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Abstract: Sugarcane mosaic virus (SCMV) (genus, Potyvirus; family, Potyviridae) is widespread,
deleterious, and the most damaging pathogen of sugarcane (Saccharum officinarum L. and Saccharum
spp.) that causes a substantial barrier to producing high sugarcane earnings. Sugarcane mosaic
disease (SCMD) is caused by a single or compound infection of SCMV disseminated by several
aphid vectors in a non-persistent manner. SCMV has flexuous filamentous particle of 700–750 nm
long, which encapsidated in a positive-sense, single-stranded RNA molecule of 9575 nucleotides.
RNA interference (RNAi)-mediated antiviral innate immunity is an evolutionarily conserved key
biological process in eukaryotes and has evolved as an antiviral defense system to interfere with viral
genomes for controlling infections in plants. The current study aims to analyze sugarcane (Saccharum
officinarum L. and Saccharum spp.) locus-derived microRNAs (sof-miRNAs/ssp-miRNAs) with
predicted potential for targeting the SCMV +ssRNA-encoded mRNAs, using a predictive approach
that involves five algorithms. The ultimate goal of this research is to mobilize the in silico- predicted
endogenous sof-miRNAs/ssp-miRNAs to experimentally trigger the catalytic RNAi pathway and
generate sugarcane cultivars to evaluate the potential antiviral resistance surveillance ability and
capacity for SCMV. Experimentally validated mature sugarcane (S. officinarum, 2n = 8X = 80) and
(S. spp., 2n = 100–120) sof-miRNA/ssp-miRNA sequences (n = 28) were downloaded from the
miRBase database and aligned with the SCMV genome (KY548506). Among the 28 targeted mature
locus-derived sof-miRNAs/ssp-miRNAs evaluated, one sugarcane miRNA homolog, sof-miR159c,
was identified to have a predicted miRNA binding site, at nucleotide position 3847 of the SCMV
genome targeting CI ORF. To verify the accuracy of the target prediction accuracy and to determine
whether the sugarcane sof-miRNA/ssp-miRNA could bind the predicted SCMV mRNA target(s), we
constructed an integrated Circos plot. A genome-wide in silico-predicted miRNA-mediated target
gene regulatory network was implicated to validate interactions necessary to warrant in vivo analysis.
The current work provides valuable computational evidence for the generation of SCMV-resistant
sugarcane cultivars.
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1. Introduction

Sugarcane (Saccharum officinarum) is a prolific tropical and subtropical crop that is eco-
nomically important, has a long life span, serves as a biofuel, is enriched with energy-rich
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roughage, and is also a source of agroindustrial residues [1–3]. The genome of octaploid
sugarcane (S. officinarum) (2n = 80; x = 10) [4,5], also known as “noble” sugarcane, and
the genome of sugarcane species and cultivars have been assembled, drafted, and rese-
quenced [6–11]. Sugarcane mosaic virus (SCMV) is a highly transmissible and pathogenic
potyvirus that causes sugarcane mosaic virus disease (SCMD) [12,13]. Potyviruses are
spread by a common complex of sap-sucking vectors such as aphid species [14]. Innovative
approaches are still needed to increase sugarcane productivity [15]. The genome of SCMV
consists of a +ss RNA molecule with a length of 9575 nucleotides encoding a single large
polyprotein. The genome polyprotein precursor was predicted to be cleaved resulting in
ten functional proteins: P1, HC-Pro, P3, 6 K1, CI, 6 K2, VPg, NIa, Nib, and CP [16–19].

In plants, microRNAs (miRNA) are endogenously expressed small (19–25 nucleotides),
evolutionarily conserved, non-coding (NC)-ss RNA molecules [20]. In higher plants, the
biogenesis and transcription of the miRNA gene (MIR) is controlled by RNA polymerase
II, which is then transcribed into single-standard polycistronic primary transcripts (pri-
miRNAs). They control a variety of biological processes in plants by regulating gene
expression, cell growth, development, differentiation, and host–virus interactions [21,22].
The miRNA-mediated RNAi is a post-transcriptional gene-silencing mechanism that pro-
vides antimicrobial innate immunity and regulates host–virus interactions to limit or inhibit
viral infection [23].

Artificial miRNA-mediated (amiRNA) technology is an alternative, robust biotechnol-
ogy based on engineering miRNA genes to control viral infections in plants [24]. RNAi-
based amiRNA constructs have been used in research to induce antiviral resistance in
plants against plant viruses such as tomato [25,26], cucumber [27], rice [28], and cotton [29].
Mature miRNAs in the sugarcane genome have been predicted, identified, isolated, ana-
lyzed, and validated to evaluate host–virus interactions and gene regulation, and they have
been associated with abiotic and biotic stresses [30–40]. Recently, experimental validations
of 35 conserved mature locus-derived high-confidence sof-miRNAs/ssp-miRNAs in the
sugarcane genome and further depositions in the miRBase database were reported.

An integrative multi-network approach based on SCMV infection assessment was used
to identify target binding sites of sugarcane genome-encoded sof-miRNAs/ssp-miRNAs in
the SCMV genome. The identification of multiple host-derived miRNA binding sites in the
SCMV genome for the creation of transgenic sugarcane varieties resistant to SCMV is the
main objective of this study. In this study, several miRNA prediction tools were evaluated
and used to identify microRNA–mRNA binding sites in the SCMV genome for use in
developing transgenic or non-transgenic modified sugarcane plants with resistance to
SCMV and, potentially, closely related potyviruses. Potential targets of the most promising
sugarcane miRNAs for breeding were also of interest to better understand potyvirus–
sugarcane plant interactions during infection. Until now, there have been no reports on the
use of an amiRNA-based strategy to develop SCMV tolerance in sugarcane plants, based on
the prediction of homologous amiRNAs for silencing SCMV. The predicted locus-derived
sof-miRNAs/ssp-miRNAs in the sugarcane genome were further evaluated to understand
the complex interactions between sugarcane host planta and SCMV potyviruses and to
identify novel antiviral targets.

2. Materials and Methods
2.1. Sugarcane MicroRNAs and SCMV Genome Data Retrieval and Processing

Experimentally validated high-confidence mature sugarcane microRNAs (sof-miRNA1
56-sof-miR11892/ssp-miR156-ssp-1432) (Accession ID: MIMAT0001656-MIMAT0001671/
MIMAT0020291-MIMAT0020290) and Saccharum sp.-microRNAs (ssp-miR166-ssp-miR1432)
(Accession ID: MIMAT0030451-MIMAT0020290) (Table S1) were retrieved from the miRNA
registry (miRBase, version 22) [41]. The full-length SCMV +ssRNA genome sequence (9575
bases) (Accession number KY548506) was acquired from the NCBI GenBank database [42].
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2.2. Potential Targets of Sugarcane MicroRNAs in the SCMV Genome

The prediction of effective microRNA–mRNA binding sites is a first step toward
understanding microRNA-regulated gene regulatory networks. The accuracy of miRNA
target site prediction can be affected by several factors, such as the specificity and sen-
sitivity of the algorithm, the choice of reference sequence, and the length of the target
sequence. Various in silico methods for effective silencing have been developed for the
computational prediction of miRNA–mRNA target sites. A computational approach refers
to the use of multiple computational methods, algorithms, or tools to analyze and interpret
biological data. This approach combines different types of publicly available in silico
algorithms, including miRanda [43,44], RNA22 [45,46], TAPIR [47], psRNATarget [48,49],
and RNAhybrid [50] (Table 1).

Table 1. Different features and parameters of algorithms applied for miRNA target predictions.

Algorithms Features Organisms Parameters Source

miRanda

Seed-based interaction,
multiple target sites,

free energy of
miRNA–mRNA

duplex, conservation

Human, rat, fly, and
worm

Score threshold = 140,
Free energy = −15

Kcal/mol, Gap Open
penalty = −9.00, Gap

Extend penalty = −4.00

http:
//www.microrna.org/
(accessed on 14 August

2019)

RNA22
Pattern recognition,

folding energy,
heteroduplex,

Human, mouse, fly,
and worm

Number of paired-up bases
= 12, Sensitivity (63%),

Specificity (61%),
Folding energy = −14

Kcal/mol

https:
//cm.jefferson.edu/
rna22/Interactive/

(accessed on 22 June
2019)

TAPIR
Sees pairing, target site
accessibility, multiple

sites
Plants Free energy ratio = 0.2

Score = 9

http://bioinformatics.
psb.ugent.be/

webtools/tapir
(accessed on 25 June

2021)

psRNATarget

Complementarity
scoring, multiple target

sites, translation
inhibition

Plants

Expectation score = 7,
Penalty for G:U pair = 0.5

HSP size = 19
Penalty for opening gap = 2

https://www.zhaolab.
org/psRNATarget/
analysis?function=2
(accessed on 26 May

2022)

RNAhybrid Seed pairing and free
energy Any

Free energy = −20
Kcal/mol,

Hit per target = 1

http:
//bibiserv.techfak.uni-
bielefeld.de/rnahybrid

(accessed on 26 May
2022)

2.3. miRanda

miRanda is one of the first miRNA target predictors, a highly versatile algorithm based
on the seed-based interactions of miRNA target duplexes [43]. It was implemented as a
standard tool to detect potential miRNA binding sites. RNA–RNA duplex dimerization
and sequence complementarity are features considered by the miRanda algorithm. It
considers the cross-species conservation of target sites, which distinguishes it from other
algorithms [44]. The miRanda algorithm has been implemented in C, and its first version
was published in 2003. The default parameters were selected for the analysis (Table 1).

2.4. RNA22

The RNA22 algorithm has a diverse, web-based application with implemented inter-
active exploration. It uses a pattern-recognition based approach to serve as a miRNA target
discovery tool. It predicts statistically significant target patterns using maximum folding
energy (MFE) [45,46]. Site complementarity and non-seed-based interactions are important
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features. Its prediction is also based on highly sensitive and significant target patterns. The
default parameters were chosen (Table 1).

2.5. TAPIR

The TAPIR algorithm is used to assess the seed-based interactions of plant miRNAs in
the target sequence. It is a highly precise plant miRNA target prediction algorithm used to
detect target binding sites in the target sequence. It is used to deliver precise miRNA target
predictions, including target mimics, with FASTA and RNAhybrid search options [47]. The
default parameters were chosen (Table 1).

2.6. psRNATarget

The psRNATarget algorithm is a highly sensitive, newly designed web-based tool
developed for plant miRNA prediction. The target binding sites of plant miRNAs are
predicted based on complementary scoring schema. The algorithm predicts the inhibition
pattern of cleavage [48,49]. The default parameters were chosen (Table 1).

2.7. RNAhybrid

The RNAhybrid is a seed-based scanning algorithm based on intermolecular hybridiza-
tion used to predict effective binding sites of miRNAs in the target sequence. It predicts
target binding sites in a very easy and flexible manner [50]. It is an online available tool.
It is used for the rapid prediction of miRNA targets based on the MFE hybridization of
mRNAs and miRNAs. The default parameters were chosen (Table 1).

2.8. RNAfold

The RNAfold algorithm is available on a web server implemented in the ViennaRNA
package [51].

2.9. Statistical Analysis

The miRNA–mRNA target prediction biological data were further processed. Graphi-
cal representations of the miRNA data were prepared using the R language [52].

3. Results
3.1. Prediction and Analyysis of Sugarcane MicroRNAs Targeting SCMV Genome

An integrative computational approach for identifying the possible interactions of
high-confidence target sites of mature sugarcane miRNAs located in the SCMV positive-
sense single-stranded (+ssRNA) genome from among the 28 sugarcane miRNAs (sof-
miRNAs/ssp-miRNAs) revealed sof-miRNA/ssp-miRNA-derived MIR genes at a high
proportion of sugarcane miRNA gene loci [33,53–56]. The predicted SCMV +ssRNA-
encoded mRNA sequences were localized hypothetically by the sugarcane locus-derived
sof-miRNA/ssp-miRNAs based on the miRanda algorithm predicted 19 miRNA-mRNA
target pairs and RNA22: 15 sugarcane sof-miRNAs/ssp-miRNAs and 20 binding sites i. The
TAPIR identified seven binding sites of mature sugarcane locus-derived sof-miRNA/ssp-
miRNA target pairs. In total, 16 sugarcane miRNAs targeting 30 cleavable attachments
sites in the SCMV genome were identified by the psRNATarget algorithm. RNAhybrid
predicted 28 high-probability binding sites of sugarcane miRNAs in the SCMV genomic
RNA sequence (Figures 1 and 2, File S1, Table S2).
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Figure 1. Five-set Venn diagram representing mutually common binding sites of mature sugarcane 
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mature sugarcane miRNA―ssp-miR1444c-3p. 

3.2. Sugarcane miRNAs Targeting P1 
The potyviral first protease protein P1 was encoded by P1 ORF (149–847) (698 bases). 

The miRanda and RNA22 algorithms predicted the bindings of two sof-miRNAs: 
sof-miR168 (a, b) at nucleotide positions 547 and 846, respectively, as shown in (Figure 
2A, B). The sof-miRNA168a was targeted at nucleotide position 406, using the TAPIR 
algorithm (Figure 2C). No sof-miRNA/ssp-miRNA was predicted to target the P1 region, 
by the psRNATarget and RNAhybrid algorithms (Figure 2D,E) (File S1) (Tables S2 and 
S3). 

Figure 1. Five-set Venn diagram representing mutually common binding sites of mature sugarcane
miRNAs predicted to potentially target the SCMV genome. The in silico prediction was established
using computational tools (miRanda, RNA22, TAPIR, psRNATarget, and RNAhybrid) to identify
potential targets of sugarcane-encoded miRNAs. The areas of overlap among computational tools
show miRNA binding sites. The high-order intersection of five algorithms revealed the most potent
mature sugarcane miRNA—ssp-miR1444c-3p.

3.2. Sugarcane miRNAs Targeting P1

The potyviral first protease protein P1 was encoded by P1 ORF (149–847) (698 bases).
The miRanda and RNA22 algorithms predicted the bindings of two sof-miRNAs: sof-
miR168 (a, b) at nucleotide positions 547 and 846, respectively, as shown in (Figure 2A,B).
The sof-miRNA168a was targeted at nucleotide position 406, using the TAPIR algorithm
(Figure 2C). No sof-miRNA/ssp-miRNA was predicted to target the P1 region, by the
psRNATarget and RNAhybrid algorithms (Figure 2D,E) (File S1) (Tables S2 and S3).
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(C) TAPIR identified sugarcane miRNA binding sites. (D) psRNATarget predicted several binding 
sites of sugarcane miRNAs. (E) The prediction of miRNA sites by RNAhybrid. (F) Union plot rep-
resenting all predicted binding sites detected by all the algorithms used. Multiple copies of miRNA 
target binding sites are represented by colored dots. Targeted genes of SCMV are indicated by 
different colors. 
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The HC-Pro ORF (848–2227 nucleotides) encodes. The miRanda and RNA22 algo-

rithms predicted the target site of sof-miR168 (a, b) at nucleotide position 1827 and  
sof-miR168a at nucleotide position 1296 (Figure 2A,B). 

TAPIR predicted the attachment site of sof-miRNA159e at locus 1159 (Figure 2C). 
The psRNATarget algorithm detected the binding of ssp-miR444 (a, b, c-3p) at nt posi-
tions 1058 and 1763 (Figure 2D). The RNAhybrid algorithm predicted seven 
sof-miRNAs/ssp-miRNAs: sof-miR159c, sof-miR168 (a, b), ssp-miR444 (a, b, c-3p), and 

Figure 2. Individual sugarcane sof-miRNAs/ssp-miRNAs and their predicted high-confidence bind-
ing sites in the SCMV genome were predicted based on the ‘five algorithms’ approach. (A) miRNA
sites were detected by miRanda. (B) Several miRNA target sites were detected by RNA22. (C) TAPIR
identified sugarcane miRNA binding sites. (D) psRNATarget predicted several binding sites of
sugarcane miRNAs. (E) The prediction of miRNA sites by RNAhybrid. (F) Union plot representing
all predicted binding sites detected by all the algorithms used. Multiple copies of miRNA target
binding sites are represented by colored dots. Targeted genes of SCMV are indicated by different
colors.

3.3. Sugarcane miRNAs Targeting HC-Pro

The HC-Pro ORF (848–2227 nucleotides) encodes. The miRanda and RNA22 algo-
rithms predicted the target site of sof-miR168 (a, b) at nucleotide position 1827 and sof-
miR168a at nucleotide position 1296 (Figure 2A,B).

TAPIR predicted the attachment site of sof-miRNA159e at locus 1159 (Figure 2C). The
psRNATarget algorithm detected the binding of ssp-miR444 (a, b, c-3p) at nt positions
1058 and 1763 (Figure 2D). The RNAhybrid algorithm predicted seven sof-miRNAs/ssp-
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miRNAs: sof-miR159c, sof-miR168 (a, b), ssp-miR444 (a, b, c-3p), and ssp-miR1432 at
nucleotide coordinates 1830, 1296, 1818, 1057, and 1316, respectively (Figure 2E, File S1,
Tables S2 and S3).

3.4. Sugarcane miRNAs Targeting P3

The P3 ORF (2228–3268 nt) encodes a membrane-associated P3 protein which is re-
quired for SCMV genomic RNA replication, potential cell-to-cell spread (movement and
transport) and is also responsible for determining host-range and symptoms [57–59]. The
miRanda algorithm predicted the binding of sof-miRNAs: sof-miR168 (a, b) at nucleotide
position 2562 (Figure 2A). No sof-miRNA/ssp-miRNA was predicted for targeting the
P3 region by the RNA22 and TAPIR algorithms (Figure 2B,C). The potential target sites
of sof-miR167 (a, b), sof-miR168a, ssp-miR437c, and ssp-miR444 (a, b, c-3p) at nucleotide
positions 2427, 2971, 2981, and 2367, respectively, were detected by the psRNATarget algo-
rithm (Figure 2D). In addition, RNAhybrid identified sugarcane sof-miRNAs/ssp-miRNAs;
sof-miR167 (a, b) and ssp-miR437b at nucleotide positions 2699 and 2416, respectively
(Figure 2E, File S1, Tables S2 and S3).

3.5. Sugarcane miRNAs Targeting 6K1

The 6K1 ORF (3269–3469 nucleotides) encode a 6K1 protein that functions in viral
genome replication. It mediates cell-to-cell movement, controlling defense mechanism
and gene regulation. It is a key component of the 6K2-induced viral replication complex
(VRC) and regulation [60,61]. The 6K1 had the least number of predicted sugarcane sof-
miRNAs/ssp-miRNAs. The ssp-miR444c-3p was predicted to optimally target 6K1 at
nucleotide position 3441, according to the psRNATarget algorithm (Figure 2D, File S1,
Tables S2 and S3).

3.6. Sugarcane miRNAs Targeting CI

The CI ORF (3470–5383 nt) encodes a multifunctional cylindrical inclusion protein
(CI) essential for ATP binding and RNA helicase activity [62–64]. CI was targeted by
two miRNAs: sof-miR396 and ssp-miR166 at nt positions 3634 and 4178, respectively,
as indicated by the miRanda algorithm (Figure 2A). The RNA22 algorithm predicted
two miRNAs: sof-miR159c and ssp-miR444b at nt positions 3730 and 5311, respectively,
(Figure 2B). In addition, TAPIR predicted three sugarcane miRNAs: sof-miR159c, ssp-
miR437a, and ssp-miR1128 at nucleotide positions 3847, 4869, and 4534, respectively
(Figure 2C). The psRNATarget algorithm identified seven miRNAs: sof-miR159 (a, b, c,
d, e), ssp-miR444b, and ssp-miR1432 at nt positions 3847, 3992, and 3980, respectively
(Figure 2D). Five miRNA-binding sites were detected by RNAhybrid: sof-miR396 (start site
5016), sof-miR408e (3633), ssp-miR166 (3714), ssp-miR437a (4868), and ssp-miR1128 (4533)
(Figure 2E, File S1, Tables S2 and S3).

3.7. Sugarcane miRNAs Targeting 6K2

Potyvirus 6K2 (5384–5542 nt) encodes the multifunctional protein 6K2, induces the
formation of RE-derived complexes, and develops resistance to drought [65,66]. The RNA22
algorithm identified five sugarcane sof-miRNAs: sof-miR408 (a, b, c, d, and e) at locus
position 5538 (Figure 2B, File S1, Tables S2 and S3).

3.8. Sugarcane miRNAs Targeting NIa-VPg

Potyvirus NIa-VPg ORF (5543–6109 nt) encodes a viral genome-linked protein (VPg)
that functions as a virulence determinant and genome translator [67–71]. It is also involved
in replication, translation, and movement [72–74]. The RNA22 and TAPIR algorithms pre-
dicted the binding of ssp-miR444c-3p at locus position 5552 (Figure 2B,C). The psRNATarget
algorithm predicted six miRNAs: sof-miR156, sof-miR159 (a, b, c, d), and ssp-miR444c-3p
(Figure 2D). No sugarcane sof-miRNA/ssp-miRNA was predicted to target the NIa-VPg
region using the RNAhybrid algorithm (Figure 2E, File S1, Tables S2 and S3).
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3.9. Sugarcane miRNAs Targeting NIa

Potyvirus NIa ORF (6110–6835 nt) encodes nuclear inclusion protein a (NIa), which
is involved in RNA binding and also interacts with NIb [75,76]. miRanda, RNA22,
and RNAhybrid predicted the binding of only one sugarcane miRNA: ssp-miR528, sof-
miR396, and ssp-miR827 at nucleotide positions 6376, 6821, and 6338, respectively (Fig-
ure 2A,B,E). The psRNATarget algorithm identified three sugarcane miRNAs: sof-miR408e
and ssp-miR444 (a, b) at nucleotide positions 6544 and 6641, respectively (Figure 2D). No
miRNA target pair was identified to target NIa by the TAPIR algorithm(Figure 2C, File S1,
Tables S2 and S3).

3.10. Sugarcane miRNAs Targeting NIb

Potyvirus NIb ORF (6836–8398) encodes nuclear inclusion protein b (NIb), which
is involved in translocation activity and also interacts with NIa [77]. It contains nuclear
signals and is also referred to as RdRp [78]. The miRanda algorithm detected the binding
of two sugarcane ssp-miRNAs: ssp-miR169 and ssp-miR1432 at nucleotide positions 7798
and 7523, respectively (Figure 2A). The psRNATarget algorithm predicted the binding of
two sugarcane ssp-miRNAs: sof-miR396 and ssp-miR444b at nucleotide positions 7798 and
7523, respectively (Figure 2D). No miRNA-target pair was identified based on the RNA22,
TAPIR, and RNAhybrid algorithms (Figure 2B,C,E, File S1, Tables S2 and S3).

3.10.1. Sugarcane miRNAs Targeting CP

Potyvirus CP ORF (8399–9337) encodes a multitasking coat protein (CP), which is
involved in the development of virion assembly. The CP is involved in all steps of the po-
tyviral life cycle [79–81]. The miRanda algorithm predicted the binding of three sugarcane
ssp-miRNAs (ssp-miR444 (a, b, c-3p) start site 8501). ssp-miR444c-3p also targeted the CP
region at nucleotide position 9268 (Figure 2A). The RNA22 algorithm predicted the binding
of the ssp-miRNA444 family at nt positions 8502 and 9181 (Figure 2B). The psRNATarget
algorithm predicted the binding of ssp-miR444c-3p at nt position 9282 (Figure 2D). Potential
binding sites of sugarcane miRNAs, sof-miR159 (a, b, d, e), sof-miR408 (a, b, c, d), and
ssp-miR169, were detected by the RNAhybrid algorithm at nucleotide positions 8953, 8355,
and 8458, respectively (Figure 2E, File S1, Tables S2 and S3).

3.10.2. Sugarcane miRNAs Targeting UTR

The potyvirus 5′ untranslated region (5′ UTR) (1–148 nt) and 3′ UTR (9341–9575 nt)
are involved in the replication and translational activities of the ORFs [82,83]. The sof-
miR408 (a, b, c, d) was predicted to target the 5′ UTR at nt positions 139 by miRanda
(Figure 2A). Similarly, ssp-miR528 was identified to target the 5′ UTR at nt position 122
by TAPIR and RNAhybrid (Figure 2C,E). RNA22 predicted the binding of sof-miR168 (a,
b) at nt position 9520 in the 3′ UTR (Figure 2B). RNAhybrid predicted the binding of two
sugarcane miRNAs in the 3′UTR: sof-miR156 and ssp-miR437c at nt positions 9402 and
9395, respectively (Figure 2E, File S1, Tables S2 and S3).

3.11. Identification of Consensual Sugarcane MicroRNAs

The present study was concluded based on the consensus of the genomic target
binding sites of sugarcane miRNAs determined by different algorithms. Among them, we
selected nine sugarcane miRNAs (sof-miR159c, sof-miR168a, ssp-miR437a, ssp-miR528,
ssp-miR444 (a, b), ssp-miR444c-3p), (ssp-miR1128, and ssp-miR1432), which were based
on the consensus genomic positions 3847 (target gene CI), 1296 (HC-Pro), 4869 (CI), 122
(5′ UTR), 8502/1058 (CP/HC-Pro), 5583 (NIa-VPg), 4534 (CI), and 1316 (HC-Pro) detected
(Tables 2 and 3). Of the nine consensus locus-derived sof-miRNAs/ssp-miRNAs in the
sugarcane genome investigated in this study, only one sof-miRNA (sof-miR159c at nt
position 3847 targeting CI) was identified by the union of genomic consensus positions by
at least three algorithms (RNA22, TAPIR, and psRNATarget) (Figure 3, Tables 2 and 3, File
S1, Tables S2 and S3).
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Table 2. Predicted high-confidence binding sites of consensus sugarcane miRNAs targeting the SCMV
genome detected by different computational algorithms.

Sugarcane
miRNA

Position
miRanda

Position
RNA22

Position
TAPIR

Position
psRNATarget

Position
RNAhybrid

MFE *
miRanda

MFE **
RNA22

MFE Ratio
TAPIR

Expectation
psRNATarget

MFE *
RNAhybrid

sof-miR159c 3847 3847 3847 −18.00 0.58 5.50
sof-miR168a 1296 1296 −18.70 −25.80
ssp-miR437a 4869 4868 0.69 −21.20
ssp-miR528 122 121 0.60 −26.50

ssp-miR444a 8501 8502 1058 1057 −18.42 −18.00 7.00 −29.00
ssp-miR444b 8501 8502 1058 1057 −18.42 −18.00 7.00

ssp-miR444c-3p 5583 5583 0.59 6.00
ssp-miR1128 4534 4533 0.66 −27.30
ssp-miR1432 1315 1316 −15.40 −22.20

* MFE: minimum free energy measured in Kcal/ml. ** MFE: maximum folding energy for heteroduplex measured
in Kcal/mol.

Table 3. Predicted consensus sugarcane-encoded miRNA target sites localized in the different target
genes of SCMV-SO.

miRNA ID Accession ID Mature Sequence
(5′–3′)

Target Genes
ORF(s)

Target Binding
Locus Position

sof-miR159c MIMAT0001662 CUUGGAUUGAAGGGAGCUCCU CI 3847–3868
sof-miR168a MIMAT0001665 UCGCUUGGUGCAGAUCGGGAC HC-Pro 1296–1317
ssp-miR437a MIMAT0020280 AAAGUUAGAGAAGUUUGACUU CI 4869–4890
ssp-miR528 MIMAT0020288 UGGAAGGGGCAUGCAGAGGAG 5′UTR 122–143

ssp-miR444a MIMAT0020284 UGCAGUUGUUGCCUCAAGCUU CP 8501–8521
ssp-miR444a (1) MIMAT0020284 UGCAGUUGUUGCCUCAAGCUU HC-Pro 1058–1078

ssp-miR444b MIMAT0020285 UGCAGUUGUUGCCUCAGGCUU CP 8501–8521
ssp-miR444b (1) MIMAT0020285 UGCAGUUGUUGCCUCAGGCUU HC-Pro 1058–1079
ssp-miR444c-3p MIMAT0020286 UGCAGUUGUUGUCUCAAGCUU NIa-VPg 5583–5604

ssp-miR1128 MIMAT0020289 UACUACUCCCUCCGUCCCAAA CI 4534–4555
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binding sites targeting different genes of SCMV.
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3.12. Identification of the miRNA–mRNA Regulatory Network

A Circos plot represents the predicted host–virus interactions of sugarcane miRNAs
and SCMV target genes. A Circos plot was generated to visualize a comprehensive master
miRNA regulatory network with novel antiviral targets (Figure 4). The generation of the
miRNA–mRNA regulatory network was conducted using ‘Circos’ software [84].
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Figure 4. Integrated Circos plot shows multiple targets of sugarcane-encoded miRNAs. The colored
connection lines are targeted genes (ORFs) in the SCMV genome. Construction, exploration, target
predictions, and interactions between the sugarcane miRNAs and SCMV genes are mapped.

3.13. RNA Secondary Structures

The computationally predicted locus-derived mature miRNAs in the sugarcane genome
were analyzed by generating their secondary structures using the original precursor se-
quences. Pre-miRNA hairpin sequences were used for manual curation. The main pa-
rameters of the predicted stable secondary structures were evaluated (Table 4). The stable
secondary structures of the potential consensus sugarcane precursor sequences were pre-
dicted by the RNAfold algorithm [51].
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Table 4. Features of the predicted precursors of sugarcane were determined.

miRNA ID Accession ID MFE */
Kcal/mol AMFE ** MFEI *** (G + C)%

sof-MIR159c MI0001760 −110.60 −46.47 −0.87 53.36
sof-MIR168a MI0001763 −66.20 −63.65 −0.83 75.96
ssp-MIR437a MI0001763 −57.10 −32.62 −1.29 25.14
ssp-MIR528 MI0001763 −48.50 −52.71 −0.86 60.84
ssp-MIR444a MI0001763 −57.70 −54.94 −1.28 42.86
ssp-MIR444b MI0001763 −63.70 −60.09 −1.38 43.39
ssp-MIR444c MI0001763 −61.80 −57.22 −1.31 43.52
ssp-MIR1128 MI0001763 −101.70 −36.98 −1.18 31.27
ssp-MIR1432 MI0001763 −57.10 −64.88 −1.14 56.82

* MFE is minimum free energy. ** AMFE represents adjusted minimum free energy. *** MFEI defines as minimum
free energy index.

4. Discussion

The SCMV is a monopartite potyvirus suspected as an etiological agent that has
spread to Pakistan and China due to its high transmissibility and has become an increas-
ingly potential long-lasting threat to sugarcane and maize production in the last two
decades [13,17,85]. In our previous studies, we have investigated experimentally validated
mature locus-derived microRNAs in the sugarcane genome, which were predicted to be tar-
gets of SCBGAV, SCYLV, and SCBV based on in silico criteria [37–39]. Several studies have
identified complex host–virus interactions and have investigated miRNAs targeting plant
viruses using an in silico approach [86–92]. miRNAs have emerged as novel endogenous
targets for multiple levels of miRNA gene-level regulation [53,93,94]. Several studies have
shown that the efficacy of amiRNA-based RNA interference leads to specific gene silencing
in transgenic crops to reduce host plant virus infection [27,28,95–97]. In this computational
research, mature sugarcane sof-miRNAs/ssp-miRNAs were aligned with the genomic
sequence of the SCMV target to identify miRNA–mRNA binding sites hypothesized to
understand complex host–virus specific interactions with the P1, HC-Pro, P3, 6K1, CI, 6K2,
NIa-VPg, NIa-Pro, NIb, and CP of SCMV. The P1 is the least-conserved hypervariable
that modulates host responses and is essential for the replication of the viral +ssRNA
genome [98,99]. Host adaptation is a key process for virus genome evolution [100,101].
P1 is also related to virus–host adaptation [102]. The HC-Pro is a multifunctional, non-
structural dimeric helper component proteinase. It has been reported as a viral suppressor.
HC-Pro is required to enhance expression via the fusion of P1, symptom development, and
viral replication [103–108]. Until now, the potential for exploiting the regulation of sugar-
cane genome-encoded miRNA to abate infection by SCMV has not been investigated as a
strategy for developing tolerant or resistant sugarcane cultivars. The results of this study
provide the first computationally based evaluation of mature locus-derived miRNAs in
the sugarcane plant genome to enable the prediction of effective miRNA binding sites and
provide new tools for better understanding the molecular and omic interactions between
sugarcane plant host cells and SCMV-encoded mRNAs/protein.

Based on our findings, the SCMV genome (HC-Pro, CI, NIa-VPg, and CP) is susceptible
to nine consensus sugarcane miRNAs. We found that nine miRNAs could theoretically
originate from the sugarcane genome (Tables 2 and 3). In silico tools, RNA22, TAPIR, and
psRNATarget, identified a genomic consensus base pair complementarity in sof-miR159c
at nucleotide position 3847 (Figure 2 and Table 2). The ssp-miR444c-3p was predicted by
all five algorithms, making it the only unique sugarcane miRNA identified in this study
(Figure 1 and Table S2). We identified the maximum folding energy of the consensus
functional miRNA–mRNA target pair, which is −18.00 Kcal/mol, using RNA22. RNA22 is
a highly sensitive algorithm that uses a pattern-based approach to target miRNAs. Using
the psRNATarget algorithm, we estimated an expectation score of 5.50 for a consensus target
pair (Table 2) [109]. The RNA22 and psRNATarget algorithms predicted target sites using
a non-seed-based approach. Experimentally determining miRNA–mRNA interactions
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can be expensive and time-consuming; making the accurate computational prediction of
miRNA targets a high priority. The limitations and bottlenecks of existing algorithms and
approaches are interpreted using the union and intersection level of the predictions in this
study. The miRNA targeting relies on the base pairing of miRNA–mRNA targets [110].
These results suggest that the predicted consensus miRNA–mRNA duplex represents a
‘true target’. Our results indicate that sugarcane miRNAs likely play a role in the interaction
between host and virus. Our results highlight the interaction of SCMV ss-RNA with the
sugarcane miRNA target interaction network.

Potyvirus cylindrical inclusion helicase (CI) is required for the initiation of the vi-
ral replication mechanism, cell-to-cell movement, and plant–host, protein–virus interac-
tions [62,63,111]. Computational predictions and analyses revealed that the sugarcane
consensus sof-miR159c is a high-confidence target site potentially targeting the CI ORF
(Table 3). The conserved precursor MIR159 is considered to be controlled by plant growth
and fertility [112]. In our previous study, the consensus sof-miR159e (Accession ID: MI-
MAT0001661), predicted to have an effective target binding site at nucleotide position 5535
in the SCBV genome, was identified as the most effective miRNA by the miRanda, RNA22,
and RNAhybrid algorithms.

While miRNA–mRNA target pair interactions between locus-derived miRNAs in
the sugarcane genome and SCMV have been determined, the development of amiRNA-
based constructs and further transformations in sugarcane to control SCMV are not fully
understood. We have performed a comprehensive analysis of SCMD-associated Potyvirus
for the first time, which is a first step toward the development of miRNA-based antiviral
therapy. An amiRNA construct relies on the high-level specificity of a nucleotide base
pairing to control deleterious off-target effects. The small size of amiRNA is a unique feature
for the development of a single gene expression vector to control multiple potyviruses in
transgenic sugarcane. This approach offers specificity and sensitivity and complements
existing molecular approaches for analyzing targets for SCMV disease abatement. A
number of environmental concerns have been raised regarding the large-scale use of virus-
resistant transgenic plants [113–118]. As amiRNAs have high specificity to the designed
target gene, detrimental off-target effects can be minimized, permitting their silencing
expression to be stably transmitted to future generations [119–123]. The results indicate
that the use of in silico tools provides better results than a single algorithm when developing
amiRNA-based mdm-miRNA therapeutics to target SCMV and other plant viruses as well.
Despite the frequent use of RNAi in biology and agriculture, there are several drawbacks
and challenges in designing efficient silencing constructs. Furthermore, the small size of
amiRNA permits for the insertion of multiple and distinct amiRNAs within a single gene
expression cassette, which can then be transformed to develop transgenic plant resistant
to multiple viruses simultaneously [27,95,124]. The in silico analysis was designed for
experimental validation to show whether these predicted miRNAs could make the plants
resistant to SCMV. Future work will be focused on transiently expressing these miRNAs or
injecting RNA hairpins in N. benthamiana to show its efficacy against SCMV.

5. Conclusions and Future Directions

The SCMV, which infects sugarcane crops worldwide, is the most damaging potyvirus
pathogen associated with an ongoing SCMD epidemic that reduces yield in all sugar-
cane cultivars cultivated in China. This study involved in silico tools and approaches
to characterize the target binding sites of mature sugarcane locus-derived miRNAs in
the SCMV genome. Among the 28 sugarcane miRNAs from the miRBase database, only
one, sof-miRNA (sof-miR159c), was identified as the most effective, naturally occurring
sof-miRNA biomolecule for targeting the SCMV genome (nucleotide 3847 onward), based
on the consensus of multiple algorithms used herein. This approach offers specificity and
sensitivity and complements existing molecular approaches for analyzing targets for SCMV
disease abatement. The current focus of attention is the development of SCMV-resistant
sugarcane plants that abate the effects of SCMD.
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