et al. [127]
studied the effects of IAA-producing bacteria in improving NaCl toleration. The study
revealed that the Arthrobacter siccitolerans strain adjusted the IAA expression levels to cope
with the salt stress imposed on the host plant.

Cytokinins (CKs) are produced by endophytic bacteria to enhance plant cell divisions
and to tolerate environmental stresses including high-salt concentrations [128,129]. Indeed,
the plant’s inoculation with microbes producing phytohormones including cytokinins
helped to inhibit the adverse effects of salt and contributed to the amelioration of all plant
growth stages [130].

In the 1-aminocyclopropane-1-carboxylate (ACC) deaminase reaction, S-adenosyl
methionine (SAM) is converted by the 1-aminocyclopropane-1-carboxylate synthase (ACS)
enzyme to ACC, the immediate precursor of ethylene [131]. Ethylene acts as a plant growth
hormone at low concentrations. However, plant stress exposure generates high concen-
trations of ethylene, transforming it into a plant growth inhibitor which could lead to
plant death [132]. Endophytic bacteria could accumulate ACC produced by plants and
transform it into ammonia and α-ketobutyrate, leading to a drop in ethylene concentra-
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tions, a regulation of plant growth, and protection from saline and any other imposed
stresses [133]. Otherwise, ACC is used for nitrogen assimilation in the form of ammo-
nia [39]. A plethora of plant growth-promoting bacteria (PGPB) were able to produce
the ACC deaminase enzyme, and they include Pseudomonas, Bacillus, Acinetobacter, En-
terobacter, Arthrobacter, Serratia, Brevibacterium, Corynebacterium, Planococcus, Micrococcus,
Exiguobacterium, Burkholderia, Halomonas, Zhihengliuella, Alcaligenes, Ochrobactrum, Klebsiella,
and Oceanimona genera [134–136]. Singh and Jha [137] demonstrated the great effects of
the halotolerant Serratia sp. bacterium in lowering the ethylene levels of wheat cultivated
in saline soil. This strain enhanced the plant growth rate by facilitating nutrient uptake
and increasing wheat roots and shoot length. Yadav et al. [15] reported that P. simiae AU5
mutant overproducing ACC deaminase was effective in decreasing salt stress and ethylene
concentrations in mung bean plants as compared to the P. simiae AU5 wild strain.

Halotolerant bacteria are also able to produce and alter high abscisic acid (ABA) levels
in plants in case of abiotic stress occurrence [39,138]. Interestingly, Shahzad et al. [139] stated
that the endophytic Bacillus amyloliquefaciens strain RWL-1 produced ABA to ameliorate
plant salt resilience. It allowed the reparation of essential amino acids and induced salicylic
acid production by the host rice plant.

Jasmonic acid (JA) is a signal molecule promoting the production of a plant’s pri-
mary and secondary metabolites to ameliorate their tolerance to both biotic and abiotic
stresses [140]. In previous work, Liu et al. [141] conveyed that Bacillus amyloliquefaciens
FZB42 conferred salt tolerance to the host Arabidopsis plant by upregulating the plant’s
JA pathways. Moreover, an earlier study found that the bacterial inoculation of plants
increases the JA gene expression of host plants [142]. Gibberellic acid (GA) is another plant
hormone produced by several endophytes as well. It is responsible for plant cell division
and elongation [38], seed germination, and fruit maintenance [143]. PGPB-inoculated
plants under salinity stress promote plant growth throughout the production of several
phytohormones including GA. For example, the Pseudomonas putida H-2-3 strain improved
the performances of the host soybean plant cultivated in hypersaline soil [144] (Figure 4).

9. Molecular Analysis of Plant–Bacterial Mechanisms of Salt Mitigation

Valuable omics tools (genomics, metagenomics, transcriptomics, and proteomics) have
been recently integrated in order to identify and delimit the diversification, roles, and
ways of communication within the endophytic bacterial consortium and with their host
plants [145]. For instance, genomic identification deeply elucidates the culture-dependent
and culture-independent microbiomes in a specific plant, which helps in understanding
their mechanisms of action [91,118]. Reportedly, the whole genome of the halotolerant
strain Bacillus fexus KLBMP 4941 was sequenced to determine the biosynthetic gene clusters
(BGCs) involved in salt alleviation [146]. In the same context, metagenomic studies are
charged with delimiting the metabolic pathways of genes encoding for known and novel
secondary metabolites allowing bacterial adaptation to harsh salinity [147,148]. Similarly,
the transcriptomic study acts by revealing genes expressed by bacteria exposed to salt
stress [149,150]. This phenomenon was well described by Dong et al. [151] who carried out
a transcriptomic analysis on bacteria colonizing A. thaliana grown under salt stress. The
endophytic bacteria expressed various genes responsible for the salt stress resistance of
their host plant. Lastly, the proteomic study gives an insight into the proteins of interest
expressed by bacteria for stress mitigation. Genomic sequence and comparative proteomic
analysis were realized to determine the response of Micrococcus luteus strain SA211 to
Lithium (Li) [152–154]. The M. luteus strain SA211 was able to adapt by over synthesizing
proteins responsible for coping with LiCl stress. Generally, the use of advanced and novel
protocols permits the discovery of novel natural products, which could be useful in bacterial
adaptation to extreme environments as well as in plant and human health [153]. The above-
mentioned high throughput molecular sequencing techniques are extremely valuable to
form mutants endowed with high salt resistance capacities and their further biological
inoculation in glycophyte plants in order to confer salt tolerance [138] (Figure 5).
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Plant–endophyte interaction is a very complex mechanism controlled by a network
of signals, hormones, enzymes, volatile compounds, genes, and metabolites working in
tandem to ensure a mutual relationship. Our work described the mechanisms of salt
mitigation by plants and bacteria. However, it focused mostly on the advantages provided
by endophytic bacteria to improve plant tolerance to saline conditions. We discussed
the mechanisms of nutrient uptake amelioration and phytohormone production and the
regulation of potent bacteria helping in salt mitigation. Moreover, we highlighted the
advanced molecular and omics tools’ contribution in revealing the mechanisms of salinity
stress. Potent salt-tolerant bacteria isolated from halotolerant plants could be further
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62. Szymańska, S.; Tyburski, J.; Piernik, A.; Sikora, M.; Mazur, J.; Katarzyna, H. Raising Beet Tolerance to Salinity through

Bioaugmentation with Halotolerant Endophytes. Agronomy 2020, 10, 1571. [CrossRef]
63. Dar, M.I.; Naikoo, M.I.; Rehman, F.; Naushin, F.; Khan, F.A. Proline accumulation in plants: Roles in stress tolerance and plant de-

velopment. In Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 155–166.

64. El-Esawi, M.A.; Al-Ghamdi, A.A.; Ali, H.M.; Alayafi, A.A. Azospirillum Lipoferum FK1 Confers Improved Salt Tolerance in
Chickpea (Cicer arietinum L.) by Modulating Osmolytes, Antioxidant Machinery and Stress-Related Genes Expression. Environ.
Exp. Bot. 2019, 159, 55–65. [CrossRef]

65. Lee, H.-G.; Kim, H.-S.; Oh, J.-Y.; Lee, D.-S.; Yang, H.-W.; Kang, M.-C.; Kim, E.-A.; Kang, N.; Kim, J.; Heo, S.-J. Potential Antioxidant
Properties of Enzymatic Hydrolysates from Stichopus japonicus against Hydrogen Peroxide-Induced Oxidative Stress. Antioxidants
2021, 10, 110. [CrossRef]

66. Fromm, S.; Senkler, J.; Eubel, H.; Peterhänsel, C.; Braun, H.-P. Life without Complex I: Proteome Analyses of an Arabidopsis
Mutant Lacking the Mitochondrial NADH Dehydrogenase Complex. J. Exp. Bot. 2016, 67, 3079–3093. [CrossRef]

67. Schmidt, R.R.; Weits, D.A.; Feulner, C.F.; van Dongen, J.T. Oxygen Sensing and Integrative Stress Signaling in Plants. Plant Physiol.
2018, 176, 1131–1142. [CrossRef] [PubMed]

68. Vita, F.; Sabbatini, L.; Sillo, F.; Ghignone, S.; Vergine, M.; Guidi Nissim, W.; Fortunato, S.; Salzano, A.M.; Scaloni, A.; Luvisi, A.;
et al. Salt stress in olive tree shapes resident endophytic microbiota. Front. Plant Sci. 2022, 13, 992395. [CrossRef]

69. Monteiro, D.A.; Fazolato, C.S.B.; Martinz, L.F.; Rachid, C.T.C.C. The bacteriome of the halophyte Atriplex nummularia (old man
saltbush) in salt-affected soils—An ecological model. FEMS Microbiol. Ecol. 2022, 98, fiac135. [CrossRef]

70. Wang, Y.; Sun, Q.; Liu, J.; Wang, L.; Wu, X.; Zhao, Z.; Wang, N.; Gao, Z. Suaeda salsa Root-Associated Microorganisms Could
Effectively Improve Maize Growth and Resistance under Salt Stress. Microbiol. Spectr. 2022, 10, e0134922. [CrossRef]

71. Vu, M.T.; Geraldi, A.; Do, H.D.K.; Luqman, A.; Nguyen, H.D.; Fauzia, F.N.; Amalludin, F.I.; Sadila, A.Y.; Wijaya, N.H.; Santoso,
H.; et al. Soil Mineral Composition and Salinity Are the Main Factors Regulating the Bacterial Community Associated with the
Roots of Coastal Sand Dune Halophytes. Biology 2022, 11, 695. [CrossRef] [PubMed]

72. Munns, R. Genes and salt tolerance: Bringing them together. New Phytol. 2005, 167, 645–663. [CrossRef] [PubMed]
73. Gadelha, C.G.; Coutinho, I.A.C.; Pinheiro, S.K.P.; Miguel, E.C.; Carvalho, H.H.; Lopes, L.S.; Gomes-Filho, E. Sodium uptake and

transport regulation, and photosynthetic efficiency maintenance as the basis of differential salt tolerance in rice cultivars. Environ.
Exp. Bot. 2021, 192, 104654. [CrossRef]

74. Panuccio, M.R.; Romeo, F.; Marra, F.; Mallamaci, C.; Hussain, M.I.; Muscolo, A. Salinity tolerance of lentil is achieved by enhanced
proline accumulation, lower level of sodium uptake and modulation of photosynthetic traits. J. Agron. Plant Sci. 2022, 208, 40–52.
[CrossRef]

75. Wang, D.; Yang, N.; Zhang, C.; He, W.; Ye, G.; Chen, J.; Wei, X. Transcriptome analysis reveals molecular mechanisms underlying
salt tolerance in halophyte Sesuvium portulacastrum. Front. Plant Sci. 2022, 13, 973419. [CrossRef]

76. Kapazoglou, A.; Gerakari, M.; Lazaridi, E.; Kleftogianni, K.; Sarri, E.; Tani, E.; Bebeli, P.J. Crop Wild Relatives: A Valuable Source
of Tolerance to Various Abiotic Stresses. Plants 2023, 12, 328. [CrossRef]

77. Weinisch, L.; Kühner, S.; Roth, R.; Grimm, M.; Roth, T.; Netz, D.J.; Pierik, A.J.; Filker, S. Identification of Osmoadaptive Strategies
in the Halophile, Heterotrophic Ciliate Schmidingerothrix Salinarum. PLoS Biol. 2018, 16, e2003892. [CrossRef]

78. Kohler, C.; Lourenço, R.F.; Bernhardt, J.; Albrecht, D.; Schüler, J.; Hecker, M.; Gomes, S.L. A Comprehensive Genomic, Transcrip-
tomic and Proteomic Analysis of a Hyperosmotic Stress Sensitive α-Proteobacterium. BMC Microbiol. 2015, 15, 71. [CrossRef]

79. Chandra, P.; Singh, E. Applications and mechanisms of plant growth-stimulating rhizobacteria. In Plant-Microbe Interaction: An
Approach to Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2016; pp. 37–62.

https://doi.org/10.1016/j.xplc.2020.100085
https://www.ncbi.nlm.nih.gov/pubmed/33367249
https://doi.org/10.1093/pcp/pcw076
https://doi.org/10.1111/jipb.12689
https://doi.org/10.1104/pp.20.00120
https://doi.org/10.1590/1678-4685-GMB-2015-0109
https://doi.org/10.3389/fpls.2017.01353
https://doi.org/10.1111/nph.15713
https://doi.org/10.1155/2014/701596
https://www.ncbi.nlm.nih.gov/pubmed/24804192
https://doi.org/10.1007/s12298-017-0462-7
https://doi.org/10.3390/agronomy10101571
https://doi.org/10.1016/j.envexpbot.2018.12.001
https://doi.org/10.3390/antiox10010110
https://doi.org/10.1093/jxb/erw165
https://doi.org/10.1104/pp.17.01394
https://www.ncbi.nlm.nih.gov/pubmed/29162635
https://doi.org/10.3389/fpls.2022.992395
https://doi.org/10.1093/femsec/fiac135
https://doi.org/10.1128/spectrum.01349-22
https://doi.org/10.3390/biology11050695
https://www.ncbi.nlm.nih.gov/pubmed/35625422
https://doi.org/10.1111/j.1469-8137.2005.01487.x
https://www.ncbi.nlm.nih.gov/pubmed/16101905
https://doi.org/10.1016/j.envexpbot.2021.104654
https://doi.org/10.1111/jac.12560
https://doi.org/10.3389/fpls.2022.973419
https://doi.org/10.3390/plants12020328
https://doi.org/10.1371/journal.pbio.2003892
https://doi.org/10.1186/s12866-015-0404-x


Int. J. Plant Biol. 2023, 14 373

80. Etesami, H.; Glick, B.R. Halotolerant Plant Growth–Promoting Bacteria: Prospects for Alleviating Salinity Stress in Plants. Environ.
Exp. Bot. 2020, 178, 104124. [CrossRef]

81. Tian, X.-Y.; Zhang, C.-S. Illumina-Based Analysis of Endophytic and Rhizosphere Bacterial Diversity of the Coastal Halophyte
Messerschmidia Sibirica. Front. Microbiol. 2017, 8, 2288. [CrossRef]

82. Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A Review on the Plant Microbiome: Ecology, Functions, and Emerging Trends in
Microbial Application. J. Adv. Res. 2019, 19, 29–37. [CrossRef] [PubMed]

83. Batra, P.; Barkodia, M.; Ahlawat, U.; Sansanwal, R.; Sharma, T.; Wati, L. Endophytes: An Environmental Friendly Bacteria for
Plant Growth Promotion. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1899–1911. [CrossRef]

84. Shastry, R.P.; Welch, M.; Rai, V.R.; Ghate, S.D.; Sandeep, K.; Rekha, P.D. The Whole-Genome Sequence Analysis of Enterobacter
Cloacae Strain Ghats1: Insights into Endophytic Lifestyle-Associated Genomic Adaptations. Arch. Microbiol. 2020, 202, 1571–1579.
[CrossRef] [PubMed]

85. Kandel, S.L.; Joubert, P.M.; Doty, S.L. Bacterial Endophyte Colonization and Distribution within Plants. Microorganisms 2017, 5, 77.
[CrossRef]

86. Lata, R.; Chowdhury, S.; Gond, S.K.; White, J.F., Jr. Induction of Abiotic Stress Tolerance in Plants by Endophytic Microbes. Lett.
Appl. Microbiol. 2018, 66, 268–276. [CrossRef]

87. Etesami, H.; Beattie, G.A. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance
of Non-Halophytic Crops. Front. Microbiol. 2018, 9, 148. [CrossRef]

88. Yamamoto, K.; Shiwa, Y.; Ishige, T.; Sakamoto, H.; Tanaka, K.; Uchino, M.; Tanaka, N.; Oguri, S.; Saitoh, H.; Tsushima, S. Bacterial
Diversity Associated with the Rhizosphere and Endosphere of Two Halophytes: Glaux maritima and Salicornia europaea. Front.
Microbiol. 2018, 9, 2878. [CrossRef]

89. Liu, W.; Wang, Q.; Hou, J.; Tu, C.; Luo, Y.; Christie, P. Whole Genome Analysis of Halotolerant and Alkalotolerant Plant
Growth-Promoting Rhizobacterium Klebsiella sp. D5A. Sci. Rep. 2016, 6, 26710. [CrossRef]

90. Andrés-Barrao, C.; Lafi, F.F.; Alam, I.; De Zélicourt, A.; Eida, A.A.; Bokhari, A.; Alzubaidy, H.; Bajic, V.B.; Hirt, H.; Saad, M.M.
Complete Genome Sequence Analysis of Enterobacter sp. SA187, a Plant Multi-Stress Tolerance Promoting Endophytic Bacterium.
Front. Microbiol. 2017, 8, 2023. [CrossRef]

91. Mehnaz, D.; Mukhtar, S.; Ishaq, A.; Hassan, S.; Abdulla, K.; Mirza, M.S. Comparison of Microbial Communities Associated with
Halophyte (Salsola stocksii) and Non-Halophyte (Triticum aestivum) Using Culture-Independent Approaches. Pol. J. Microbiol.
2017, 66, 353–364.
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