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Abstract: Mycotoxins, toxic secondary metabolites produced by fungi, present significant health
risks through contaminated food and feed. Despite broad documentation of their general impacts,
emerging research highlights the requirement of addressing both sex- and gender-specific differences
in the risk of exposure, susceptibility, and health outcomes in mycotoxin screening and mitigation
strategies. Distinct biological (sex-based) and sociocultural (gender-based) factors can influence the
risk of mycotoxin exposure and subsequent health impacts; women may for example exhibit specific
exposures to certain mycotoxins due to physiological and hormonal differences, with increased risks
during critical life stages such as pregnancy and lactation. Conversely, men may demonstrate distinct
metabolic and immune responses to these toxins. Socioeconomic and cultural factors also contribute
to gender-specific exposure risks, including occupational exposures, dietary habits, and healthcare
access. Current mycotoxin screening methodologies and regulatory frameworks often disregard
these sex and gender disparities, resulting in incomplete risk assessments and suboptimal public
health interventions. This review addresses the incorporation of sex- and gender-specific data into
mycotoxin research, the development of advanced screening techniques, and the implementation of
targeted mitigation strategies. Addressing these sex and gender differences is crucial for enhancing
the efficacy of mycotoxin management policies and safeguarding public health. Future research
directions and policy recommendations are discussed to promote a more comprehensive and practical
approach to mycotoxin risk assessment and control.
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1. Introduction

Mycotoxins, toxic secondary metabolites produced by fungi, present a substantial
global challenge to food safety and environmental health due to their high toxicity and
widespread occurrence [1]. These contaminants impact a wide range of agricultural prod-
ucts, including grains, nuts, spices, and fruits, posing significant risks to both humans and
animals even at low concentrations [1]. Over 500 mycotoxins have been documented to
date, and ongoing research is suggesting that this inventory is not yet complete [2,3]. Com-
monly encountered mycotoxins include aflatoxins (AFs), ochratoxin A (OTA), fumonisins,
trichothecenes (DON), and zearalenone (ZEN) [1-3].

Fungi from genera such as Aspergillus, Alternaria, Fusarium, Penicillium, Claviceps, and
Stachybotrys are primary producers of these mycotoxins [1-3]. These fungi can contaminate
crops under specific environmental conditions, such as temperature and humidity, leading
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to mycotoxin accumulation before harvest and during storage. Despite advancements in
agricultural practices, mycotoxin contamination remains prevalent, with approximately
70% of raw materials being affected [4]. The Food and Agriculture Organization (FAO) of
the United Nations estimates that around 25% of global food crop production is impacted
by mycotoxin contamination [5].

Assessing the risks associated with mycotoxin contamination in food involves con-
sidering several complex factors. One significant challenge is the presence of emerging
mycotoxins, for which limited toxicological data are available [6,7]. While advances in
detection technologies continually identify new mycotoxins, their risks remain poorly
defined until comprehensive toxicological studies are conducted [6,7]. Another critical
factor is the occurrence of mycotoxins in modified forms, which can be more toxic than their
parent compounds [8-10]. These modifications can arise in plants, as a defense mechanism,
or during food and feed processing [8-10]. Additionally, the interaction between multiple
mycotoxins presents a further layer of complexity [11,12]. Mycotoxins often co-occur in
food and feed due to the simultaneous presence of multiple fungal species or the con-
tamination of various commodities. The combined effects of these mycotoxins can be
antagonistic, additive, or synergistic, leading to toxic outcomes that are not predictable
by evaluating each toxin individually [11,12]. Thus, even when mycotoxins are present
at levels considered safe on their own, their combined presence can still pose significant
health risks [1,13].

The diverse toxic effects of mycotoxins are linked to their ability to induce a range
of health issues, including carcinogenicity, nephrotoxicity, hepatotoxicity, estrogenicity,
neurotoxicity, and alterations to reproductive and immune systems [14]. For instance,
aflatoxins, particularly aflatoxin B1 (AFB1), predominantly target the liver, causing toxicity
through mechanisms such as the disruption of protein synthesis, oxidative stress, and
cellular damage [14]. Similarly, fumonisins, notably fumonisin B1 (FB1), are associated
with several adverse health outcomes, including neural tube defects, embryonic and fetal
toxicity, and impaired growth in children [15,16].

In addition to aflatoxins and fumonisins, trichothecenes, such as deoxynivalenol
(DON), primarily affect rapidly proliferating tissues, including those in the hematopoietic,
lymphoid, and gastrointestinal systems. This results in symptoms such as abdominal
pain, vomiting, diarrhea, and growth retardation [17]. Ochratoxin A (OTA) stands out
as a potent nephrotoxin, with primary effects on the kidneys and links to conditions
such as Balkan endemic nephropathy (BEN), renal failure, and renal cancer [18]. Patulin
(PAT) is associated with gastrointestinal disturbances [14], while zearalenone (ZEN) causes
reproductive disorders and precocious puberty [19].

Host-related factors significantly influence the in vivo effects of mycotoxins, with
sensitivity varying based on differences in digestive physiology, metabolism, excretion
capabilities, and anatomical features. These factors, which include species, sex, age, nutri-
tional status, pre-existing diseases and microbiota, play crucial roles in determining the
onset and severity of mycotoxin exposure effects [19-25]. Among these, sex stands out as
a particularly influential factor, impacting the response to mycotoxins due to hormonal
differences and variations in pharmacokinetics and pharmacodynamics [26-29]. Hormonal
influences on hepatic detoxifying enzyme expression, along with intrinsic differences
in cell composition and structure, contribute to significant sexual dimorphism in toxic
responses [26-29].

Research has documented notable differences in how males and females respond to
mycotoxins. A meta-analysis of studies on pigs, covering 85 articles from 1968 to 2010,
found that mycotoxin exposure generally had a more pronounced impact on males [30].
Specifically, the feed intake was reduced by 10% in males compared to 6% in females, weight
gain was diminished by 19% in males versus 15% in females, and the feed conversion
ratio worsened by 10% in males compared to 8% in females. Despite these findings,
sex differences have often been overlooked in mycotoxicological research, with females
frequently being under-represented. A 2015 review of in vivo toxicity studies on Fusarium
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mycotoxins revealed that 54% of studies used only males, 15% used only females, 15%
included both sexes, and 15% did not specify the sex [31]. This lack of consideration for sex
differences can lead to erroneous conclusions when extrapolating data across sexes. Males
are often preferred in research due to their more stable hormone levels, which result in less
variability. Figure 1 presents a comprehensive analysis of the impact of mycotoxins on both
male and female reproductive health, as well as pregnancy outcomes. The figure illustrates
how exposure to various mycotoxins, such as ZEN, Alternariol, AFB1, OTA, fumonisin,
and PAT, disrupts hormonal balance, impairs fertility, and negatively affects reproductive
functions in both genders.
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Figure 1. Sex-specific reproductive toxicity of mycotoxins: impact on male hormonal balance, sperm
health, and fertility, and female sexual maturation, reproductive disorders, and pregnancy outcomes
(created with BioRender).

For females, these toxins are shown to affect sexual maturation, cause reproductive
disorders, and impair pregnancy outcomes by disrupting hormonal regulation and causing
developmental issues in the fetus. Meanwhile, in males, the figure highlights the impact on
sperm quality, hormonal disruption, and reduced fertility. Together, this figure provides
an integrated view of how mycotoxins can influence reproductive health in sex-specific
ways, emphasizing the critical risks posed by these environmental contaminants to overall
reproductive function.

In addition to physiological and hormonal differences, occupational exposures also
play a significant role in gender-specific mycotoxin exposure. Men and women often
engage in different types of work, resulting in varied exposure levels. For instance, men
working in agriculture or food processing may encounter mycotoxins directly through
contaminated crops and dust, while women may experience exposure through handling
contaminated food products in domestic or food preparation settings. These occupational
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differences complicate the understanding of mycotoxin exposure and highlight the need
for gender-tailored risk assessments and mitigation strategies.

The review by Marcelloni et al. (2024) underscores the diverse occupational exposure
to mycotoxins across various industries [32]. Analyzing 31 articles from 2010 to 2024, the
review reveals that mycotoxins, typically associated with alimentary exposure, also pose
significant health risks through inhalation in occupational settings [32]. Mycotoxins can
become airborne, attaching to dust particles and fungal spores, exposing workers in food
and feed industries, silos, warehouses, grain transport, waste treatment, and agricultural
machinery maintenance [32]. In particular, animal feed processing plants present higher
mycotoxin levels, increasing risk for workers. The review highlights that sectors such as
agriculture, animal care, waste treatment, healthcare, and others face different exposure
levels [32]. For example, feed handling in animal husbandry and grain processing in
agriculture are major exposure sources. Healthcare settings generally show lower exposure,
though heating, ventilation, and air conditioning systems can be contamination sources.
Waste treatment plants also present risks during waste handling, and even libraries and
archives can pose risks due to fungal contamination [32].

Similarly, the 2018 review by Viegas et al. thoroughly evaluated mycotoxin exposure
across various occupational settings, including agriculture, food processing, and animal
husbandry [33]. Analyzing 15 studies published between 1981 and 2017, the review
identified significant levels of mycotoxins such as OTA and aflatoxins in environments like
grain elevators, poultry farms, and food processing facilities. The study found elevated
concentrations of these mycotoxins in airborne dust and surface samples, underscoring
substantial health risks to workers. Both reviews collectively highlight the critical need for
improved monitoring and control measures to protect workers” health and reduce the risk
of mycotoxin-related diseases across various occupational settings [33].

Despite the extensive research on occupational exposure to mycotoxins, there is a
notable scarcity of studies that comparatively analyze exposure patterns with respect to
gender. Although occupational roles and exposure levels may differ significantly between
men and women due to varying job functions and environments, research specifically
addressing these gender-based differences remains limited. This gap in the literature
highlights the urgent need for more focused studies to elucidate how gender influences
mycotoxin exposure and to inform the development of gender-specific risk assessments
and mitigation strategies.

Males and females tend to consume different types and quantities of food, leading
to varying levels of mycotoxin exposure [34]. Staples such as corn, wheat, and rice are
common sources of mycotoxins like aflatoxins, ochratoxin A, and deoxynivalenol [35].

Studies have shown that males often consume larger quantities of these staples com-
pared to females, which can be influenced by their higher body mass and caloric require-
ments, potentially increasing their exposure risk to mycotoxins [34]. Foods like peanuts and
tree nuts, which are susceptible to aflatoxin contamination, are also consumed in varying
amounts between genders, with males typically having higher intake levels, contributing
to a greater risk of exposure [34]. Although fruits and vegetables can harbor mycotoxins
such as patulin and ochratoxin A, consumption patterns may be more balanced or even
higher among females due to health-conscious dietary choices [34].

Cultural dietary practices play a significant role in shaping food consumption patterns,
impacting respective mycotoxin exposure levels. In certain cultures, traditional diets dictate
specific food consumption for males and females, influencing their respective mycotoxin
exposure levels [36,37]. For instance, in some regions, men may have access to more diverse
food options, while women may rely more heavily on staple grains. Socioeconomic status
also affects dietary patterns and exposure to contaminated food. In lower socioeconomic
groups, both males and females might consume more affordable, potentially contaminated
food staples, but the quantity and frequency can differ between genders [38].

Gender-specific elements in mycotoxin screening may significantly improve detection
and management approaches. By adjusting screening techniques to consider the unique
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responses of males and females to mycotoxin exposure, sensitivity and safety thresholds
can be optimized. Targeted investigations involving both males and females are essential to
validate screening methods across genders and identify biomarkers or changes in mycotoxin
metabolism. Customized screening tests for specific occupational environments, such
as agriculture, food processing, and healthcare, can provide more precise evaluations.
Gender-specific risk modeling should consider variations in occupational exposure and
physiological reactions, resulting in more accurate risk evaluations and improved screening
methods. Advancements in screening methods, such as the identification of biomarkers
specific to gender and the integration of digital tools, can significantly enhance detection
accuracy. Integrating gender-specific data into point-of-care testing can improve detection
capacities and dependability. This strategy can lead to improved public health results and
safer interventions to reduce risks linked to mycotoxin contamination.

2. Sex Differences in Mycotoxin Exposure

2.1. Sex-Specific Effects of Mycotoxins on Reproductive Health, Immune Responses, Cancer Risk,
and Pregnancy Outcomes

2.1.1. Impact of Mycotoxins on the Human Reproductive System

Exposure to mycotoxins throughout an individual’s life, from fetal development to
adulthood, can significantly affect various body systems, primarily due to alterations in
hormonal balance caused by endocrine-disrupting chemicals (EDCs) [39,40]. EDCs are
known to interfere with growth-promoting hormones, such as insulin and insulin-like
growth factors 1 and 2, while also enhancing the effects of glucocorticoids, which can
inhibit these growth-promoting processes [41]. For instance, ZEN, an EDC, can disrupt en-
docrine functions in the placenta and kidneys by selectively inhibiting 11-hydroxysteroid
dehydrogenase type 2 (HSD11B2) [42]. This disruption might also stem from ZEN’s pro-
inflammatory effects or its interaction with estrogen receptors [43]. Hormones like growth
hormones from the pituitary gland and thyroid hormones can be adversely affected by
EDCs, potentially leading to developmental disorders such as growth abnormalities and
delayed puberty [44,45].

The potential impact of mycotoxin exposure on sexual development and reproductive
health is severe; therefore, comprehensive analysis should be emphasized. Numerous
epidemiological studies have demonstrated a significant impact of ZEN on the age of
pubertal maturation, resulting in premature sexual development particularly of girls with
rising levels of estrogen [46-49]. Similar findings were reported by Yum et al., who observed
premature puberty in boys under the age of nine [45]. Elevated ZEN levels (ranging from
18.9 to 103 ng/L) were also documented in girls with an early onset of breast development
and precocious puberty in studies conducted in Turkey, Hungary, and Italy [46,50,51].
Bandera et al. reported accelerated breast development in girls aged 9-10 years [43],
while Rivera-Nufiez found that girls with detectable mycoestrogen levels had lower rates
of sexual maturation compared to their peers without detectable levels [49]. ZEN also
adversely affects reproductive health by disrupting the production and secretion of key
sex hormones, such as estradiol, progesterone, and testosterone, potentially leading to
infertility [52].

Despite limited research, there is a consensus that mycoestrogens significantly disrupt
ovarian folliculogenesis [53,54]. Mycotoxins are implicated in conditions such as polycystic
ovary syndrome (PCOS), premature ovarian failure (POF), and endometriosis, all of which
can complicate conception and pregnancy maintenance [55]. In males, ZEN impairs fertility
by binding to estrogen receptors, which increases estradiol levels and inhibits luteinizing
hormone (LH) synthesis in the pituitary gland. This results in reduced testosterone produc-
tion in Leydig cells, which are located in the interstitial tissue of the testes, thereby affecting
spermatogenesis. Additionally, ZEN decreases sperm motility, viability, and acrosomal
response, and induces the formation of reactive oxygen species, further compromising
spermatogenesis [56].
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AFB1 is another mycotoxin suspected to impact male fertility. A study conducted in
Nigeria found higher concentrations of AFB1 (60 ng/mL to 148 ng/mL) in the semen of
infertile men compared to fertile men (0 ng/mL to 5 ng/mL) [57]. This study also reported
that fertility disorders were associated with elevated AFB1 levels exceeding World Health
Organization (WHO) standards [58].

The evidence suggests that exposure to mycotoxins, particularly ZEN and AFBI,
is widespread and significantly correlates with disruptions in sexual development and
decreased fertility. Further research is needed to deepen the understanding of these effects
and to raise awareness about the health risks associated with mycotoxin exposure.

Moreover, AOH produced by Alternaria species and commonly found on plant-based
foodstuffs [59], exhibits endocrine-disrupting properties due to its structural similarity to
estrogen. The H295R cells, derived from human adrenocortical carcinoma, demonstrate the
significant modulation of steroidogenic gene expression. This includes the up-regulation
of key steroidogenic enzymes and receptors, such as CYP1A1, MC2R, HSD3B2, CYP17,
CYP21, and CYP11B2, as well as CYP19, while exhibiting down-regulation of NROB1. A
proteomic analysis confirmed these findings, showing alterations in proteins related to
steroid biosynthesis and C21-steroid hormone metabolism [60,61].

PAT, produced by Penicillium expansum, is primarily associated with fruits and was
initially studied for its potential antibiotic properties [62]. However, PAT can elicit human
toxic responses, including nausea, vomiting, and genotoxic effects [62]. It is suspected
of being an endocrine disruptor. In male rats, high-dose PAT exposure led to increased
plasma testosterone and decreased T4 hormone levels, with longer exposure resulting in
elevated testosterone and LH levels [63]. PAT also caused low sperm counts and testicular
alterations, including edema and fibrosis [64]. In vitro studies using the H295R cell line
indicated that PAT could modulate endocrine function by affecting hormone production
and nuclear receptor activity [65].

In summary, mycotoxins such as ZEN, AFB1, AOH, and PAT are potent endocrine
disruptors that significantly affect reproductive health by modulating hormone production
and impacting sexual development. ZEN is particularly associated with premature sexual
development in females and fertility issues, while AFB1 is linked to male infertility. AOH
and PAT also disrupt hormone synthesis and affect reproductive organ function. Although
the molecular mechanisms behind these disruptions are still under investigation, current
research trends focus on understanding these mechanisms, improving detection methods,
and assessing the long-term health risks of mycotoxin exposure. There is an increasing
emphasis on developing strategies to mitigate these effects and enhance public awareness
of the potential reproductive health risks posed by mycotoxin exposure.

2.1.2. Mycotoxins and Pregnancy Outcomes

Mycotoxins, such as aflatoxins (AF), ZEN, and others, can adversely affect pregnancy
and neonatal outcomes through various mechanisms. ZEN, for example, has been shown
to impact placental functions including the maintenance of the placental barrier, cell fusion,
and secretion processes. Exposure to ZEN can stimulate cell fusion, leading to the increased
secretion of human chorionic gonadotropin (hCG) [66,67]. Additionally, x-zearalanol, a
metabolite of ZEN, may increase the risk of preterm labor by elevating the production of
corticotropin (CRH) and cyclooxygenase-2 (COX-2) [68]. Furthermore, studies by Partanen
etal. have demonstrated the presence of aflatoxin B1 (AFB1) and its metabolites in umbilical
cord blood, illustrating the transfer of these toxins across the placental barrier and their
dependence on geographic factors [69]. Conversely, Wart et al. highlighted the metabolism
of ZEN into estrogenic forms and its rapid transfer across the placental barrier using an ex
vivo model [70]. This indicates that the unborn child may be exposed to various mycotoxins
and their metabolites, potentially disrupting hormonal balance.

Mycotoxins are recognized as factors that can negatively impact neonatal weight.
Research has consistently shown a negative correlation between maternal exposure to
AFB1 and birth weight [71-74]. Turner et al. demonstrated that AFB1 exposure during
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pregnancy leads to the formation of its metabolite in umbilical cord blood, associated
with CYP3A enzyme expression, which suggests adverse effects on neonatal weight [74].
Shuaib et al. also noted reductions in newborn head circumference linked to maternal AFB1
exposure [75]. However, some older studies have not confirmed these associations [76].

Neonatal jaundice has been connected to maternal exposure to AFB1. Abulu et al.
reported elevated AFB1 concentrations in cord blood samples from neonates with jaundice,
indicating a possible link to maternal mycotoxin exposure [71]. Similarly, Sodeinde et al.
found correlations between serum AFB1 levels in newborns and bilirubin levels, suggesting
an association with jaundice [77]. Nevertheless, other studies have failed to establish a
clear relationship [73,78], highlighting the need for further investigation.

The impact of mycotoxins on miscarriages and stillbirths is less well documented,
but some studies have indicated potential risks. Shuaib et al. reported a 35% higher
probability of stillbirths with increased maternal AFB1 exposure [79]. Norwegian studies
on female farmers exposed to mycotoxins revealed higher incidences of preterm births and
late miscarriages, though no definitive link to perinatal deaths was found [80-82]. Another
study found a correlation between aflatoxin-contaminated foods and neonatal deaths [83].

Mycotoxins such as AFB1, ZEN, ochratoxins, and fumonisins can also affect fetal
development by crossing the placental barrier and causing malformations. Norwegian
research identified higher incidences of birth defects like cryptorchidism and hypospadias
among children of farmers exposed to these toxins [81]. In contrast, Missmer et al. associ-
ated elevated fumonisin levels with an increased risk of neural tube defects and fetal death,
based on sphinganine/sphingosine ratios [84].

Preterm birth is another serious outcome linked to mycotoxin exposure, particularly
aflatoxins. Some studies have shown a clear association between aflatoxin exposure and
preterm delivery, linked to the toxin’s effects on maternal cytokines, which may trigger
premature cervical ripening and contractions [85,86]. Some studies report a high probability
of preterm birth associated with aflatoxin levels [72,85], while others, such as those by
Wang et al. and Andrews-Trevino et al., suggest a more nuanced relationship [87,88].

Despite these significant risks, research on mycotoxin exposure in pregnant women
and fetuses remains limited. Research on mycotoxin is crucial due to the potential for
developmental issues, birth defects, and long-term health effects. However, this research
is underexplored, primarily due to limited public awareness of mycotoxin risks and a
widespread mistrust of scientific institutions, especially in countries with lower trust in
research [89-91]. The lack of education about mycotoxin sources, including contaminated
food, environments, and building materials, reduces both public interest and funding for
these studies. Building trust and improving public education about mycotoxins could foster
greater participation in research, which is essential for protecting vulnerable populations
and developing informed policies to prevent exposure [89-91]. Expanding research in this
area is critical for better understanding the risks to fetal and maternal health, particularly
in regions with high contamination levels.

2.1.3. Sex-Based Variations in Mycotoxin Toxicity and Immune Response

Differences in immune responses between the sexes are evident, in the form of higher
mortality rates due to infectious diseases in males and a greater prevalence of autoimmune
diseases in females. This disparity is partly attributable to sexual hormones. Females exhibit
a higher expression of adaptive immune response genes post-puberty, whereas males show
an increased expression of innate immunity genes [92]. Additionally, cytokine profiles
following lipopolysaccharide-induced inflammation differ between the sexes, with females
producing more TNF-o and IL-1f3 [93]. These variations are linked to the differential
activity of mitogen-activated protein kinases (MAPKs) in males and females [94,95]. Two
mycotoxins that affect MAPK activity and exhibit sex-dependent immunotoxic effects are
deoxynivalenol (DON) and T-2 toxin [96,97].

The T-2 toxin, a type A trichothecene produced by Fusarium species, is known for its
immunotoxicity and cytotoxic effects on the gastrointestinal tract and fetal tissues [98]. Pro-
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teomic studies have explored the T-2 toxin’s impact in various models. In primary porcine
hepatocytes, the T-2 toxin altered lipid metabolism, oxidative stress, and apoptosis, with
CYP3A46, a male-dominant cytochrome P450 isoform, implicated in its metabolism [99,100].
However, the sex of the animals was not specified. Similar findings were observed in pri-
mary chicken hepatocytes, whereby the T-2 toxin increased mitochondrial mass and ATP
in response to oxidative stress [98]. Additionally, proteomic and transcriptomic analyses
in female GH3 cells revealed that the T-2 toxin suppressed growth hormone synthesis
and altered protein processing, potentially affecting sex-specific metabolic responses [101].
Further research is needed to determine whether these effects are consistent in male models,
given the potential differences in hormone regulation between the sexes [102,103].

DON, a prevalent food-associated mycotoxin produced by various Fusarium species,
targets the intestine and immune system, and has also been implicated in reproductive
and teratological effects [22,104]. Studies indicate that males are more sensitive to DON’s
toxic effects. Males exposed to DON show a reduced feed intake and weight gain, while
females exhibit higher levels of IgG, IgA, and CCK [25,105-107]. Males also have higher
levels of IL-6 and DON concentrations in organs and plasma, attributed to slower excretion
rates [105,107]. However, inconsistent findings from studies on DON excretion in humans
highlight the need for larger sample sizes to clarify these differences [108-112].

In conclusion, research highlights significant sex-based differences in immune re-
sponses and toxicity to mycotoxins like the T-2 toxin and DON. These variations are
influenced by hormonal regulation, with males generally exhibiting an increased sensitivity
to certain mycotoxins. Further research is needed to fully understand the mechanisms
behind these differences and how they affect human and animal health. This understanding
will help in developing more effective risk assessment strategies for mycotoxin exposure.

2.1.4. Sex Differences in Cancer Risk Linked to Mycotoxins

Cancer incidence varies between males and females due to a combination of occu-
pational, behavioral, and intrinsic factors, including the influence of sex hormones, sex
chromosome-linked genes, and other biological differences [113]. Mycotoxins such as AFB1,
OTA, and FB1 have been associated with cancer development in non-reproductive organs.
Research has demonstrated sex differences in the cancer risk related to these mycotoxins.

AFBI1, produced by Aspergillus flavus and Aspergillus parasiticus, is a prevalent aflatoxin
and is classified as a Group I carcinogen by the International Agency for Research on Cancer
(IARC) [114,115]. The liver is the primary site of AFB1 metabolism, where it is converted to
aflatoxin-8,9-exo-epoxide by cytochrome P450 enzymes. This exo-epoxide is highly reactive
and can interact with DNA, RNA, and proteins, particularly targeting the p53 tumor sup-
pressor gene, thus contributing to carcinogenesis [115,116]. The carcinogenic effect of AFB1
is more noticeable in males compared to females in species including mice, chickens, and
humans [117-120]. This sex difference is attributed to variations in metabolism, hormonal
influence on liver inflammation, and cancer promotion [120-124]. The androgen receptor
and estrogen receptor have opposing effects on hepatocyte proliferation and nucleic acid
metabolism through gene transcription [113]. Sex-specific cytochrome P450 enzymes, such
as P450-male (2C11) and P450-female (2C12), show different expression levels in rat livers,
regulated by hormones [103,125]. Proteomic analyses of hepatocarcinoma patients have
highlighted that AFB1 affects pathways involved in detoxification, drug metabolism, anti-
gen processing, and apoptosis [126]. AKR1B10 has been identified as a potential player
in AFBl-induced hepatocarcinogenesis, with higher mRNA expression in non-small-cell
lung cancer having been observed in men than in women [127]. However, the correlation
between AKR1B10 and sex-specific AFB1 effects remains unexplored. Proteomics studies in
male mice with type-1 diabetes mellitus exposed to AFB1 showed that the toxin exacerbates
diabetes by reducing MUP1, a liver protein predominantly expressed in males [128,129].

OTA, produced by Aspergillus and Penicillium species, is known for its mutagenic,
carcinogenic, immunotoxic, teratogenic, and nephrotoxic effects [130,131]. It has been
observed that OTA induces renal tumors more frequently in males than in females [132].
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This increased susceptibility in males is linked to differences in metabolism, bioavailability,
body weight, and renal transporter expression [133-137]. Proteomics studies using the
HEK293 kidney cell line, whose donor sex is unknown, have revealed mitochondrial
damage due to OTA. Changes in the mitochondrial proteome, including the depletion of
components from complexes II, III, and V, suggest a decrease in ATP levels and increased
oxidative stress, leading to apoptosis [138]. ASK1 and Lon Protease 1 (Lonp1) have been
identified as important in OTA toxicity. ASK1 mediates oxidative stress-induced apoptosis,
and its role may vary by sex [139]. Lonpl helps maintain mitochondrial function and
mitigate oxidative stress, although no sex-specific data are available [140]. In HepG2 liver
cells, OTA exposure led to a significant loss of plasma membrane protein content, affecting
the membrane structure and function, but the sex of these cells was not considered [141].

FB1, produced by various Fusarium species, disrupts sphingolipid metabolism and
causes different syndromes in animals. The sex-specific effects of FB1 have been re-
viewed [142]. In female mice, FB1 induces hepatocellular adenomas and carcinomas,
while in male Fischer F344 rats, it causes renal tumors not seen in females [143]. Fe-
male mice exhibit heightened immune responses to FB1, whereas male pigs experience
more pronounced negative effects on growth, biochemical parameters, and immune re-
sponses [144-147]. These observations highlight the need for further proteomics studies
that include both sexes to fully understand FB1’s toxic effects.

Furthermore, numerous studies have examined the association between carcinogenesis
and naturally occurring estrogen disruptors [148-161]. A crucial area of this research
focuses on the connection between early exposure to xenoestrogens and the development
of chronic diseases, including cancer, later in life [151,152]. ZEN is particularly significant
in this context due to its ability to disrupt the endocrine system by affecting gonadal
and pituitary functions. This disruption is thought to contribute to the development
and progression of breast cancer [150-152]. The strong estrogenic properties of ZEN are
also linked to other cancers, such as ovarian, cervical, breast, and prostate cancers. The
prolonged consumption of foods contaminated with ZEN may result in serious health
risks [153].

In a study by Kuciel-Lisieska et al., it was found that 37% of women with breast
cancer had detectable levels of ZEN in their blood. Additionally, higher concentrations
of 10.40 ng/mL were reported in patients with benign breast tumors [154]. These find-
ings suggest that ZEN may be a risk factor for breast cancer [154]. Another study as-
sessed the risk of breast cancer associated with exposure to ZEN and its metabolites
(o-zearalenol, 3-zearalenol, x-zearalanol, 3-zearalanol, and zearalanone) by measuring
their urinary concentrations in women. This study suggested that x-zearalanol could
potentially play a role in the risk of developing breast cancer [155]. Conversely, a dif-
ferent study found no significant differences in the plasma concentrations of ZEN and
its metabolites (x-zearalenol and f3-zearalenol) between breast cancer and cervical cancer
patients and control groups consisting of patients with other diagnoses and healthy female
volunteers [156]. The inconsistencies in these findings may be attributed to variations
in the methodologies used to measure these mycotoxins [157]. Furthermore, Pajewska
et al. analyzed 61 samples, comprising 12 samples with endometrial hyperplasia and 49
with endometrial cancer. They concluded that both ZEN and its metabolites could induce
cancer cell proliferation in the uterus and accumulate in uterine tissues [158]. The study by
Unicsovics et al. (2024) investigates the potential role of mycotoxins in the pathogenesis
of endometrial cancer. The research analyzed the levels of various mycotoxins and their
metabolites in blood serum and endometrial tissue samples from 52 participants diagnosed
with endometrial cancer, compared to matched controls without a history of endometrial
malignancy. The mycotoxins examined included AFs, DON, OTA, T2/HT?2 toxins, ZEN,
alpha-zearalenol (x-ZOL), and FB1 [159].

The study found significant correlations between higher concentrations of aflatoxins
and zearalenone in the presence of endometrial cancer. Notably, higher levels of mycotoxins
such as Afs, DON, OTA, T2 /HT2 toxins, ZEN, and «-ZOL were detected in endometrial
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tissue compared to blood serum. These findings suggest that dietary exposure to these
mycotoxins might contribute to the development of endometrial cancer, warranting further
research to explore the relationship between mycotoxin exposure and the disease [159].

In summary, mycotoxins such as AFB1, OTA, FB1, and ZEN are associated with cancer
risk, with sex differences in susceptibility. Males are more prone to liver and kidney cancers
due to differences in enzyme metabolism, particularly for AFB1 and OTA. In contrast,
females are more susceptible to endocrine-related cancers, such as breast and uterine cancer,
primarily due to the estrogenic effects of ZEN. Studies also suggest that aflatoxins and
zearalenone contribute to endometrial cancer risk. These findings highlight the influence of
sex hormones and metabolism on cancer development, underscoring the need for further
research to better understand these mechanisms.

The evidence for the potential health risks posed by AFB1, FB1, ZEN, OTA, and their
metabolites is illustrated by their effects on human health (Figure 2). This illustration depicts
the cancer risks associated with four significant mycotoxins—AFB1, FB1, ZEN, and OTA—and
highlights the gender-based differences in susceptibility. AFB1 and FB1 are primarily linked
to hepatocellular carcinoma and show a higher incidence in males compared to females.
ZEN is associated with various hormone-dependent cancers, including breast, cervical, and
endometrial cancers, as well as ovarian and prostate cancers. OTA is linked to renal tumors,
with males exhibiting a higher predisposition than females. This figure emphasizes the
differential impact of mycotoxins on cancer risks based on gender. Table 1 summarizes the
physiological responses associated with exposure to different mycotoxins, detailing their
impact on reproductive health and other physiological functions.
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Figure 2. Sex-based cancer risks associated with exposure to major mycotoxins: AFB1, FB1, ZEN, and
OTA (created with BioRender).
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Table 1. Physiological responses to various mycotoxins and their effects.

Mycotoxin Physiological Response Details/Effects References
ZEN Endocrine disruption in Inhibits HSD11B2, pro-inflammatory effects, and
. . . [42,43]
placenta and kidneys estrogen receptor interaction
Z7EN Growth and puberty Interferes with pituitary and thyroid hormones and [45]
disorders leads to growth disorders and delayed puberty
7EN Precociqus sexual Higher levels linked to early puberty in girls [46-49]
maturation and boys
Affects sex hormone production (estradiol,
ZEN Reproductive issues progesterone, and testosterone), ovarian [52-56]
folliculogenesis, and can lead to infertility
Placental function Affects cell fusion, increases hCG, CRH, and COX-2
ZEN . . . : . [68-70]
disruption secretion, and rapid transfer across placental barrier
AFBI Male infertility Founc;l in higher concentrations in infertile men and [57,58]
associated with reduced sperm parameters
Negative correlation between AF exposure and birth
AF Reduced birth weight weight and associated with CYP3A [71-73,76]
enzyme expression
. . High AFB1 concentrations in jaundiced newborns
AF Neonatal jaundice ang correlation with bilirubin] levels [71,73]
AF Miscarriages and Higher probability of stillbirths with maternal AF
o . . . . [79-83]
stillbirths exposure and correlation with grain farming
Leads to central nervous system malformations,
AF, ZEI.\T,. OTA and Birth defects brain damage, and higher %ncidence of [16,81,149]
Fumonisins cryptorchidism, hypospadias, and
genitourinary defects
Increases maternal and fetal pro-inflammatory
AF, ZEN Preterm birth cytokines, leading to preterm contractions and [72,75,85-88]
cervical ripening
Disrupts endocrine system, linked to various cancers
(breast, ovarian, cervical, prostate, liver, lung,
ZEN, AFBI Cancer gastrointestinal, kidney, aﬁd gallbladder), ar%d [150-162]
involves mutagenesis and oxidative stress
Linked to reduced hemoglobin, hematocrit,
AF Anemia erythropoiesis, and iron absorption, leading to [51,54,85,163-165]
microcytic anemia
Fumonisins Pre-eclampsia Associated with increased inflammatory response [82,05]

and higher blood levels in pre-eclamptic pregnancies

2.2. Gender-Based Differences in Dietary Patterns and Their Impact on Mycotoxin Exposure
2.2.1. Gender-Based Differences in Dietary Patterns

Eating behavior is influenced by a complex interplay of factors that extend beyond an

individual’s basic metabolic needs. These factors include food preferences [166], attitudes
and beliefs about different food types [167,168], religious practices [169], sociocultural
influences [170], and body image perceptions [171,172]. External influences such as social
media also play a significant role [173]. Notably, in females, there is a strong association
between quality of life, body satisfaction, and a higher likelihood of developing disordered
eating patterns [171]. Additionally, energy homeostasis can be disrupted by physiological
conditions that impact appetite and caloric requirements, such as metabolic and endocrine
disorders [174]. Moreover, climate and environmental conditions play a crucial role in
shaping dietary patterns by determining agricultural viability, seasonal food availability,
and regional food sources. Climate influences the cultivation of specific crops, such as
tropical fruits (bananas, mangoes, etc.) in warm regions [175] or drought-resistant grains
(millet, sorghum, etc.) in arid areas, while temperate climates favor grains like wheat and
barley [176,177].

Seasonal variations further affect diets, with colder regions relying on preserved foods
during winters and tropical areas benefiting from year-round fresh produce [178].
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Geographical features, such as the proximity to oceans or forests, also shape diets,
with coastal communities consuming seafood-rich meals and inland populations relying on
agriculture and livestock. Climate change is disrupting traditional food systems through
altered weather patterns, extreme temperatures, and reduced agricultural productivity,
particularly affecting subsistence farmers in vulnerable regions. Additionally, growing
awareness of the environmental footprint of food production has encouraged shifts toward
plant-based diets in many areas. Together, these factors, alongside cultural and economic
determinants, highlight the intricate relationship between the climate, environment, and
dietary habits [179].

Dietary habits are further influenced by individual likes and preferences, with notable
trends emerging between genders. However, research in this area often relies on ques-
tionnaires to assess dietary behaviors, which may not always capture the full accuracy of
individuals’ eating habits [180,181]. Self-reported data may not always accurately reflect
actual dietary intake due to factors like recall bias, social desirability bias, and underre-
porting or overreporting of certain foods. These biases can distort the results, especially
when examining gender-based differences in dietary patterns, as individuals may be in-
fluenced by societal expectations or personal preferences when responding. Despite these
limitations, questionnaire-based studies remain common due to their convenience and
cost-effectiveness [180,181].

A recent study by Feraco et al. (2024) utilized an online survey of 2198 participants
in Italy to investigate gender differences in food preferences and eating habits [182]. The
results indicated that men tend to prefer and consume more red and processed meat,
while women are more inclined toward healthier foods such as vegetables, whole grains,
tofu, and high-cocoa dark chocolate. Additionally, men are more likely to skip snacks,
whereas women tend to eat more frequently, report higher hunger levels in the morning,
and experience more frequent episodes of uncontrolled eating without hunger [182].

Similarly, a study in Lebanon by Hoteit et al. (2024) found gendered patterns in food
consumption., with a cohort predominantly consisting of females (58.8%) and a mean
age of 34.1 £ 12.7 years. The findings revealed significant gender differences in food
consumption. Males consumed higher amounts of bread, cereals, grains, dairy products,
red meat, processed meat, poultry, fish, and eggs, while females had a greater vegetable
intake and a lower consumption of meats and sweets. Males also consumed more water and
non-alcoholic beverages, whereas females drank less. Although males slightly consumed
more sweets and added sugars, the difference was not statistically significant. These results
underscore notable gender-based disparities in dietary patterns and food preferences in the
studied population [183].

Women lean more towards healthier diets, deliberate weight control, and eating in
social or stressful contexts, whereas men prefer high-fat, strongly flavored meals and
eating for pleasure. Men also frequent fast-food restaurants and secretly consume sweets
more often than women [162]. Women are more likely to consume whole grains, cereals,
vegetables, water, sugar-sweetened beverages, and alcoholic drinks, whereas men consume
more eggs, meat, and processed meat, and are more prone to night eating, dining out, and
feeling hungrier later in the day [184-186].

Psychological traits add another dimension to dietary patterns. Women tend to prefer
healthier options, demonstrate greater conscientiousness, and experience more anxiety,
while men exhibit higher extraversion and prefer milk, fermented products, and carbohy-
drates [166]. Cultural perceptions also shape food preferences, with men consuming more
meat often seen as masculine, while fruits and vegetables are considered feminine. Men
are generally more resistant to vegetarianism, with traditional gender role conformity pre-
dicting a higher consumption of beef and chicken and a lower openness to vegetarianism,
while women are more open to vegetarianism for health reasons [163,164].

Meat consumption has strong ties to masculinity, as men show greater defensiveness
toward plant-based diets and a more negative attitude toward plant-based eating compared
to women [186]. This bias toward meat consumption emerges after age 4, increases with
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biological development, and peaks between the ages of 51 and 65 [187]. These findings
highlight the multifaceted interplay of gender, psychology, cultural norms, and biological
factors in shaping dietary behaviors.

In summary, gender-based differences in dietary patterns are shaped by physiological,
psychological, and cultural factors. Men typically consume more red and processed meats,
while women prefer healthier foods like vegetables and whole grains. Women tend to
focus on weight control and healthier eating, while men prioritize taste and pleasure.
Cultural norms associate meat consumption with masculinity, making men less receptive
to plant-based diets. Psychological traits also influence eating behaviors, with women
being more prone to emotional eating and men displaying higher levels of extraversion.
These gendered dietary trends are further influenced by environmental factors, such as the
climate and social media, emphasizing the need for gender-specific approaches in nutrition
and health interventions.

2.2.2. Impact of Gender-Based Dietary Patterns on Mycotoxin Exposure

Several studies underscore gender-specific differences in mycotoxin exposure related
to various dietary patterns. Huang et al. (2020) identified higher prevalence rates of
AFM1 and FB1 in urine samples from women in the Yangtze River Delta region of China.
Conversely, men exhibited higher levels of ZEN, highlighting the necessity for tailored
interventions. This study examined the correlations between urinary mycotoxin concentra-
tions and food consumption to identify sources and determinants of mycotoxin exposure.
The results indicated a strong positive correlation between urinary AFM1 levels and the
consumption of nuts and seeds, consistent with their known contamination by aflatoxins.
Additionally, urinary OTA concentrations were significantly positively correlated with the
intake of coffee and tea, which are frequently contaminated by OTA. Moderate correlations
were observed between AFM1 and the consumption of milk, dairy products, and wheat,
with a negative correlation between milk intake and OTA levels, and a positive correlation
with FB1 levels. Significant correlations were predominantly found for OTA and beverages,
highlighting variability in mycotoxin distribution and dietary intake accuracy [188]. Simi-
larly, a study conducted in Egypt found that adult males consumed sugarcane juice more
frequently than females, which potentially increased their mycotoxin exposure risk due to
the higher consumption rates [189].

Turner et al. (2010) found that females had slightly higher levels of urinary DON
than men, though the difference was not statistically significant (p > 0.25). The average
DON levels were 6.1 ng/mg (95% CI: 4.6-7.3) in women and 5.8 ng/mg (95% CI: 4.6-7.3) in
men. The study also concluded that there was no significant link between gender or other
demographic factors and cereal or bread consumption. However, when the researchers
adjusted for age, gender, and BMI in a multivariate regression analysis, they found that
daily cereal consumption was strongly associated with higher urinary DON levels the next
day (p < 0.001; adjusted R? = 0.230) [190].

The study by Turner et al. (2008) investigated the impact of dietary wheat reduction
on urinary DON levels in a sample of UK adults [191]. The research involved 25 volunteers
who initially followed their regular diet, and then restricted major sources of wheat for a
period of four days. Urinary DON levels were measured using a robust assay that included
immunoaffinity clean-up and liquid chromatography-mass spectrometry detection. The
findings revealed that the mean intake of wheat-based foods decreased significantly from
322 g/day to 26 g/day during the intervention (p < 0.001). Correspondingly, urinary DON
levels dropped markedly from a geometric mean of 7.2 ng/mg creatinine to 0.6 ng/mg
creatinine (p < 0.001). This study highlights that dietary modification, specifically reducing
wheat intake, can significantly lower urinary DON concentrations [191].

In 2013, a study by Ediage and colleagues examined mycotoxin exposure in 220 chil-
dren from mycotoxin-contaminated regions in Cameroon. The research found that male
children had higher urinary concentrations of DON and FB1 compared to female children,
indicating a gender-based disparity in exposure. The weaning status was categorized
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into three groups: wholly breastfed, partially breastfed, and fully weaned. Significant
differences in aflatoxin M1 concentrations were found across these groups, with the highest
levels in partially breastfed children. Dietary habits were assessed, with cassava being
the most commonly used staple. Regional differences were also observed, with 53% of
households in the Northwest region using maize as the main staple, while 70% used cassava
as the primary staple. Peanuts were rarely used as a main ingredient [192].

The study by Hoteit et al. (2024) examined the dietary exposure and risk assessment
of multiple mycotoxins (AFB1, AFM1, OTA, OTB, DON, T-2, and HT-2) in the Lebanese
food basket consumed by adults, based on the updated Lebanese National Consumption
Survey using a total diet study approach [193]. The analysis included 449 participants,
with a demographic distribution of 59% females and 41% males. The study reveals that
fruits and fruit products are the most commonly consumed items in Lebanese diets, with
an average daily intake of 28.19 g. Sugar and confectionery are consumed at a moderate
level, while milk, dairy products, cereals, and herbs, spices, condiments, fish, and seafood
are consumed at a relatively low level. Beverages, primarily water, are consumed in high
quantities, while stimulant and alcoholic beverages are minimally consumed. Age-related
differences in food consumption patterns were observed, with older adolescents and young
adults having higher intakes of traditional foods, fruit and vegetable juices, and meat
products. Older adults showed a higher consumption of legumes and pulses and a lower
intake of non-alcoholic beverages. The study also identified key trends in mycotoxin
contamination within Lebanese foods, with cereals exhibiting the highest contamination
levels [193].

Addressing gender-specific mycotoxin exposure risks request a comprehensive ap-
proach that integrates dietary habits, cultural contexts, and biological differences into risk
assessment and mitigation strategies. Recognizing that men and women have distinct di-
etary preferences and behaviors—such as men’s higher consumption of red and processed
meats and women'’s inclination towards healthier foods—allows for the development of
more precise and effective interventions. Incorporating cultural and psychological fac-
tors, such as societal attitudes towards certain foods and gender-based differences in food
preparation and consumption, further refines these strategies. By tailoring public health
measures to these gender-specific variables, we can enhance the accuracy of risk assess-
ments and the efficacy of prevention and intervention programs. This targeted approach
not only reduces the adverse health impacts of mycotoxins but also promotes equitable
health outcomes across different populations.

Studies highlight gender differences in mycotoxin exposure due to varying dietary
patterns. Women tend to have higher urinary levels of AFM1 and FB1, while men show
higher levels of ZEN. Key sources of exposure include nuts and seeds for AFM1, coffee
and tea for OTA, and cereals for DON. Gender-based differences in dietary habits, such
as men’s higher consumption of red meat and women’s preference for healthier foods,
influence these exposures. Research also indicates that regional and cultural factors affect
mycotoxin levels, emphasizing the need for gender-specific risk assessments and tailored
public health interventions to improve health outcomes.

2.2.3. Occupational Exposure to Mycotoxins

Occupational exposure to mycotoxins primarily occurs through inhalation and dermal
contact. While most mycotoxins are not volatile, they can be present in airborne dust,
fungal spores, and hyphal fragments [194-197]. These particles can serve as carriers for
mycotoxins, which may then be inhaled into the lungs, particularly in environments where
airborne dust is prevalent [195,198-201].

In addition to inhalation, dermal contact represents a significant route of exposure,
especially in settings in which workers handle contaminated materials, such as food,
without adequate protective measures. This risk is heightened in environments in which
short-sleeved clothing is worn or hands come into direct contact with mycotoxin-containing
solutions [201-203]. Furthermore, mycotoxin-laden dust particles can settle on the skin,
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facilitating dermal absorption. Contaminated work surfaces also pose a risk, as they can
lead to additional skin contact through touch [202].

Studies on air and surface metrology provide evidence of mycotoxin exposure in
environments where organic dust is prevalent. Activities involving a high exposure to
such dust, including storage, loading, handling, or milling of contaminated materials
(e.g., grain, waste, and feed), pose significant risks. Animal husbandry settings, in which
workers manage feed and care for animals, are also notable for elevated exposure risks. In
particular, animal feed processing plants are associated with higher mycotoxin exposure
due to regulatory limits that permit concentrations of mycotoxins in animal feed to be up to
ten times greater than those allowed in human food. For instance, the maximum allowable
concentration of DON in unprocessed maize is 1750 ug/kg, compared to 750 pg/kg in
cereals intended for human consumption [204].

Biomonitoring research provides crucial insights into occupational mycotoxin expo-
sure, revealing significant differences based on the occupational setting and location. For
instance, a study by Malik et al. (2014) in India found elevated levels of aflatoxins in
the serum of food-grain workers compared to a control group, suggesting a substantial
occupational exposure [205]. Similarly, Saad-Hussein et al. (2014) observed higher serum
aflatoxin concentrations among millers and bakers in Egypt, relative to controls [206]. In
Portugal, Viegas et al. (2016) detected AFB1 in 50% of poultry workers’ serum, whereas it
was absent in controls [201]. Conversely, a study by Follmann et al. (2016) in Germany did
not find significant differences in urine spot samples between mill workers and a control
group, indicating potential limitations in detecting exposure through urinary biomarkers
alone [207]. Further research has expanded to explore dermal exposure; Taevernier et al.
(2016) demonstrated that beauvericin and enniatins can penetrate both intact and dam-
aged skin using an in vitro Franz diffusion cell setup, highlighting an additional route of
occupational exposure [208].

A summary of 15 biomonitoring studies up to 2015 reveals a predominance of afla-
toxins and ochratoxins in initial studies. However, with advances in analytical tech-
niques, more recent studies have addressed multiple mycotoxins in single biological sam-
ples [207,209,210]. These studies frequently identify co-exposure to various mycotoxins,
illustrating the complexity of exposure assessment. A noted limitation of biomonitoring
is its inability to distinguish between exposure from occupational sources versus dietary
intake. To mitigate this, many studies included control groups from non-exposed sectors,
enhancing the ability to differentiate between workplace exposure and dietary sources [211].

Assessing exposure levels involves understanding the variations between different
tasks within the same industry. For example, Viegas et al. (2013b) reported that workers
engaged in animal feeding in swine husbandry faced a higher AFB1 exposure compared to
those performing other tasks [211]. In waste management settings, a high AFB1 exposure
was attributed to waste material contamination, with the exposure levels remaining stable
throughout the work shift due to consistent task conditions [212].

The quality of materials handled can also influence the exposure levels. In food pro-
cessing plants, the contamination levels can vary between batches. Regular monitoring
of material contamination and implementing preventive measures are crucial to manag-
ing exposure. Contaminated materials should be discarded, and if necessary, personal
protective equipment (PPE), such as respiratory masks, gloves, and goggles, should be
used. Even low concentrations of mycotoxins in products can result in significant airborne
contamination during handling, particularly when dealing with dry materials with high
surface areas, such as hay or plant fibers. Manual sorting or transporting contaminated
products can release dust and increase exposure levels. Additionally, common tasks, such
as cleaning with sweeping or compressed air, are known to cause high dust exposure [213].

Co-exposure to multiple mycotoxins is a common phenomenon, as various mycotox-
ins often contaminate foodstuffs simultaneously [13,214-217]. Risk assessments should,
therefore, account for potential synergistic or additive effects of co-exposure and include
measurements for several mycotoxins. Proximity of the worker’s head to the material han-
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dled also increases exposure risk, underscoring the importance of identifying high-exposure
tasks and ensuring proper use of PPE [201,213].

Individuals residing or working in water-damaged buildings, cereal storage facilities,
farms, composting plants, or modern office buildings equipped with Heating, Ventila-
tion, and Air Conditioning (HVAC) systems may be exposed to mycotoxins via inhala-
tion [218-220]. This exposure can result from hidden mold growth in indoor environ-
ments (e.g., on wallpaper, gypsum boards, carpets, or HVAC systems) or from handling
mycotoxin-contaminated food, feed, or waste. The potential for airborne mycotoxin expo-
sure is influenced by factors such as substrate, growth conditions (e.g., temperature, pH,
and water activity), and the properties of the fungal species involved [218-220].

The study by Al-Matawah et al. found significant fungal contamination in HVAC
systems of a multi-story building in Kuwait, where extreme heat leads to indoor living.
High airborne fungal levels, especially of allergenic species like Aspergillus spp., were
observed year-round. The study indicated that HVAC systems were key in dispersing
fungal spores within the building, with higher indoor fungal concentrations than outdoors,
particularly when filtration efficiency was lower in colder months. These results emphasize
the need for regular HVAC maintenance and filter cleaning to reduce fungal exposure and
improve indoor air quality [221].

Moreover, the study by Golofit-Szymczak et al. in 2023 examined the role of au-
tomobile air conditioning (AC) filters as potential sources of fungal contamination and
associated health risks, particularly for professional drivers. Their study highlights that
over time, AC filters can accumulate mycotoxins produced by fungal species, such as
Aspergillus, Penicillium, and Fusarium, which can be aerosolized into the vehicle’s cabin. The
researchers conducted a seasonal assessment (summer and winter) of fungal contamination
in AC filters from 30 randomly selected passenger cars, employing both culture-based and
molecular techniques to detect mycotoxins [222].

The study found that fungal contamination was more pronounced in summer, with
concentrations averaging 5.4 x 10% cfu/m? compared to 2.4 x 10* cfu/m? in winter. No-
tably, Aspergillus species, including A. fumigatus and A. flavus, were frequently identified.
These fungi are known for their allergenic and toxic properties, particularly related to respi-
ratory issues and mycotoxin production, such as aflatoxins, ochratoxins, and fumonisins [222].

The study underscores the risk of chronic exposure to airborne mycotoxins, especially
for drivers and passengers in confined spaces. It emphasizes the importance of regular
maintenance and filter replacement to mitigate health risks from fungal contamination in
vehicle AC systems. The findings highlight the need for preventive measures to reduce the
exposure of individuals, particularly those with weakened immune systems, to potentially
harmful bioaerosols in cars [222].

Similarly, a study by Farian and Wojcik-Fatla (2024) evaluated the effectiveness of
cabin filters in passenger vehicles in retaining mycological contaminants, with a focus
on fungal contamination and mycotoxin presence [223]. The analysis of 100 cabin filters
found an average fungal concentration of 7.2 x 107 CFU/m?2, with Cladosporium, Alternaria,
Penicillium, and Aspergillus species predominating. The highest concentration was observed
in A. fumigatus, which also harbored aflatoxins (B1, B2, G1, G2) and ochratoxin A. Carbon
filters were found to be more efficient than standard filters in trapping fungal spores and
reducing mycotoxin levels. This study suggests that in occupational settings involving
prolonged exposure to vehicle air systems, such as for transport workers and delivery
drivers, cabin filters with activated carbon should be used and replaced annually to mitigate
respiratory risks associated with mycotoxins [223].

These studies collectively emphasize the significance of HVAC and AC systems in
the dispersion and accumulation of fungal contaminants and mycotoxins, highlighting the
need for regular maintenance and filter replacement to reduce the associated health risks.
Preventive measures, such as the use of carbon filters in vehicles and thorough HVAC
system maintenance, are essential to mitigate exposure, especially for individuals with
weakened immune systems or those spending prolonged periods in confined spaces.
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In summary, occupational exposure to mycotoxins primarily occurs through the
inhalation of airborne dust, fungal spores, and dermal contact with contaminated materials.
High-risk industries such as animal feed processing, grain storage, and food handling
show elevated mycotoxin levels, with workers in these settings facing significant exposure,
particularly to aflatoxins. Co-exposure to multiple mycotoxins is commonly observed,
further complicating risk assessments.

Emerging studies have expanded the focus to indoor environments, particularly HVAC
and vehicle air conditioning systems, which can disperse fungal spores and mycotoxins into
the air. Research indicates significant contamination in filters, with regular maintenance
and the use of activated carbon filters being effective in reducing exposure. This highlights
the growing need for comprehensive occupational safety measures, including preventive
actions to reduce mycotoxin exposure across different settings, particularly for at-risk
individuals. The trend suggests a shift toward considering air and surface contamination,
alongside traditional exposure routes, as critical factors in managing occupational health
risks associated with mycotoxins.

2.3. Gender Differences in Occupational Exposure to Mycotoxins

Although studies on gender-specific occupational mycotoxin exposure are limited,
understanding these differences is crucial due to the varied exposure patterns resulting
from distinct roles performed by men and women across various industries. Occupational
exposure to mycotoxins varies significantly between genders, influenced by the specific
tasks and responsibilities each typically undertakes.

In agriculture, women often engage in manual tasks such as sorting, cleaning, and
handling contaminated grains, peanuts, and maize. These activities increase their risk of
exposure through both dermal absorption and the inhalation of airborne dust. Women
are particularly vulnerable to mycotoxin exposure due to inadequate protective measures,
such as insufficient use of gloves or long-sleeved clothing, which can result in direct skin
contact or the inhalation of dust particles [201-203]. In contrast, men in agriculture are
more likely to operate machinery and manage large-scale processing tasks. Their exposure
is primarily through the inhalation of dust from bulk materials and handling contaminated
substances [211,212].

In the food processing industry, women frequently occupy roles in cleaning, packaging,
and quality control, where they handle contaminated ingredients and often lack adequate
personal protective equipment (PPE). This close contact with contaminated materials
increases their risk of both dermal and inhalation exposure, potentially leading to health
issues such as carcinogenicity and endocrine disruption. Men, on the other hand, are more
involved in operating machinery and bulk handling, leading primarily to the inhalation
of dust from large volumes of contaminated materials. This exposure is associated with
significant respiratory risks and potential systemic toxicity.

In animal husbandry, women typically perform routine care tasks, including feeding
and cleaning, which exposes them to mycotoxins from contaminated feed and bedding. This
exposure can result in acute toxic effects and long-term health complications. Men, however,
are more likely to handle feed management and equipment maintenance, leading to the
increased inhalation of dust from large-scale feed operations and associated respiratory
disorders.

In waste management and recycling sectors, women may engage in sorting and manual
handling of waste materials, exposing them to mycotoxins through both direct contact and
the inhalation of dust. Men, who often operate heavy machinery and handle larger volumes
of waste, face higher risks of inhalation exposure and associated respiratory problems.

Gender-based differences in occupational mycotoxin exposure underscore the neces-
sity for gender-specific occupational health strategies. To effectively mitigate exposure risks
and safeguard worker health, it is crucial to implement safety protocols and personal protec-
tive equipment (PPE) tailored to these differences. Enhanced safety measures, including the
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appropriate use of PPE and routine monitoring of exposure levels, are vital in addressing
the distinct risks encountered by both men and women in various occupational settings.

Incorporating these considerations into screening practices and mitigation strategies
can significantly improve occupational health outcomes. By focusing on gender-specific
needs and refining safety protocols accordingly, workplaces can better protect all employees
from the adverse effects of mycotoxin exposure.

2.4. Gender-Specific Roles and Their Impact on Household Management of Mycotoxin Exposure

Effective management of mycotoxin exposure in households is intricately linked to
implementing preventive measures, as outlined by various guidelines and regulations.
Regulatory frameworks aim to safeguard consumer health by setting maximum allowable
concentrations and tolerable daily intake values for mycotoxins [224-226]. These measures
are accompanied by strategies to control contamination risks at different stages of the food
chain [227-229]. However, the household environment plays a crucial role in managing
exposure, with gender-specific responsibilities significantly influencing the effectiveness of
these measures.

Traditionally, women have shouldered most domestic tasks related to food manage-
ment, including purchasing, storage, preparation, and cleanliness. Their responsibilities
significantly impact adherence to preventive guidelines aimed at reducing mycotoxin risks.
The German Federal Institute for Risk Assessment has established seventeen “golden rules”
for minimizing mycotoxin exposure, emphasizing buying fresh food, proper storage in
cool and dry conditions, and the immediate disposal of moldy items [230]. Similarly, the
United States Department of Agriculture (USDA) recommends managing mold presence
in food [231]. These guidelines, which include specific recommendations such as cleaning
bread boxes regularly, disposing of moldy food, and properly storing cereals and flour,
highlight the importance of adequate food management [230]. These practices are partic-
ularly relevant to women, who handle most routine food management tasks. Ensuring
adherence to these guidelines is crucial for reducing contamination risks. [232,233].

Effective mold management in households requires the implementation of several
vital practices. The regular cleaning of refrigerators with baking soda and bleach is essential
for removing residual mold and preventing its proliferation. Maintaining the cleanliness
of dishcloths and other food-handling items is crucial, as these can harbor mold spores if
not properly sanitized. Additionally, controlling indoor humidity levels below 40% helps
inhibit mold growth [230,231].

In households in which women typically manage food-related tasks, inspecting pro-
duce for mold and avoiding purchasing or consuming moldy items is vital [230,231]. Proper
heat processing of homemade preserves is also necessary to destroy potential mold spores.
Food protection strategies include covering items to prevent exposure to airborne mold
spores, promptly refrigerating opened perishables to minimize mold development, and
consuming leftovers within 3 to 4 days to prevent extended mold growth. Adhering to these
practices is critical for reducing mold contamination and maintaining food safety [230,231].

Men'’s roles, such as shopping and handling groceries, are equally crucial in influencing
food safety outcomes. In many households, men participate in tasks that significantly affect
the quality and safety of food [234]. The effective management of mycotoxin exposure
necessitates that both genders are equally informed about food safety practices and involved
in their implementation.

Emerging practices like food sharing and dumpster diving, driven by concerns about
food waste and anti-consumption, introduce additional risks [235-237]. These informal
activities often bypass standard food safety regulations, increasing the likelihood of myco-
toxin exposure. Men, who may more frequently engage in dumpster diving for practical
reasons, and individuals involved in food sharing, need targeted education on safe food
handling to mitigate these risks [235-239].

Gender-specific roles significantly influence the management of mycotoxin exposure in
households. Women's traditional responsibilities in food storage and cleanliness are crucial
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for implementing preventive measures, while men’s roles in purchasing and handling
food also affect safety outcomes. To enhance food safety and reduce mycotoxin risks, it is
essential to involve both genders in food management practices. Providing comprehensive
education on mycotoxin risks and prevention strategies is equally important. Addressing
gender-specific roles and offering targeted guidance can improve household food safety
and effectively manage mycotoxin exposure.

In conclusion, gender-specific roles shape the management of mycotoxin exposure
in households. To improve food safety and reduce risks, it is essential to involve both
men and women in food management practices and provide targeted education on myco-
toxin prevention.

3. Techniques for Mycotoxin Screening

The growing concern over mycotoxin contamination in food products has led to
significant advancements in analytical methods aimed at enabling the rapid, sensitive, and
accurate detection of these toxic compounds [240]. Among the various methodologies
employed, chromatographic techniques are widely recognized for their effectiveness in the
quantitative determination of mycotoxins [241,242]. These methods, which include thin-
layer chromatography (TLC), liquid chromatography (LC), and gas chromatography (GC),
coupled with detection systems such as ultraviolet (UV), fluorescence (FLD), and mass
spectrometry (MS), leverage sophisticated instrumentation and comprehensive sample
preparation to achieve high sensitivity and precision in mycotoxin detection [241,242].

TLC is one of the earliest established techniques in mycotoxin analysis and is par-
ticularly valued for its cost-effectiveness and simplicity in screening multiple samples
simultaneously [243]. TLC involves a stationary phase coated on an inert matrix, followed
by a mobile phase containing solvents, allowing analytes to migrate through, revealing fluo-
rescent spots under UV light [244]. TLC is effective for qualitative and rapid screening [245],
but its quantitative application is limited due to sensitivity and accuracy challenges due to
sample preparation complexity and mycotoxins’ properties [246].

To overcome the limitations of TLC limitations, LC, particularly high-performance
LC (HPLC), is widely used to analyze high-polarity, non-volatile, and thermally labile
mycotoxins. HPLC, coupled with fluorescence or UV-visible detectors, allows the direct
detection of naturally fluorescent mycotoxins like AFs and OTA, while non-fluorescent
ones like FB1 require derivatization [241,246-248]. LC-MS/MS further enhances sensitivity,
selectivity, and reliability, enabling multi-mycotoxin detection at trace levels across various
matrices [249-251]. GC is useful for volatile mycotoxins, such as trichothecenes and patulin,
but requires derivatization due to low volatility [241,242]. Immunochemical methods,
particularly enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay
(LFIA), are commonly employed for large-scale mycotoxin screening due to their simplicity,
cost-effectiveness, and sensitivity, although ELISA may face issues with cross-reactivity
and matrix validation [243-257].

The evolution of rapid, portable, and user-friendly detection systems, such as LFIA,
has substantially advanced the visual detection and semi-quantification of mycotoxins.
LFIA systems, known for their reliability, are designed with accessibility in mind, catering
to a broad spectrum of users. Commercial kits are now available for the detection of
various mycotoxins, including OTA, ZEN, DON, and AFs [244]. The integration of nano-
materials, such as gold nanoparticles (AuNPs), fluorescent nanoparticles (FNs), magnetic
nanoparticles, carbon nanoparticles (CNPs), and carbon nanotubes (CNTs), has significantly
enhanced colorimetric contrast and detection sensitivity. Nanomaterials improve the opti-
cal properties of the assays, leading to more distinct and reliable signal outputs [258-261].
Techniques like enzymatic reactions, such as those catalyzed by horseradish peroxidase,
and the use of nanozymes, further amplify sensitivity and assay stability [262-264]. Ad-
vanced detection technologies, including fluorescence, surface-enhanced Raman scattering
(SERS), and smartphone-based platforms, allow for precise signal detection and quantifi-
cation, including signals that are otherwise invisible to the naked eye [265,266]. These
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technologies, with their precision, enable more accurate and detailed analysis by improving
signal resolution and reducing detection limits. Enhancements in transport and reaction
kinetics—such as optimized convection, diffusion, and reaction rates—contribute to in-
creased assay sensitivity. Strategies for improving performance include implementing
sequential flow, concentrating reactants, and increasing the number of binding sites to
boost signal intensity [267]. Furthermore, reducing nonspecific binding is critical for as-
say accuracy. This is achieved through the optimization of assay components, surface
modifications, adjustments in label sizes and concentrations, and the selection of suitable
buffer compositions [267]. These advancements in LFIA technology collectively contribute
to the development of more precise, efficient, and reliable mycotoxin detection methods,
facilitating enhanced food safety.

Recent advancements in mycotoxin analysis and detection have introduced a variety
of innovative technologies, each offering unique capabilities and addressing specific chal-
lenges in the field. Biosensors, integrating biological elements with transducers, utilize
optical (e.g., fluorescence and surface plasmon resonance—SPR), electrochemical (e.g.,
potentiometric, amperometric, and impedimetric), and piezoelectric (e.g., quartz crystal
microbalance—QCM) sensors [268]. These devices often employ advanced nanomateri-
als such as quantum dots (QDs), metal nanoparticles, nanofibers, and carbon nanotubes
(CNTs) to enhance sensitivity due to their high surface-area-to-volume ratio and unique
physicochemical properties [269,270].

The electronic nose (e-nose) represents another significant advancement, using an
array of chemical sensors to detect volatile organic compounds (VOCs) and identify specific
odor profiles associated with mycotoxin-producing fungi [271]. This technology has been
effective in detecting OTA in dry-cured pork, aflatoxins (AFs) and fumonisins in maize,
and DON in wheat bran [272-275]. However, its application is limited by the need for
optimization to detect low concentrations and the challenge of analyzing non-volatile
mycotoxins [252].

Fluorescent polarization (FP) immunoassay operates on the principle of competitive
binding between a fluorophore-labeled tracer and the target analyte for antibody sites.
This method eliminates the need for extensive pre-analytical processing steps required by
traditional methods like ELISA, offering increased efficiency [276]. FP has been successfully
used to detect various mycotoxins, including ZEN in corn, DON in wheat products, AFB1 in
maize, and OTA in rice [276-280]. Despite its efficiency, FP may suffer from lower accuracy
and sensitivity compared to high-performance liquid chromatography (HPLC), mainly due
to potential cross-reactivity with matrix components and other metabolites [252].

Aggregation-induced emission (AIE) is a novel phenomenon where fluorescent dyes
exhibit significantly enhanced emission when aggregated compared to their dilute state [281].
Dyes such as 9,10-distyryllanthracene (DSA), silacyclopentadiene (silole), and tetraphenylethene
(TPE) show notable fluorescence in aggregate form [282]. AIE-based aptasensors have been
developed to detect OTA in wine and coffee, capitalizing on the high fluorescence of these
dyes in aggregated states [280,283].

Emerging technologies, including biosensors, electronic noses, and advanced spectro-
scopic techniques, provide innovative approaches that enhance sensitivity, specificity, and
usability, pushing the boundaries of traditional mycotoxin detection methods. Each of these
technologies presents distinct advantages and limitations, requiring careful consideration
based on factors like the sample type, detection limits, and cost-effectiveness. As these
methods continue to evolve and integrate, they will collectively strengthen the ability to
monitor and ensure food safety, protecting public health from the risks associated with
mycotoxin contamination in food products.

Advancements in mycotoxin detection have improved sensitivity and speed through
methods like thin-layer chromatography (TLC), liquid chromatography (LC), and gas chro-
matography (GC), with techniques such as LC-MS/MS offering enhanced precision for
trace-level detection. Immunochemical methods like ELISA and lateral flowimmunoassays
(LFIA) have become popular for their rapid and portable capabilities, further enhanced
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by nanomaterials for better sensitivity. Emerging technologies, including biosensors, elec-
tronic noses, and fluorescence polarization assays, are pushing the boundaries of detection
with greater specificity and ease of use. The trends show a shift towards miniaturized,
user-friendly systems, with nanotechnology and biosensors driving innovation, though
challenges like cross-reactivity and matrix effects remain. These advancements are enhanc-
ing food safety by providing more efficient, accurate, and accessible detection methods.

Recent Advances in Point-of-Use Mycotoxin Detection

Point-of-use mycotoxin detection refers to the development of portable, rapid, and
user-friendly diagnostic systems that enable the detection of mycotoxins directly at the
location of the sample collection [284,285]. These technologies are crucial for real-time
monitoring in environments such as food processing facilities, agricultural sites, and
consumer markets, where immediate results are needed to assess and mitigate the risks
associated with mycotoxin contamination [284,285]. By bypassing the need for complex
laboratory procedures, point-of-use detection systems provide a cost-effective and efficient
solution for ensuring food safety. Advanced technologies, including LFIAs, optical and
electrochemical sensors, and smartphone-based platforms, have significantly enhanced the
sensitivity, specificity, and accessibility of these systems, making them valuable tools for
improving public health and food security [284,285].

Recent advancements in point-of-use devices for mycotoxin detection have signifi-
cantly improved in situ assessments, essential for establishing exposure risks in workplaces,
food processing facilities, and agricultural sites [286]. The increasing prevalence of myco-
toxins in food matrices and their potential health impacts underscore the urgent need for
effective and immediate detection methods, primarily focused on enhancing accessibility,
efficiency, and reliability by integrating emerging technologies [286].

Innovations in sample interfaces and assay architectures are making mycotoxin detec-
tion more portable and user-friendly across various settings [286-288]. Key advancements
in sensing surfaces and molecular recognition mechanisms are crucial for enhancing the
sensitivity and specificity of detection technologies [289,290]. This involves optimizing
detection surfaces and selecting effective molecular mechanisms for recognizing specific
mycotoxins. Advanced materials, such as nanostructures and molecularly imprinted
polymers (MIPs), offer high specificity for target analytes, which can be integrated into
point-of-use devices [291].

Effective in situ sample preparation techniques are critical for real-time monitoring,
particularly in environments where exposure risks are high [292]. Simplifying extraction
methods helps to reduce matrix effects, ensuring that complex food matrices can be con-
verted into sensor-compatible formats with minimal intervention. The growing demand for
point-of-use detection drives the development of techniques that minimize preparation time
and resource consumption while maintaining analytical accuracy and sensitivity [293,294].

Recent innovations in sample preparation for complex matrices focus on the rapid
isolation of mycotoxins while enhancing selectivity. For liquid matrices like wine and
beer, methods such as dilution and matrix neutralization, often combined with selective
binding agents like immunoaffinity columns (IACs), effectively concentrate mycotoxins
and reduce interferences [291,295]. In solid matrices, solubilization with organic solvents
such as methanol and acetonitrile remains standard, but alternative, safer solvents and
methods are being explored to enhance operational efficiency [296-309].

Emerging techniques like dispersive liquid-liquid microextraction (DLLME) and aque-
ous two-phase systems (ATPS) provide efficient extraction with minimal use of hazardous
solvents, enhancing selectivity and simplifying post-extraction cleanup, making them suit-
able for field applications [309-311]. Methanol extraction continues to be widely adopted
due to its compatibility with various assay architectures, including commercial lateral flow
devices [310-312].

Signal generation and transduction are critical for converting detection events into
measurable outputs. Methods are categorized into label-based and label-free systems,
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both essential for immediate, in situ analysis [293,294]. Label-based systems utilize optical
and electrochemical methods to produce quantifiable signals. Optical techniques like
fluorescence, colorimetry, and chemiluminescence convert binding events into detectable
signals, providing high sensitivity and user-friendly detection [313,314].

Electrochemical methods also offer highly sensitive detection through electroactive
substances that produce measurable electrical signals upon binding to mycotoxins [285,315].
In contrast, label-free systems detect mycotoxins without external labels, relying on intrin-
sic changes in the sample. Techniques such as surface plasmon resonance (SPR) monitor
variations in the refractive index upon mycotoxin binding, enabling highly sensitive detec-
tion [316].

Recent innovations in signal transduction aim to enhance sensitivity and acces-
sibility for point-of-use applications. The integration of complementary metal-oxide-
semiconductor (CMOS) sensors with LED excitation sources has led to portable optical
detection systems, ideal for real-time monitoring in critical environments [297,313].

Advancements in assay architectures, particularly in LFIAs, have significantly im-
proved in situ mycotoxin detection capabilities, making them well suited for point-of-use
applications [284-286]. Their simplicity, visual results, and ease of integration into portable
devices enhance their practicality, although ongoing optimization is necessary to expand
their applicability across diverse detection scenarios [288,289].

In addition to LFIAs, ultra-rapid, single-step assays leveraging the intrinsic fluo-
rescence of specific mycotoxins have been developed, though they remain limited to
auto-fluorescent mycotoxins [295,296]. Flow cell assays have miniaturized fluidic paths,
reducing sample volumes and speeding up assay times, further enhancing their utility in
rapid, field-based detection [296-298].

Notable advancements include using smartphone cameras to measure light trans-
mittance in milliliter-scale containers, facilitating point-of-need diagnostics [313]. The
integration of CMOS sensors with LED excitation sources for fluorescence measurements,
coupled with microcontroller boards for processing, exemplifies the miniaturization of
optical detection systems. Compact optical readers and CCD scanners have been developed
for measuring colorimetric, fluorescence, and chemiluminescence signals in lateral flow
assays [288,316,317].

Opverall, these advancements highlight the evolution of point-of-use mycotoxin detec-
tion, with innovations in surface engineering, sample preparation, and signal transduction
playing pivotal roles in improving the accessibility, sensitivity, and reliability of these
technologies.

In summary, while the underpinning technologies are not in themselves sex or gen-
der biased, considerations of accessibility and acceptability need to be addressed. The
trend in mycotoxin detection is moving toward smaller, more portable devices with en-
hanced sensitivity and faster response times. Innovations in sample preparation, signal
transduction, and device miniaturization are making these technologies more practical
and effective for real-time, on-site monitoring, expanding their potential applications in
diverse environments.

4. Regulatory Challenges and Gender-Sensitive Strategies in Mycotoxin Management
4.1. Regulatory Framework for Mycotoxins: Challenges and the Need for Stricter Enforcement

Regulating mycotoxin levels in food and feed is essential for safeguarding public
health and preventing foodborne illnesses. As these toxic substances produced by fungi can
contaminate a wide range of food products, the measures taken to regulate their levels play a
critical role in ensuring food safety worldwide. However, the approach to regulation varies
significantly across regions, with some countries implementing more stringent standards
than others. These regulations are built upon rigorous scientific research that assesses the
toxicity of mycotoxins, evaluates food safety risks, and estimates exposure levels.

In the European Union (EU), mycotoxin regulation is especially stringent, with the
European Food Safety Authority (EFSA) playing a central role in shaping the regulatory
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framework [318,319]. EFSA conducts thorough risk assessments and uses the latest scientific
evidence to set maximum allowable limits for a variety of mycotoxins in food and feed.
This risk-based approach ensures that the permissible limits evolve in line with emerging
data. Regulations such as Commission Regulation (EU) 2023/915 set clear limits for
contaminants like aflatoxins, ochratoxin A, patulin, deoxynivalenol, and zearalenone [318].
As new scientific information becomes available, these levels are adjusted to reflect the
most current understanding of the associated risks. Additionally, Commission Regulation
(EC) No 401/2006 outlines standardized procedures for sampling and testing mycotoxin
levels in food products across EU member states, ensuring accuracy and consistency in
monitoring efforts. The EU also monitors less commonly regulated mycotoxins, such
as Alternaria toxins, citrinin, and ergot alkaloids, to protect consumers from potentially
harmful exposure through comprehensive monitoring recommendations [318,319].

On the other hand, the U.S. Food and Drug Administration (FDA) has also made
notable updates to its regulations concerning mycotoxins [320]. The FDA's efforts focus
on regulating the levels of mycotoxins such as aflatoxins, fumonisins, ochratoxin A, and
others. In 2024, the FDA set advisory and action levels for various mycotoxins in foods,
including fumonisins in corn products, patulin in apple juice, and ochratoxin A in grains
like wheat and barley. The FDA has advanced its testing methods, including the use of
multi-mycotoxin liquid chromatography-tandem mass spectrometry (LC-MS/MS), allow-
ing for the simultaneous detection of multiple mycotoxins. This enhances the efficiency
and accuracy of mycotoxin monitoring [320]. Additionally, the FDA collaborates with other
federal agencies, state departments, and international bodies to align regulatory standards
and ensure the safety of food products.

Despite the presence of robust regulatory frameworks in regions such as the EU and
the United States (U.S.), there remain significant gaps in the global regulation of mycotoxins.
These gaps are particularly evident in low- and middle-income countries (LMICs), where
mycotoxin contamination is often more prevalent [321,322]. Factors such as inadequate
storage facilities, poor agricultural practices, and climatic conditions conducive to fungal
growth contribute to this higher prevalence. Unfortunately, many LMICs lack the necessary
resources, infrastructure, and technical capacity to establish or enforce comprehensive
mycotoxin regulations. As a result, their regulatory frameworks are either weak or, in many
cases, non-existent. This lack of regulation significantly increases the risk of exposure to
harmful levels of mycotoxins, posing a serious public health threat [321,322].

In LMICs, food monitoring systems are often underdeveloped, with limited access
to advanced analytical tools such as liquid chromatography-mass spectrometry (LC-MS)
or immunoassays, which are essential for the accurate detection and quantification of
mycotoxins. Furthermore, the enforcement of food safety laws is frequently inadequate due
to insufficient funding, a lack of trained personnel, and the limited political prioritization
of food safety. These challenges result in higher rates of contamination in local food
supplies, some of which are exported to international markets where stricter regulations are
enforced. This not only undermines global food safety but also has economic repercussions,
as contaminated exports may be rejected by importing countries, leading to significant
financial losses for LMICs.

In Africa, for instance, despite growing awareness and efforts to improve food safety,
significant challenges remain in the regulation of mycotoxins [89,323-326]. Key issues
include the insufficient scientific infrastructure, limited access to advanced analytical tools
such as liquid chromatography-mass spectrometry (LC-MS), and unreliable power supplies,
all of which restrict the reliability and scope of local research. Many African studies rely on
collaborations with institutions in developed countries, as local laboratories often lack the
resources to conduct independent research with reproducible results. Additionally, brain
drain further exacerbates these challenges, with skilled scientists leaving the region due to
poor working conditions, a lack of funding, and limited research opportunities. Addressing
these gaps requires investment in infrastructure, training programs for cost-effective and
rapid detection methods, and improved access to global scientific resources, such as high-
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speed internet and technical support systems. These interventions could significantly
enhance local capacity for mycotoxin control and food safety enforcement [89,323-326].

Another critical issue is the inconsistency in mycotoxin legislation worldwide. While
regions like the EU and the U.S. have established strict maximum permissible limits for
certain mycotoxins, these regulations do not cover the full spectrum of mycotoxins. For
many mycotoxins, only guidelines or recommendations exist, rather than enforceable laws.
This discrepancy leaves significant regulatory gaps, as non-binding recommendations
lack the necessary legal weight to compel compliance. Moreover, even where maximum
permissible limits are in place, there is often no legislation imposing severe penalties for
violations. Without strict enforcement and deterrent penalties, compliance with these
regulations remains challenging, particularly in regions with weak governance or limited
resources for regulatory oversight.

To address these issues, it is imperative to strengthen international collaboration and
harmonize mycotoxin regulations. Global organizations such as the Food and Agricul-
ture Organization (FAO), the World Health Organization (WHO), and the World Trade
Organization (WTO) can play pivotal roles in bridging these regulatory gaps. These or-
ganizations can provide technical assistance, facilitate knowledge-sharing, and support
capacity-building initiatives in LMICs. For example, they could help establish regional cen-
ters of excellence for mycotoxin research, provide training on advanced detection methods,
and support the development of national food safety action plans.

Scientific research should also underpin the development of more stringent and
enforceable legislation. Evidence-based studies can identify the mycotoxins posing the
greatest risks to public health and inform the establishment of stricter maximum permis-
sible limits. Furthermore, the introduction of severe legal consequences for exceeding
these limits could significantly improve compliance. Such measures may include fines,
mandatory recalls of contaminated products, or restrictions on market access for non-
compliant producers. These strategies not only protect public health but also promote
fairness in international trade by ensuring that all countries adhere to comparable food
safety standards.

In conclusion, the disparity in mycotoxin regulations across the globe underscores the
urgent need for harmonization and capacity building. By fostering international coopera-
tion, investing in scientific research, and enforcing stricter penalties for non-compliance,
the global community can better protect public health and ensure the safety of the global
food supply.

4.2. Integrating Sex and Gender-Sensitive Strategies in Mycotoxin Management

Reducing mycotoxin exposure requires scientifically rigorous methodologies that rec-
ognize and incorporate sex- and gender-specific considerations. Due to distinct biological
and social factors, men and women interact with mycotoxins differently. To achieve the
comprehensive control of mycotoxin-related health risks, developing gender-inclusive
policies, active community involvement, and customized education and outreach programs
is essential. Moreover, regulatory frameworks must be restructured to manage mycotoxins
effectively by recognizing these differences.

A critical step in managing mycotoxins is creating risk models incorporating sex- and
gender-specific experimental data on exposure routes, dietary habits, employment posi-
tions, and metabolic differences in toxin processing. Exposure to mycotoxins often varies
by gender due to different roles in food production and agricultural work. Understanding
these differences enables the development of targeted interventions [327,328].

Regulatory authorities should require mycotoxin screening and control procedures
to consider gender disparities. Establishing gender-specific exposure limits based on
sex-segregated data would allow more precise assessments of health risks. Screening
should account for gender differences in both exposure and health outcomes. Additionally,
community-based treatments must be tailored to reflect the specific roles and responsibili-
ties of men and women in agriculture, food processing, and storage. Actively involving
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both men and women in community discussions and decision-making about mycotoxin
management ensures that diverse perspectives guide interventions and addresses the needs
of all stakeholders [327-329].

Education and outreach efforts must be adapted to bridge the knowledge gaps and
address the unique needs of different gender groups. Instructional materials should be
tailored to suit men’s and women'’s literacy levels, cultural contexts, and informational
needs. These initiatives must leverage each group’s most effective communication channels,
ensuring maximum reach and engagement [327-329].

Overcoming these challenges requires engaging male community leaders to pro-
mote the importance of gender-sensitive mycotoxin management and advocate for mu-
tual respect and understanding. Offering incentives, such as free or discounted testing
kits, can encourage women to take proactive steps in reducing mycotoxin exposure in
their households.

One of the most critical aspects of integrating sex-sensitive strategies is the devel-
opment of sex-specific biomarkers for mycotoxin detection. Biomarkers are essential for
detecting early toxic effects, and due to differences in metabolism and physiology, they
may vary between men and women. Identifying these differences facilitates earlier and
more accurate exposure detection, leading to timely interventions. This approach also
enables the creation of personalized health recommendations, improving the effectiveness
of mycotoxin management individually. Additionally, pregnant women or individuals with
physiological conditions that influence mycotoxin metabolism may need specific treatments
to protect their health and the health of their children. Healthcare strategies can be tailored
based on the distinct physiological responses of each sex, leading to more targeted and
efficient treatments.

Integrating sex- and gender-sensitive strategies into mycotoxin management allows
for a more comprehensive approach to reducing exposure and improving health outcomes.
Accounting for biological and social differences will help develop more precise risk models,
implement effective regulations, and design targeted interventions that protect both men
and women from the dangers of mycotoxin exposure. Public health campaigns that
recognize these differences will improve the adherence to safety guidelines and enhance
overall community health and resilience against mycotoxin-related risks.

In summary, effective mycotoxin management requires gender-sensitive strategies
that consider the biological and social differences between men and women. This includes
developing tailored risk models, regulations, and outreach programs that incorporate sex-
specific data on exposure and metabolism. Gender-specific biomarkers for early detection
and personalized healthcare are essential for timely interventions. By addressing these
disparities, mycotoxin management can be more effective, ultimately improving health
outcomes and enhancing public health resilience.
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