Antimicrobial Resistance Patterns of Escherichia coli Isolates from Female Urinary Tract Infection Patients in Lebanon: An Age-Specific Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Patient Age and Sample Type Subgroup Analyses
2.3. Statistical Analysis
2.4. Ethical Considerations
3. Results
3.1. Socio-Demographic Characteristics of Patients with Uropathogenic E. coli (UPEC)
3.2. Antimicrobial Profile of UPEC
3.3. Distribution of Antibiotic Resistance Across Different Age Groups
3.4. Distribution of Antibiotic Sensitivity Among Females with Different Age Groups
3.5. Extended Spectrum Beta-Lactamase (ESBL) vs. Non-ESBL and MDR vs. Non-MDR
3.6. Antimicrobial Profile of MDR E. coli
3.7. Antimicrobial Profile of ESBL E. coli
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McLellan, L.K.; Hunstad, D.A. Urinary Tract Infection: Pathogenesis and Outlook. Trends Mol. Med. 2016, 22, 946–957. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Zhan, J.; Zhang, K.; Chen, H.; Cheng, S. Global, regional, and national burden of urinary tract infections from 1990 to 2019: An analysis of the global burden of disease study 2019. World J. Urol. 2022, 40, 755–763. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhao, J.; Wang, L.; Han, C.; Yan, R.; Zhu, P.; Qian, T.; Yu, S.; Zhu, X.; He, W. Epidemiological trends and predictions of urinary tract infections in the global burden of disease study 2021. Sci. Rep. 2025, 15, 4702. [Google Scholar] [CrossRef] [PubMed]
- Ezzeddine, Z.; Ghssein, G. Towards new antibiotics classes targeting bacterial metallophores. Microb. Pathog. 2023, 182, 106221. [Google Scholar] [CrossRef] [PubMed]
- Sujith, S.; Solomon, A.P.; Rayappan, J.B.B. Comprehensive insights into UTIs: From pathophysiology to precision diagnosis and management. Front. Cell. Infect. Microbiol. 2024, 14, 1402941. [Google Scholar] [CrossRef] [PubMed]
- Djordjević, Z.; Folić, M.; Ninković, V.; Vasiljević, D.; Janković, S. Antimicrobial susceptibility among urinary Escherichia coli isolates from female outpatients: Age-related differences. Cent. Eur. J. Public Health 2019, 27, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Sun, F.; Liu, F.; Cao, L.; Yang, J.; Chen, Y. Antimicrobial resistance surveillance and prediction of gram-negative bacteria based on antimicrobial consumption in a hospital setting: A 15-year retrospective study. Medicine 2019, 98, e17157. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, S.; Zhou, Y.; Jin, S.; Ye, T.; Pan, X. Antibiotic resistance spectrum of E. coli strains from different samples and age-grouped patients: A 10-year retrospective study. BMJ Open 2023, 13, e067490. [Google Scholar] [CrossRef] [PubMed]
- Ajulo, S.; Awosile, B. Global antimicrobial resistance and use surveillance system (GLASS 2022): Investigating the relationship between antimicrobial resistance and antimicrobial consumption data across the participating countries. PLoS ONE 2024, 19, e0297921. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Huang, C.; Yan, Y.; Sun, L.; Li, H. Urinary tract infection etiological profiles and antibiotic resistance patterns varied among different age categories: A retrospective study from a tertiary General Hospital during a 12-year period. Front. Microbiol. 2022, 12, 813145. [Google Scholar] [CrossRef] [PubMed]
- bioMérieux. Infographic: The Cascading Effects of Antimicrobial Resistance. Pioneering Diagnostics. 8 January 2025. Available online: https://www.biomerieux.com/corp/en/education/resource-hub/solution-education/antimicrobial-resistance/infographic-the-cascading-effects-of-antimicrobial-resistance.html (accessed on 24 September 2025).
- Hooton, T.M. Clinical practice. Uncomplicated urinary tract infection. N. Engl. J. Med. 2012, 366, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Darwich, N.; Samaha, A.; Al Nuqaidan, H.; Tassi, A.; Fawaz, M. Surveillance of Multidrug-Resistant Uropathogenic Escherichia Coli in Hospitalized Patients and Community Settings in The South of Lebanon. BAU J. Health Wellbeing 2020, 3, 5. [Google Scholar] [CrossRef]
- Wang, J.T.; Chang, S.C.; Chang, F.Y.; Fung, C.-P.; Chuang, Y.-C.; Chen, Y.-S.; Shiau, Y.-R.; Tan, M.-C.; Wang, H.-Y.; Lai, J.-F.; et al. Antimicrobial Non-Susceptibility of Escherichia coli from Outpatients and Patients Visiting Emergency Rooms in Taiwan. PLoS ONE 2015, 10, e0144103. [Google Scholar] [CrossRef] [PubMed]
- Kasanga, M.; Shempela, D.M.; Daka, V.; Mwikisa, M.J.; Sikalima, J.; Chanda, D.; Mudenda, S. Antimicrobial resistance profiles of Escherichia coli are isolated from clinical and environmental samples: Findings and implications. JAC Antimicrob. Resist. 2024, 6, dlae061. [Google Scholar] [CrossRef] [PubMed]
- Naqid, I.A.; Balatay, A.A.; Hussein, N.R.; Saeed, K.A.; Ahmed, H.A.; Yousif, S.H. Antibiotic susceptibility pattern of Escherichia coli isolated from various clinical samples in Duhok City, Kurdistan Region of Iraq. Int. J. Infect. 2020, 7, e103740. [Google Scholar] [CrossRef]
- Raphael, E.; Glymour, M.M.; Chambers, H.F. Trends in prevalence of extended-spectrum beta-lactamase-producing Escherichia coli isolated from patients with community- and healthcare-associated bacteriuria: Results from 2014 to 2020 in an urban safety-net healthcare system. Antimicrob. Resist. Infect. Control 2021, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Cartaya, Y.; Hidalgo-Benito, M.; Borges-Mateus, L.M.; Pereda-Novales, N.; González-Molina, M.K.; Quiñones-Pérez, D. Community-Acquired Uropathogenic Escherichia coli, Antimicrobial Susceptibility, and Extended-Spectrum Beta-Lactamase Detection. MEDICC Rev. 2022, 24, 20–25. [Google Scholar] [CrossRef] [PubMed]
| Variable | Categories | Total n (%) |
|---|---|---|
| Age | <18 | 20 (21.05%) |
| 18–64 | 16 (16.84%) | |
| >64 | 59 (62.10%) |
| Antibiotics | Resistance | Intermediate | Susceptible |
|---|---|---|---|
| amikacin amk | 4 (4.26%) | 4 (4.26%) | 86 (91.49%) |
| augmentin amc | 52 (54.74%) | 9 (9.47%) | 34 (35.79%) |
| aztreonam atm | 19 (26.76%) | 2 (2.82%) | 50 (70.42%) |
| cefixime cfm | 66 (70.21%) | 3 (3.19%) | 25 (26.60%) |
| ceftazidime caz | 57 (61.96%) | 8 (8.70%) | 27 (29.35%) |
| ceftriaxone cro | 56 (59.57%) | 3 (3.19%) | 35 (37.23%) |
| cefuroxime cxm | 63 (67.02%) | 2 (2.13%) | 29 (30.85%) |
| cefoxitin fox | 27 (31.03%) | 2 (2.30%) | 58 (66.67%) |
| cefaclor cf | 73 (78.49%) | 1 (1.08%) | 19 (20.43%) |
| cephalothin cep | 60 (85.71%) | 2 (2.86%) | 8 (11.43%) |
| ciprofloxacin cip | 39 (46.43%) | 3 (3.57%) | 42 (50.00) |
| trimethoprim/sulfa tmp/smx | 48 (51.06%) | 1 (1.06%) | 45 (47.87%) |
| nitrofurantoin nit | 19 (21.35%) | 6 (6.74%) | 64 (71.91%) |
| gentamycin gen | 25 (26.88%) | 0 (0%) | 68 (73.12%) |
| norfloxacin nor | 36 (49.32%) | 1 (1.37%) | 36 (49.32%) |
| ofloxacin ofx | 40 (52.63%) | 2 (2.63%) | 34 (44.74) |
| piperacillin/tazobactam ptz | 14 (18.18%) | 9 (11.69%) | 54 (70.13%) |
| tetracycline tet | 38 (46.91%) | 1 (1.23%) | 42 (51.85%) |
| imipenem ipm | 11 (12.22%) | 5 (5.56%) | 74 (82.22%) |
| levofloxacin lvx | 37 (50.00%) | 0 (0%) | 37 (50.00%) |
| cefepime fep | 28 (33.33%) | 8 (9.52%) | 48 (57.14%) |
| cefotaxime ctx | 60 (68.18%) | 4 (4.55%) | 24 (27.27) |
| colistin cst | 0 (0%) | 0 (0%) | 12 (100%) |
| fosfomycin fos | 13 (15.12%) | 2 (2.33%) | 71 (82.56%) |
| ertapenem ert | 5 (6.94%) | 1 (1.39%) | 66 (91.67%) |
| meropenem mem | 10 (11.63%) | 1 (1.16%) | 75 (87.21%) |
| tigecycline tgc | 0 (0%) | 2 (2.78%) | 70 (97.22%) |
| moxifloxacin mxf | 36 (38.71%) | 0 (0%) | 57 (61.29%) |
| Age N (%) | Total | p Value | ||||||
|---|---|---|---|---|---|---|---|---|
| Antimicrobial Drugs | <18 (n = 20) | 18–64 (n = 16) | >64 (n = 59) | 95 | ||||
| AMK | 1 | 5.0% | 0 | 0.0% | 3 | 5.1% | 4 | 0.668 |
| AMC | 16 | 80.0% | 5 | 31.3% | 31 | 52.5% | 52 | 0.012 * |
| ATM | 1 | 5.0% | 4 | 25.0% | 14 | 23.7% | 19 | 0.21 |
| CFM | 18 | 90.0% | 9 | 56.3% | 39 | 66.1% | 66 | 0.06 |
| CAZ | 12 | 60.0% | 8 | 50.0% | 37 | 62.7% | 57 | 0.55 |
| CRO | 11 | 55.0% | 7 | 43.8% | 38 | 64.4% | 56 | 0.22 |
| CXM | 14 | 70.0% | 8 | 50.0% | 41 | 69.5% | 63 | 0.22 |
| FOX | 8 | 40.0% | 5 | 31.3% | 14 | 23.7% | 27 | 0.41 |
| CF | 18 | 90.0% | 11 | 68.8% | 44 | 74.6% | 73 | 0.22 |
| CEP | 15 | 75.0% | 9 | 56.3% | 36 | 61.0% | 60 | 0.39 |
| CIP | 4 | 20.0% | 5 | 31.3% | 30 | 50.8% | 39 | 0.01 * |
| TMP/SMX | 10 | 50.0% | 7 | 43.8% | 31 | 52.5% | 48 | 0.22 |
| NIT | 4 | 20.0% | 3 | 18.8% | 12 | 20.3% | 19 | 0.859 |
| GEN | 6 | 30.0% | 2 | 12.5% | 17 | 28.8% | 25 | 0.01 * |
| NOR | 2 | 10.0% | 5 | 31.3% | 29 | 49.2% | 36 | 0.04 * |
| OFX | 12 | 60.0% | 6 | 37.5% | 32 | 54.2% | 40 | 0.008 * |
| PTZ | 1 | 5.0% | 4 | 25.0% | 9 | 15.3% | 14 | 0.032 * |
| TET | 8 | 40.0% | 4 | 25.0% | 26 | 44.1% | 38 | 0.009 * |
| IPM | 4 | 20.0% | 1 | 6.3% | 6 | 10.2% | 11 | 0.236 |
| LVX | 2 | 10.0% | 6 | 37.5% | 29 | 49.2% | 37 | 0.01 * |
| FEP | 5 | 25.0% | 4 | 25.0% | 19 | 32.2% | 28 | 0.026 * |
| CTX | 13 | 65.0% | 8 | 50.0% | 39 | 66.1% | 60 | 0.497 |
| FOS | 1 | 5.0% | 1 | 6.3% | 11 | 18.6% | 13 | 0.01 * |
| ERT | 1 | 5.0% | 1 | 6.3% | 2 | 3.4% | 4 | 1.01 |
| MEM | 4 | 20.0% | 1 | 6.3% | 5 | 8.5% | 10 | 0.14 |
| MXF | 5 | 25.0% | 6 | 37.5% | 25 | 42.4% | 36 | 0.11 |
| Age N (%) | Total | ||||||
|---|---|---|---|---|---|---|---|
| Antimicrobial Drugs | <18 | 18–64 | >64 | 95 | |||
| amk | 19 | 95.0% | 16 | 100.0% | 51 | 86.4% | 86 |
| amc | 3 | 15.0% | 10 | 62.5% | 21 | 35.6% | 34 |
| atm | 2 | 10.0% | 10 | 62.5% | 38 | 64.4% | 50 |
| cfm | 2 | 10.0% | 7 | 43.8% | 16 | 27.1% | 25 |
| caz | 4 | 20.0% | 7 | 43.8% | 16 | 27.1% | 27 |
| cro | 7 | 35.0% | 8 | 50.0% | 20 | 33.9% | 35 |
| cxm | 6 | 30.0% | 6 | 37.5% | 17 | 28.8% | 29 |
| fox | 6 | 30.0% | 10 | 62.5% | 42 | 71.2% | 58 |
| cf | 2 | 10.0% | 5 | 31.3% | 12 | 20.3% | 19 |
| cep | 0 | 0.0% | 4 | 25.0% | 4 | 6.8% | 8 |
| cip | 7 | 35.0% | 10 | 62.5% | 25 | 42.4% | 42 |
| tmp/smx | 9 | 45.0% | 9 | 56.3% | 27 | 45.8% | 45 |
| nit | 14 | 70.0% | 11 | 68.8% | 39 | 66.1% | 64 |
| gen | 13 | 65.0% | 14 | 87.5% | 41 | 69.5% | 68 |
| nor | 1 | 5.0% | 11 | 68.8% | 24 | 40.7% | 36 |
| ofx | 1 | 5.0% | 10 | 62.5% | 23 | 39.0% | 34 |
| ptz | 3 | 15.0% | 10 | 62.5% | 41 | 69.5% | 54 |
| tet | 10 | 50.0% | 9 | 56.3% | 23 | 39.0% | 42 |
| ipm | 13 | 65.0% | 13 | 81.3% | 48 | 81.4% | 74 |
| lvx | 1 | 5.0% | 10 | 62.5% | 26 | 44.1% | 37 |
| fep | 5 | 25.0% | 11 | 68.8% | 32 | 54.2% | 48 |
| ctx | 4 | 20.0% | 7 | 43.8% | 13 | 22.0% | 24 |
| fos | 16 | 80.0% | 13 | 81.3% | 42 | 71.2% | 71 |
| ert | 2 | 10.0% | 14 | 87.5% | 50 | 84.7% | 66 |
| mem | 7 | 35.0% | 15 | 93.8% | 53 | 89.8% | 75 |
| tgc | 8 | 40.0% | 14 | 87.5% | 48 | 81.4% | 70 |
| mxf | 15 | 26.31% | 10 | 17.54% | 32 | 56.14% | 57 |
| Variable | Categories | ESBL | Non-ESBL | MDR | Non MDR |
|---|---|---|---|---|---|
| Age | <18 | 12 (22.2%) | 8 (19.51%) | 11 (30.56%) | 9 (15.25%) |
| 18–64 | 7 (12.96%) | 9 (21.95%) | 4 (11.11%) | 12 (30.34%) | |
| >64 | 35 (64.81%) | 24 (58.54) | 21 (58.33%) | 38 (64.41%) | |
| Total | 54 (56.84%) | 41 (43.16%) | 36 (37.89%) | 59 (62.11%) | |
| p-value | 0.36 | 0.45 | |||
| Antibiotics | Resistance | Intermediate | Sensitive | |||
|---|---|---|---|---|---|---|
| amikacin | 3 | 5.56% | 3 | 5.56% | 48 | 88.89% |
| augmentin | 32 | 59.26% | 5 | 9.26% | 17 | 31.48% |
| aztreonam | 18 | 46.15% | 2 | 5.13% | 19 | 48.72% |
| cefixime | 54 | 100.0% | 0 | 0.00% | 0 | 0.00% |
| ceftazidime | 47 | 87.04% | 5 | 9.26% | 2 | 3.70% |
| ceftriaxone | 50 | 94.34% | 1 | 1.89% | 2 | 3.77% |
| cefuroxime | 53 | 98.14% | 0 | 0.00% | 0 | 0.00% |
| cefoxitin | 18 | 36.00% | 1 | 2.00% | 31 | 62.00% |
| cefaclor | 53 | 98.14% | 0 | 0.00% | 0 | 0.00% |
| cephalothin | 40 | 74.07% | 0 | 0.00% | 0 | 0.00% |
| ciprofloxacin | 31 | 64.58% | 1 | 2.08% | 16 | 33.33% |
| trimetha/sulfa | 33 | 62.26% | 1 | 1.89% | 19 | 35.85% |
| nitrofurantoin | 16 | 31.37% | 2 | 3.92% | 33 | 64.71% |
| gentamycin | 17 | 32.69% | 0 | 0.00% | 35 | 67.31% |
| norfloxacin | 28 | 68.29% | 0 | 0.00% | 13 | 31.71% |
| ofloxacin | 30 | 69.77% | 2 | 4.65% | 11 | 25.58% |
| piperacillin/tazobactam | 10 | 23.26% | 5 | 11.63% | 28 | 65.12% |
| tetracycline | 28 | 58.33% | 1 | 2.08% | 19 | 39.58% |
| imipenem | 10 | 20.00% | 3 | 6.00% | 37 | 74.00% |
| levofloxacin | 28 | 66.67% | 0 | 0.00% | 14 | 33.33% |
| cefepime | 28 | 59.57% | 8 | 17.02% | 11 | 23.40% |
| cefotaxime | 49 | 90.74% | 0 | 0.00% | 0 | 0.00% |
| fosfomycin | 11 | 22.45% | 1 | 2.04% | 37 | 75.51% |
| ertapenem | 5 | 12.50% | 1 | 2.50% | 34 | 85.00% |
| meropenem | 6 | 12.24% | 1 | 2.04% | 42 | 85.71% |
| tigecycline | 0 | 0.00% | 1 | 2.56% | 38 | 97.44% |
| moxifloxacin | 29 | 55.77% | 0 | 0.00% | 23 | 44.23% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, S.; Ghssein, G.; Kassem, Z.; Alarab, S.; El Aris, J.; Ezzeddine, Z. Antimicrobial Resistance Patterns of Escherichia coli Isolates from Female Urinary Tract Infection Patients in Lebanon: An Age-Specific Analysis. Microbiol. Res. 2025, 16, 240. https://doi.org/10.3390/microbiolres16110240
Hassan S, Ghssein G, Kassem Z, Alarab S, El Aris J, Ezzeddine Z. Antimicrobial Resistance Patterns of Escherichia coli Isolates from Female Urinary Tract Infection Patients in Lebanon: An Age-Specific Analysis. Microbiology Research. 2025; 16(11):240. https://doi.org/10.3390/microbiolres16110240
Chicago/Turabian StyleHassan, Samara, Ghassan Ghssein, Zeina Kassem, Sema Alarab, Jana El Aris, and Zeinab Ezzeddine. 2025. "Antimicrobial Resistance Patterns of Escherichia coli Isolates from Female Urinary Tract Infection Patients in Lebanon: An Age-Specific Analysis" Microbiology Research 16, no. 11: 240. https://doi.org/10.3390/microbiolres16110240
APA StyleHassan, S., Ghssein, G., Kassem, Z., Alarab, S., El Aris, J., & Ezzeddine, Z. (2025). Antimicrobial Resistance Patterns of Escherichia coli Isolates from Female Urinary Tract Infection Patients in Lebanon: An Age-Specific Analysis. Microbiology Research, 16(11), 240. https://doi.org/10.3390/microbiolres16110240

