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Abstract

:

Biomolecules of marine origin have many applications in the field of biotechnology and medicine, but still hold great potential as bioactive substances against different diseases. The purification or total synthesis of marine metabolites is expensive, and requires a reliable selection method to reveal their pharmaceutical potential prior to clinical validation. This study aimed to explore the hidden potential of natural products from the gorgonian genus Antillogorgia as anti-SARS-CoV-2 agents, via binding affinity assessments and molecular dynamics (MDs) simulations. The three-dimensional protein structures of the nsp16–nsp10 complex, nsp13, and nsp14 were acquired from the RCSB PDB database. All 165 natural products (NPs) were discovered using the PubChem, ChemSpider, and CMNPD databases. The freeware Autodock Vina was used to conduct the molecular docking procedure, once the proteins and ligands were prepared using BIOVIA discovery studio and Avogadro software v1.95. Before running MDs simulations using the CABS-flex 2.0 website, the binding affinity assessments and amino acid interactions were carefully examined. Just twelve NPs were selected, and five of those NPs interacted optimally with the catalytic amino acids of proteins. To conclude, pseudopterosin A (−8.0 kcal/mol), seco-pseudopterosin A (−7.2 kcal/mol), sandresolide B (−6.2 kcal/mol), elisabatin A (−7.0 kcal/mol), and elisapterosin A (−10.7 kcal/mol) appeared to be the most promising candidates against the nsp16–nsp10, nsp13, and nsp14 proteins.
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1. Introduction


By July 2023, the COVID-19 pandemic, which continues to have a catastrophic effect on the economy and on humankind as a whole, is expected to have caused over 768 million COVID-19 cases, and almost 7.0 million fatalities globally. Effective pharmaceutical treatments and vaccinations are essential to containing the outbreak. Coronavirus research has received an unusually high level of attention throughout this global crisis, which has sped up the development of vaccines [1,2]. The decrease in mortality and morbidity was made possible by the early adoption of drugs such as dexamethasone and remdesivir [3,4,5,6,7,8]. Remdesivir, however, appears to have a minimal effect on patients’ chances of survival, according to available research [9]. To address SARS-CoV-2 infections, research on novel therapies is still important.



The nsp10 is known to be a distinctive protein and, as a complex of nsp16–nsp10, it performs C2′-O methylation at the 5′ end of the viral RNA, promoting efficient virus replication. The majority of the residues involved in catalysis and Cap/SAM binding are conserved, and the nsp16–nsp10 complex in SARS-CoV-2 shares a high degree of similarity with other coronaviruses [10,11,12,13,14]. Furthermore, the SARS-CoV-2 nsp13 is also a crucial protein for the replication of the virus, because it enables the initial phase of RNA capping, which is required to stabilize the virus, block the innate immune response, and ensure the translation process. The nsp13, a member of the 1B superfamily, consists of 601-amino-acid-long conserved protein sequences. This helicase is an enzyme that facilitates viral replication, as it enables the initial phase of the formation of the RNA cap. This step contributes to the overall stability of the virus, protects the virus from the host’s innate immune response, and promotes its translation [15,16,17,18,19]. Furthermore, the nonstructural protein 14 (nsp14) is a dual-tasking protein that performs both the 3′-to-5′ exoribonuclease and N7-MTase operations, which are in control of premature RNA proofreading and mRNA capping throughout the replication process [20,21,22]. Thus, these proteins are desirable candidates for anti-viral therapy, due to their significant importance in viral RNA replication, and their efficient evasion of detection by the host’s immune system [23,24,25].



Finding therapeutic interventions in a pandemic can be done rationally and quickly by repositioning currently available medications, investigational drug candidates, and endorsed bioactive substances of which the toxicological, pharmacokinetic, and pharmacodynamic properties are well-understood [26]. High-throughput in vitro experiments, in vivo animal investigations, and computer-aided drug design (CADD) approaches are all usually employed in the identification of repurpose-worthy drug candidates. Nevertheless, these methods can be expensive and time-consuming. MD simulations, if performed properly, is an inexpensive approach to gaining valuable information about drug candidates. Significant numbers of ligands can be rapidly screened computationally, and binding affinities, along with amino acid interactions, allow for the quick identification of the candidates for targeted in vitro and in vivo investigation, followed by clinical trials [27,28].



NPs, including secondary metabolites, have various biological activities, including various anti-viral activities, and are suspected by us to contain strong anti-SARS-CoV-2 agents. In silico assessments could be a very fast method to evaluate NPs. For example, some of the natural coumarins, well-known compounds with anti-viral activity [29], were found through molecular docking to be active against COVID-19 [30]. Our research focuses on the in silico search for NPs active against COVID-19 or COVID-19-associated pathologies [31], via binding-affinity assessments and MDs simulations. We utilized a general methodology (see Figure 1), which included target information and ligand information collection from the literature, followed by competence visualization, molecular docking, and MDs simulations.



This in silico investigation aimed to assess the effectiveness of metabolites from the Antillogorgia genus against three significant known non-structural enzymes of SARS-CoV-2, with a focus on the two species americana and elisabethae [32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73]. The anti-SARS-CoV-2 capabilities of all 165 NPs with low molecular weights from the two aforementioned species of soft corals were tested. This study serves as an illustration of effective data collecting packaged as a species-specific chemical library. Additionally, this study’s docking experiments demonstrated how to use such a library. For the first time, this work discovered several unique NPs that interacted with the concerned catalytic residues of the nsp16–10 complex, nsp13, and nsp14 proteins. The possible toxicity of the NPs was also evaluated during this research, and a detailed analysis of their pharmacokinetic and bioactivity predictions was conducted. The schematic workflow of this work is shown in Figure 1.




2. Materials and Methods


2.1. Obtaining Target Proteins


Through a literature review, details regarding the nonstructural COVID-19 proteins were discovered. From the RCSB PDB database, the X-ray-diffraction-determined crystal structures of the SARS-CoV-2 nsp16–nsp10 complex, nsp13 (helicase), and nsp14 were downloaded [74] (see Figure S1). For this work, the 3D structures of nsp16–nsp10 (PDB ID: 6W4H), nsp13 (PDB ID: 6ZSL), and nsp14 (PDB ID: 7R2V) attached with the inhibitor SAH, each of which was resolved at 1.80 Å, 1.94 Å, and 2.53 Å, were utilized in this study [75,76,77].




2.2. Obtaining Ligands


Through an extensive literature search, information on the natural products from Antillogorgia americana and Antillogorgia elisabethae was examined. These two types of soft corals include approximately 165 naturally occurring products (see Table S1). To find all of the ligands’ 2D or 3D conformers, a thorough database search was conducted. Firstly, the SDF chemically formatted 3D conformers of ligands were obtained from the PubChem database [78]. 2D conformers were downloaded in the event that 3D structures were not available. For the ligands that were missing from the PubChem database, a second source, the ChemSpider database, was utilized. The ChemSpider database’s ligands were downloaded in Mol chemical format [79]. If the ligands were not found in either the PubChem or Chemspider database, then a third database, CMNPD, was employed as a backup source [80]. In order to advance this work, all 165 ligands were eventually effectively obtained.




2.3. Visualization


We used BIOVIA Discovery Studio Visualizer 4.5 [81] to display the protein structures of nsp16–nsp10, nsp13, and nsp14. By doing so, we were able to learn how many ligands, HETATM groups, and amino acid chains were associated with each protein. On the other hand, prior to being used for the ligand preparations, Avogadro software version 1.95 was used to display the ligands [82,83].




2.4. Pre-Docking Preparations


Prior to the docking process, it was essential to prepare the proteins and ligands. Using the information compiled throughout the visualization process, BIOVIA Discovery Studio Visualizer was employed to prepare both the target proteins. The amino acid chains A and B were present in all three nonstructural proteins. Upon visualization, all target proteins revealed the presence of ligand groups, HETATM, and water molecules. Thus, unnecessary molecules and amino acid chains were cleaned and removed from all the 3D structures. In this investigation, all the proteins had chain A retained. In addition, the program Swiss-pdb viewer [84] was employed to attempt to repair the damaged amino acid chains, hydrogen bonds were inserted, and energy minimization was accomplished. In order to protect the active site, the ligand groups were only removed following the energy minimization procedure. Additionally, the Swiss-pdb viewer was used to export these structures in the PDB format, which was then converted to the appropriate PDBQT format using Autodock tools, a component of MGL tools [85].



Using the Avogadro program v. 1.95, the 2D and 3D conformers of ligands received in SDF and Mol chemical forms were prepared. The ligands were first converted to 3D by creating 3D coordinates, by opening the 2D structures in Avogadro. All the 2D structures were transformed into 3D conformers in this manner, and were archived. Once all 165 ligands were in 3D format, they were each manually subjected to a process of geometry optimization and energy minimization. The PDB format was used to record all the processed ligands. In order to add Gasteiger charges, all ligands were converted from PDB to PDBQT format, using the auto dock tools.




2.5. Molecular Docking


The molecular docking process was carried out using Autodock Vina 1.2.0, the most recent version [86,87]. The Grid box was built and positioned in the best possible manner, using the information on the location of the active site, consisting of vital catalytic amino acids for nsp16–nsp10, nsp13, and nsp14. The PDBQT-formatted nsp16–nsp10, nsp13, and nsp14 protein files were firstly opened individually in the program, and 165 ligands were manually docked. For nsp16–nsp10, nsp13, and nsp14, the cavity volume was 461 Å, 1126 Å, and 1960 Å, respectively. For nsp16–nsp10, the grid box coordinates were set to X = −80 Å, Y = 29 Å, and Z = 39 Å. The grid box for nsp13 was located at X = 15 Å, Y = 17 Å, and Z = −72 Å, but for nsp14, the grid box was maintained at X = 13 Å, Y = −10 Å, and Z = −18 Å. In this study, all ligands were flexible, whereas proteins were rigid. To assure the correctness of the results, the docking operation was carried out three times (refer to Table 1, Table 2 and Table 3). To further understand the amino acid interactions, all the protein–ligand complexes in the PDB format were imported by creating 2D and 3D maps illustrating all binding and non-binding residues (see Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8); BIOVIA Discovery Studio Visualizer 4.5 facilitated this task.




2.6. Docking Validation


The crystal structure of nsp14 was attached to its inhibitor S-adenosyl-L-homocysteine (SAH) [77]. Thus, the validation of protocol for docking was performed for the protein nsp14 by redocking said inhibitor in the same pocket. The binding affinity score and RMSD value were noted. Additionally, the amino acid interactions were observed and compared, to ensure the correctness of the docking procedure.




2.7. Molecular Dynamics Simulation


Using the CABS-flex 2.0 website, MDs simulations were performed for the protein–ligand complexes, demonstrating the appropriate amino acid associations [88]. Rapid simulations are used on this platform to adequately assess protein flexibility. The server was loaded with the PDB files for the chosen complexes. The simulation’s specifications, including the number of cycles (50), the distance among the trajectory frames (50), the simulation temperature set at default, as well as the random number generator seed, were set to their default values by the web server. The simulation produced 3D models, contact maps, and graphs of the root-mean-square fluctuation. We conducted comparative analyses using these RMSF graphs (in Figure 9).




2.8. Toxicity Assessment


ProTox-II and StopTox web servers were employed to assess the possible toxicity of the top leads [89]. In a virtual environment, ProTox-II offers quick forecasts regarding the potential toxicity of small molecules, circumventing the requirement for animal experiments. The toxicity class, toxicity endpoints (hepatotoxicity, carcinogenicity, immunotoxicity, mutagenicity and, lastly, cytotoxicity), and LD50 values for the ligands were all provided by this server (see Table 4). The likelihood of ligands causing acute toxicity was quickly and accurately estimated using the user-friendly application StopTox [90]. Information on acute oral, dermal, and inhalation toxicity, as well as on the likelihood of skin and eye irritation and corrosion and skin sensitization, and other critical information, was all provided by this website (refer to Table 5).




2.9. Pharmacokinetics Studies


Using the canonical SMILES of best leads (see Table S12) on the Swiss-ADME server, the drug-like features were examined [91,92]. The first step was to observe and note the five different Lipinski variables (Ro5). The molecular weight (≤500), consensus log p-value (≤5), and hydrogen bond donors and acceptors (≤5) were the criteria. Two additional indicators were included, the topological polar surface area (≤140) and the number of rotatable bonds (≤10), in order to more precisely ascertain the likeliness of the ligands being orally efficacious (in Table 6). The likelihood of GI absorption and water solubility were also noted. A simple mathematical approach was employed to calculate the absorption percentage (AB%) further for an accurate assessment of the GI absorption [93,94] (in Table 7).


  A B % = 109 − ( 0.345 × T P S A )  











Additionally, the Swiss-ADME boiled egg plot was used to assess the cell and blood–brain-barrier penetrability [95] of the lead metabolites (see Figure 10). Ultimately, the PASSonline web server [96] was used to investigate probable bioactivities (refer to Table 8).





3. Results and Discussion


3.1. Binding Affinity Analyses


In order for the results to be easily understood, the docking results for all three targets were categorized into three groups. The detailed binding affinities for all the ligands and targets can be found in the supplementary information (Tables S2–S11).



3.1.1. nsp16–nsp10 Docking


For the nsp16–nsp10 complex, the docking scores obtained were classified into three categories: the lower class, moderate class, and higher class. The moderate class was further divided into a lower-moderate and an upper-moderate class.



The lowest docking scores, which ranged from −4.2 to −5.9 kcal/mol, were observed for 22 metabolites (see Table 1). Elisabethadienol, elisabethin D, furanotriene, and ichthyothereol acetate exhibited the highest docking scores of -5.9 kcal/mol in category 1. Nevertheless, cumbiasin C and cumbiasin B showed the lowest binding scores, measuring −4.2 and −4.7 kcal/mol, respectively (refer to Table S2). A total of 66 NPs in category 2 demonstrated lower-moderate affinities for the nsp16–nsp10 complex. Cumbiasin A, CMNPD12139, CMNPD16185, CMNPD17188, and seco-pseudopterosin J showed the best affinities in this category, at −6.9 kcal/mol. Eight NPs, including calamenene, curcuhydroquinone, elisapterosin E, furanogermacrene, germacrene D, isofuranotriene, methoxyamericanolide I, and pseudopterolide achieved the lowest value of −6.0 kcal/mol. In addition, 68 NPs demonstrated considerably better binding than the NPs listed above (see Table S3). Elisabatin B, and pseudopterosin B, D, and M all showed a docking value of −7.9 kcal/mol, closely followed by pseudopterosin C and E at −7.8 kcal/mol. On the other hand, 19 NPs demonstrated the lowest docking scores (refer to Table S4) in the upper-moderate class. Lastly, category 3 is stated, which consists of nine NPs with the best binding affinities (in Table 1). Among all of the NPs in this group, the docking values varied from −8.0 to −8.2 kcal/mol (see Table S5).
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Table 1. Binding affinities of all the NPs for the nsp16–nsp10 protein complex.






Table 1. Binding affinities of all the NPs for the nsp16–nsp10 protein complex.





	
Categorization of Ligands nsp16–nsp10




	
Low

	
Moderate

	
High




	
−4.2 to −5.9 kcal/mol

	
−6.0 to 6.9 kcal/mol

	
−7.0 to 7.9 kcal/mol

	
−8.0 kcal/mol and above






	
5-Hydroperoxyicosa-2,4,6,8-tetraenoic acid

	
1-Monoacetate

	
1β,3β-dihydroxy-5α,6α-epoxy-9-oxo-9,11-secogorgostan-11-ol

	
Pseudopterosin A




	
(+)-Aristolone

	
3-β-Hydroxy-5α,6α-epoxy-9-oxo-9,11-secogorgostan-11-ol

	
3-O-Methylquercetin

	
Pseudopterosin H




	
(+)-α-Terpineol

	
3-epi-Elisabanolide

	
15-α-(Angeloyloxy)kaura-16-ene-18-oicacid

	
Pseudopterosin I




	
(−)-β-Chamigrene

	
4-Acetylamphilectolide

	
Ameristerol A

	
Pseudopterosin R




	
β-Gorgonene

	
7-Hydroxyerogorgiaene

	
Ameristerenol A

	
Pseudopterosin T




	
β-Selinene

	
7-Hydroxyerogorgiaenone

	
Amphilectosin A

	
Pseudopterosin V




	
Calarene

	
7,14-Erogorgiaenediol

	
Amphilectosin B

	
Pseudopterosin X




	
Cumbiasin B

	
8-epi-Americanolide C

	
Americanolide D

	
Pseudopterosin Y




	
Cumbiasin C

	
8-epi-Methoxyamericanolide A

	
Americanolide E

	
Sandresolide B




	
Cyperene

	
10-epi-Americanolide C

	
Americanolide F

	




	
Elisabethadienol

	
10-epi-Methoxyamericanolide A

	
Amphiphenalone

	




	
Elisabethatrienol

	
12-Acetoxypseudopterolide

	
Bis-7-Hydroxyerogorgiaene

	




	
Elisabethin B

	
Aberrarone

	
Caribenol A

	




	
Elisabethin C

	
Ameristerenol B

	
CMNPD12140

	




	
Elisabethin D

	
Americanolide A

	
CMNPD12142

	




	
Elisabethin G

	
Americanolide B

	
CMNPD16184

	




	
Elisabetholide

	
Americanolide C

	
CMNPD16186

	




	
Elisapterosin A

	
Amphilectolide

	
Elisabethol

	




	
Furanotriene

	
β-Eudesmol

	
Elisabatin A

	




	
γ-Maaliene

	
Bicyclogermacrene

	
Elisabatin B

	




	
Ichthyothereol acetate

	
Biformene

	
Elisabatin C

	




	
Preclavulone A

	
Caribenol B

	
Elisabethin A acetate

	




	

	
Calamenene

	
Elisabethin D acetate

	




	

	
Caridiene

	
Elisapterosin F

	




	

	
Curcuhydroquinone

	
Grandifloric acid

	




	

	
(−)-Curcuquinone

	
Homopseudopteroxazole

	




	

	
Colombiasin A

	
Hyperoside

	




	

	
Cumbiasin A

	
Isoquercitrin

	




	

	
CMNPD5089

	
Ileabethin

	




	

	
CMNPD11416

	
Ileabethoxazole

	




	

	
CMNPD12137

	
iso-Pseudopterosin E

	




	

	
CMNPD12138

	
Kaempferol

	




	

	
CMNPD12139

	
Methoxyamericanolide B

	




	

	
CMNPD16185

	
O-Methylelisabethadione

	




	

	
CMNPD16187

	
O-Methyl-nor-elisabethadione

	




	

	
CMNPD17188

	
Pseudopterosin B

	




	

	
ent-Kaur-16-en-19-ol

	
Pseudopterosin C

	




	

	
Elisabanolide

	
Pseudopterosin D

	




	

	
Elisabethamine

	
Pseudopterosin E

	




	

	
Elisabethin A

	
Pseudopterosin F

	




	

	
Elisabethin E

	
Pseudopterosin G

	




	

	
Elisabethin F

	
Pseudopterosin J

	




	

	
Elisabethin H

	
Pseudopterosin K

	




	

	
Elisapterosin B

	
Pseudopterosin L

	




	

	
Elisapterosin C

	
Pseudopterosin M

	




	

	
Elisapterosin D

	
Pseudopterosin N

	




	

	
Elisapterosin E

	
Pseudopterosin O

	




	

	
Erogorgiaene

	
Pseudopterosin P

	




	

	
Furanogermacrene

	
Pseudopterosin Q

	




	

	
Furanoguaian-4-ene

	
Pseudopterosin U

	




	

	
Germacrene D

	
Pseudopterosin W

	




	

	
Isofuranotriene

	
Pseudopterosin Z

	




	

	
Kaurane-16,18-diol18-acetate

	
Pseudopterosin G-J aglycone

	




	

	
Kaurenoicacid

	
Pseudopteroxazole

	




	

	
Methoxyamericanolide A

	
Quercetin

	




	

	
Methoxyamericanolide E

	
Taxifolin

	




	

	
Methoxyamericanolide G

	
seco-Pseudopterosin A

	




	

	
Methoxyamericanolide H

	
seco-Pseudopterosin C

	




	

	
Methoxyamericanolide I

	
seco-Pseudopterosin D

	




	

	
Pseudopterolide

	
seco-Pseudopterosin E

	




	

	
Pseudopterosin S

	
seco-Pseudopterosin F

	




	

	
Pseudopterosin-MA

	
seco-Pseudopterosin G

	




	

	
Quercetin-3-O-β-d-arabinofuranoside

	
seco-Pseudopterosin H

	




	

	
seco-Pseudopterosin B

	
seco-Pseudopterosin I

	




	

	
seco-Pseudopterosin J

	
seco-Pseudopterosin K

	




	

	
seco-Gorgosterol

	
Sandresolide A

	




	

	

	
Sandresolide C

	




	

	

	
seco-pseudopteroxazole

	










3.1.2. nsp13 Docking


By separating the output into the three categories shown below, the docking data for nsp13 were made more comprehensible.



The 36 metabolites in category 1 are those with modest docking scores for the helicase protein (in Table 2). The molecules with the lowest binding values were 12-Acetoxypseudopterolide, β-gorgonene, pseudopterosin methylated aglycone, and calarene. The strongest affinity values in this group, however, were found to be for β-eudesmol, furanotriene, and pseudopterosin G at −5.9 kcal/mol (see Table S6). Furthermore, the 85 metabolites in category 2 had moderate binding affinities, with values between −6.0 and −6.9 kcal/mol. Eight metabolites, including ameristerenol A, caribenol B, CMNPD12140, pseudopterosin J, R, and S, and seco-pseudopterosin B and J demonstrated the best affinity values in this group, whereas 12 metabolites showed the lowest affinity, −6.0 kcal/mol (refer to Table S7). Last but not least, the values for the 44 metabolites with high affinities stated in category 3 ranged from −7.0 kcal/mol to a maximum of −8.2 kcal/mol. The most effective metabolites in this group were CMNPD16187, ileabethoxazole, pseudopterosin T, and seco-pseudopterosin K. Nevertheless, among this set of metabolites, fifteen of them showed the lowest value, which was −7.0 kcal/mol (see Table S8).
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Table 2. Binding affinities of all the NPs for the nsp13 protein.
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Binding Affinity Values—nsp13




	
Low

	
Moderate

	
High




	
−5.0 to −5.9 kcal/mol

	
−6.0 to −6.9 kcal/mol

	
−7.0 to −8.2 kcal/mol






	
5-Hydroperoxyicosa-2,4,6,8-tetraenoicacid

	
1-Monoacetate

	
3-epi-Elisabanolide




	
7,14-Erogorgiaenediol

	
1β,3β-dihydroxy-5α,6α-epoxy-9-oxo-9,11-secogorgostan-11-ol

	
4-Acetylamphilectolide




	
12-Acetoxypseudopterolide

	
3β-Hydroxy-5α,6α-epoxy-9-oxo-9,11-secogorgostan-11-ol

	
10-epi-Americanolide C




	
(+)-α-Terpineol

	
3-O-Methylquercetin

	
Aberrarone




	
β-Eudesmol

	
7-Hydroxyerogorgiaene

	
Ameristerenol B




	
β-Selinene

	
7-Hydroxyerogorgiaenone

	
Americanolide A




	
Bicyclogermacrene

	
8-epi-Americanolide C

	
Americanolide B




	
β-Gorgonene

	
8-epi-Methoxyamericanolide A

	
Amphilectosin A




	
Cyperene

	
10-epi-Methoxyamericanolide A

	
Amphilectosin B




	
Calamenene

	
15-α-(Angeloyloxy)kaura-16-ene-18-oicacid

	
Amphilectolide




	
Calarene

	
(+)-Aristolone

	
Amphiphenalone




	
Caridiene

	
Amersiterol A

	
Colombiasin A




	
CMNPD12139

	
Ameristerenol A

	
Cumbiasin A




	
CMNPD16184

	
Americanolide C

	
Cumbiasin B




	
CMNPD16185

	
Americanolide D

	
CMNPD12142




	
Elisabethol

	
Americanolide E

	
CMNPD16186




	
Elisabethin A acetate

	
Americanolide F

	
CMNPD16187




	
Elisabethin B

	
Biformene

	
Elisabatin A




	
Elisabethin C

	
Bis-7-hydroxyerogorgiaene

	
Elisapterosin A




	
Elisabethin D acetate

	
(−)-β-Chamigrene

	
Elisapterosin B




	
Elisabethin E

	
(−)-Curcuquinone

	
Elisapterosin D




	
Elisabethin G

	
Curcuhydroquinone

	
Elisapterosin E




	
Elisabetholide

	
Cumbiasin C

	
Elisapterosin F




	
Furanogermacrene

	
Caribenol A

	
Ileabethin




	
Furanotriene

	
Caribenol B

	
Ileabethoxazole




	
γ-Maaliene

	
CMNPD5089

	
Isoquercitrin




	
Germacrene D

	
CMNPD11416

	
Kaempferol




	
Grandifloric acid

	
CMNPD12137

	
Kaurenoicacid




	
Ichthyothereol acetate

	
CMNPD12138

	
O-Methyl-nor-elisabethadione




	
Isofuranotriene

	
CMNPD12140

	
Pseudopterosin K




	
Kaurane-16,18-diol18-acetate

	
CMNPD17188

	
Pseudopterosin T




	
Pseudopterolide

	
Elisabanolide

	
Pseudopterosin U




	
Pseudopterosin D

	
Elisabatin B

	
Pseudopterosin V




	
Pseudopterosin G

	
Elisabatin C

	
Pseudopteroxazole




	
Pseudopterosin-MA

	
Elisabethadienol

	
Quercetin




	
Sandresolide A

	
Elisabethamine

	
Quercetin3-O-beta-d-arabinofuranoside




	

	
Elisabethatrienol

	
seco-Pseudopterosin E




	

	
Elisabethin A

	
seco-Pseudopterosin F




	

	
Elisabethin D

	
seco-Pseudopterosin G




	

	
Elisabethin F

	
seco-Pseudopterosin H




	

	
Elisabethin H

	
seco-Pseudopterosin I




	

	
Elisapterosin C

	
seco-Pseudopterosin K




	

	
ent-Kaur-16-en-19-ol

	
Sandresolide C




	

	
Erogorgiaene

	
Taxifolin




	

	
Furanoguaian-4-ene

	




	

	
Homopseudopteroxazole

	




	

	
Hyperoside

	




	

	
iso-Pseudopterosin E

	




	

	
Methoxyamericanolide A

	




	

	
Methoxyamericanolide B

	




	

	
Methoxyamericanolide E

	




	

	
Methoxyamericanolide G

	




	

	
Methoxyamericanolide H

	




	

	
Methoxyamericanolide I

	




	

	
O-Methylelisabethadione

	




	

	
Preclavulone A

	




	

	
Pseudopterosin A

	




	

	
Pseudopterosin B

	




	

	
Pseudopterosin C

	




	

	
Pseudopterosin E

	




	

	
Pseudopterosin F

	




	

	
Pseudopterosin H

	




	

	
Pseudopterosin I

	




	

	
Pseudopterosin J

	




	

	
Pseudopterosin L

	




	

	
Pseudopterosin M

	




	

	
Pseudopterosin N

	




	

	
Pseudopterosin O

	




	

	
Pseudopterosin P

	




	

	
Pseudopterosin Q

	




	

	
Pseudopterosin R

	




	

	
Pseudopterosin S

	




	

	
Pseudopterosin W

	




	

	
Pseudopterosin X

	




	

	
Pseudopterosin Y

	




	

	
Pseudopterosin Z

	




	

	
Pseudopterosin G-J aglycone

	




	

	
seco-Gorgosterol

	




	

	
seco-Pseudopterosin A

	




	

	
seco-Pseudopterosin B

	




	

	
seco-Pseudopterosin C

	




	

	
seco-Pseudopterosin D

	




	

	
seco-Pseudopterosin J

	




	

	
seco-Pseudopteroxazole

	




	

	
Sandresolide B

	










3.1.3. nsp14 Docking


Studies on binding affinities have shown that Antillogorgia genus metabolites might prove more effective against the SARS-CoV-2 nsp14 protein, compared to other nonstructural proteins. As with the other protein targets described above, the docking results are shown in the table below. The numbers we obtained for nsp14, however, were not considered to be low. The output was therefore split into three categories: moderate, high, and extremely high.



A total of 32 metabolites with moderate docking scores, ranging from −6.5 kcal/mol to −7.9 kcal/mol, are displayed in category 1 (in Table 3). Elisabethin F and aurene-16, 18-diol-18-acetate had the maximum value of −7.9 kcal/mol, whereas (−)-β-chamigrene, bicyclogermacrene, and germacrene D displayed the lowest value, of −7.0 kcal/mol, in this group (see Table S9). Category 2, listed in the table above, contains 95 metabolites with high docking scores ranging from −8.0 kcal/mol to −9.9 kcal/mol. Seco-pseudopterosin B came in second place, with a docking score of −9.8 kcal/mol, closely behind ileabethin and pseudopterosin V. Eleven NPs showed the lowest affinities in the group, with a −8.0 kcal/mol value (refer to Table S10). Finally, category 3 refers to the 38 NPs that showed the strongest binding scores, which were −10.0 kcal/mol and higher. Pseudopterosin O, and elisabatin B and C demonstrated the highest score of −11.2 kcal/mol, whereas 14 NPs exhibited the lowest docking score in this group, at −10 kcal/mol (see Table S11).
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Table 3. Binding affinities of all the metabolites for the nsp14 protein.
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Categorization of Ligands—nsp14




	
Moderate

	
High

	
Very High




	
−6.5 to −7.9 kcal/mol

	
−8.0 to −9.9 kcal/mol

	
−10.0 kcal/mol and above






	
1-Monoacetate

	
1β,3β-Dihydroxy-5α,6α-epoxy-9-oxo-9,11-secogorgostan-11-ol

	
Amphilectosin A




	
5-Hydroperoxyicosa-2,4,6,8-tetraenoicacid

	
3β-Hydroxy-5α,6α-epoxy-9-oxo-9,11-secogorgostan-11-ol

	
Amphilectosin B




	
8-epi-Methoxyamericanolide A

	
3-O-Methylquercetin

	
Amersiterol A




	
10-epi-Methoxyamericanolide A

	
3-epi-Elisabanolide

	
Cumbiasin C




	
Americanolide E

	
4-Acetylamphilectolide

	
CMNPD16186




	
Americanolide F

	
7-Hydroxyerogorgiaene

	
Elisabatin A




	
(+)-α-Terpineol

	
7-Hydroxyerogorgiaenone

	
Elisabatin B




	
(+)-Aristolone

	
7,14-erogorgiaenediol

	
Elisabatin C




	
(−)-β-Chamigrene

	
8-epi-Americanolide C

	
Elisapterosin A




	
β-Eudesmol

	
10-epi-Americanolide C

	
Homopseudopteroxazole




	
β-Selinene

	
12-Acetoxypseudopterolide

	
Ileabethoxazole




	
β-Gorgonene

	
15alpha-(Angeloyloxy)kaura-16-ene-18-oicacid

	
Iso-pseudopterosin E




	
Bicyclogermacrene

	
Aberrarone

	
Pseudopterosin A




	
Calarene

	
Ameristerenol A

	
Pseudopterosin D




	
Cyperene

	
Ameristerenol B

	
Pseudopterosin E




	
Curcuhydroquinone

	
Americanolide A

	
Pseudopterosin G




	
(−)-Curcuquinone

	
Americanolide B

	
Pseudopterosin I




	
ent-Kaur-16-en-19-ol

	
Americanolide C

	
Pseudopterosin J




	
Elisabethin C

	
Americanolide D

	
Pseudopterosin M




	
Elisabethin D

	
Amphilectolide

	
Pseudopterosin N




	
Elisabethin F

	
Amphiphenalone

	
Pseudopterosin O




	
Elisabethin G

	
Bis-7-hydroxyerogorgiaene

	
Pseudopterosin P




	
Elisabethin H

	
Biformene

	
Pseudopterosin Q




	
Furanogermacrene

	
Calamenene

	
Pseudopterosin R




	
Furanotriene

	
Caridiene

	
Pseudopterosin S




	
γ-Maaliene

	
Colombiasin A

	
Pseudopterosin T




	
Germacrene D

	
Cumbiasin A

	
Pseudopterosin U




	
Ichthyothereol acetate

	
Cumbiasin B

	
Pseudopterosin W




	
Isofuranotriene

	
Caribenol A

	
Pseudopterosin X




	
Kaurane-16,18-diol-18-acetate

	
Caribenol B

	
Pseudopterosin Y




	
Methoxyamericanolide A

	
CMNPD5089

	
Pseudopterosin Z




	
Preclavulone A

	
CMNPD11416

	
Pseudopteroxazole




	

	
CMNPD12137

	
Pseudopterolide




	

	
CMNPD12138

	
seco-Pseudopterosin E




	

	
CMNPD12139

	
seco-Pseudopterosin F




	

	
CMNPD12140

	
seco-Pseudopterosin G




	

	
CMNPD12142

	
seco-Pseudopterosin H




	

	
CMNPD16184

	
Sandresolide C




	

	
CMNPD16185

	




	

	
CMNPD16187

	




	

	
CMNPD17188

	




	

	
Elisabethol

	




	

	
Elisabanolide

	




	

	
Elisabethadienol

	




	

	
Elisabethamine

	




	

	
Elisabethatrienol

	




	

	
Elisabethin A

	




	

	
Elisabethin A acetate

	




	

	
Elisabethin B

	




	

	
Elisabethin D acetate

	




	

	
Elisabethin E

	




	

	
Elisabetholide

	




	

	
Elisapterosin B

	




	

	
Elisapterosin C

	




	

	
Elisapterosin D

	




	

	
Elisapterosin E

	




	

	
Elisapterosin F

	




	

	
Erogorgiaene

	




	

	
Furanoguaian-4-ene

	




	

	
Grandifloric acid

	




	

	
Hyperoside

	




	

	
Isoquercitrin

	




	

	
Ileabethin

	




	

	
Kaempferol

	




	

	
Kaurenoicacid

	




	

	
Methoxyamericanolide B

	




	

	
Methoxyamericanolide E

	




	

	
Methoxyamericanolide G

	




	

	
Methoxyamericanolide H

	




	

	
Methoxyamericanolide I

	




	

	
O-Methylelisabethadione

	




	

	
O-Methyl-nor-elisabethadione

	




	

	
Pseudopterosin B

	




	

	
Pseudopterosin C

	




	

	
Pseudopterosin F

	




	

	
Pseudopterosin H

	




	

	
Pseudopterosin K

	




	

	
Pseudopterosin L

	




	

	
Pseudopterosin V

	




	

	
Pseudopterosin G-J aglycone

	




	

	
Pseudopterosin-MA

	




	

	
Quercetin

	




	

	
Quercetin-3-O-beta-d-arabinofuranoside

	




	

	
seco-Pseudopterosin A

	




	

	
seco-Pseudopterosin B

	




	

	
seco-Pseudopterosin C

	




	

	
seco-Pseudopterosin D

	




	

	
seco-Pseudopterosin I

	




	

	
seco-Pseudopterosin J

	




	

	
seco-Pseudopterosin K

	




	

	
Sandresolide A

	




	

	
Sandresolide B

	




	

	
seco-Gorgosterol

	




	

	
seco-pseudopteroxazole

	




	

	
Taxifolin

	










3.1.4. Docking Protocol Validation—nsp14


After being re-docked, the original inhibitor gave a docking score of −7.5 kcal/mol, and the RMSD value for the superimposed crystal structures was calculated as 0.89 Å. The computed RMSD value was below the threshold of 2.0 Å, indicating that the docking operation was carried out with good precision.





3.2. Amino Acid Interactions


To find complexes exhibiting optimum amino acid interactions in accordance with the criteria listed below, 495 docked complexes for all three SARS-CoV-2 nonstructural proteins were rigorously examined.



3.2.1. Selection Criteria to Filter Candidate Complexes


	
The complex must interact with key catalytic residues



	
It must interact by forming hydrogen and/or electrostatic bonds



	
The bond distance for conventional hydrogen must not exceed (Å ≤ 3.00)



	
The bond distance for electrostatic bonds must not exceed (Å ≤ 5.00)






Twelve docked complexes that satisfied the established criteria and, in our opinion, might serve as effective inhibitors were found after a thorough screening approach for the nsp16–nsp10 complex, nsp13, and nsp14 proteins. NPs that solely exhibited hydrophobic interactions (VdW force) and/or no interactions with the concerned residues were eliminated as prospective candidates.




3.2.2. Selected Docked Complexes


Just three docked complexes out of 165 satisfied the selection requirements for the target nsp16–nsp10 protein complex. The important amino acids for the nsp16–nsp10 complex are LYS: 46, ASP: 130, LYS: 170, and GLU: 203. The three NPs that demonstrated desirable residue interactions involving the aforementioned amino acids are shown in Figure 3 and Figure 4 below.
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Figure 3. Display of the selected potential inhibitors of the nsp16–nsp10 protein complex docked in the active site. 
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Figure 4. Display of the amino acid interactions with the nsp16–nsp10 complex protein and the bond distances formed: (A) nsp16–nsp10-pseudopterosin A, (B) nsp16–nsp10-secopseudopterosin A, and (C) nsp16–nsp10-amersiterenol A. 






Figure 4. Display of the amino acid interactions with the nsp16–nsp10 complex protein and the bond distances formed: (A) nsp16–nsp10-pseudopterosin A, (B) nsp16–nsp10-secopseudopterosin A, and (C) nsp16–nsp10-amersiterenol A.
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In Figure 4, pseudopterosin A connects to residue GLU: 203 by two conventional hydrogen bonds (2.34 Å and 2.48 Å). Hydrophobic interactions with LYS: 46 and LYS: 170 were observed. Moreover, ASP: 130 and seco-pseudopterosin A interacted by creating a single hydrogen bond (2.61 Å). Using LYS: 170 (4.97 Å), an alkyl bond was created. A weak Van der Waals bond was observed with LYS: 46 and GLU: 203. Ultimately, a hydrogen bond (2.43 Å) was created between ameristerenol A and GLU: 203. Nevertheless, LYS: 46 and LYS: 170 showed evidence of hydrophobic interactions.



Five docked complexes from the 165 complexes passed the selection criteria for the target nsp13 protein. The critical residues for this enzyme were PHE: 367, ASN: 388, and PRO: 429. The Figure 5 and Figure 6 below present the five NPs that showed desirable amino acid interactions involving the three stated residues.
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Figure 5. The five candidate inhibitors docked in the active site of the nsp13 protein. 
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Figure 6. The amino acid interactions with the nsp13 protein, and the bond distances formed: (A) nsp13–sandresolide B, (B) nsp13–amphilectosin A, (C) nsp13–amphilectosin B, (D) nsp13–pseudopteroxazole, and (E) nsp13–elisabatin A. 
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Figure 6 shows a single hydrogen bond between sandresolide B and ASP: 374. (2.43 Å). With the residue LYS: 288, one carbon–hydrogen bond (2.86 Å) and one alkyl bond (5.00 Å) were noted. Hydrophobic connections were formed with SER: 289; GLU: 375; GLN: 404; and ARG: 567. GLN: 404 and amphilectosin A formed a hydrogen bond (2.98 Å). For GLU: 375, a carbon–hydrogen bond was seen (3.74 Å). The LYS: 288, SER: 289, ASP: 374, and ARG: 567 were seen to interact with the VdW force. A carbon–hydrogen bond was created by amphilectosin B with GLU: 375 (3.69 Å), and a hydrogen bond with GLN: 404 (2.99 Å). Hydrophobic connections were observed with LYS: 288, SER: 289, ASP: 374, and ARG: 567. Moreover, no hydrogen bonds were formed between the relevant residues and pseudopteroxazole. However, it generated three electrostatic bonds: one pi–cation link with ARG: 567 (4.32 Å), and two more pi–cation linkages with LYS: 288 (3.25 Å and 3.91 Å). SER: 289, ASP: 374, GLU: 375, and GLN: 404 interacted with Van der Waals forces. Finally, elisabatin A and GLU: 375 were connected via a hydrogen bond (2.60 Å). With LYS: 288, there were two pi–cation connections (4.00 Å and 4.12 Å). Hydrophobic interactions with ASP: 374, SER: 289, GLN: 404, and ARG: 567 were also observed.



Just four docked complexes, out of 165, met the inhibitory requirements for the target nsp14 protein around six residues: LYS: 288, SER: 289, ASP: 374, GLU: 375, GLN: 404, and ARG: 567. The four NPs that demonstrated advantageous interactions with the residues of importance are shown in Figure 7 and Figure 8 below.
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Figure 7. Four potential inhibitors of the nsp14 protein docked in the active site. 






Figure 7. Four potential inhibitors of the nsp14 protein docked in the active site.



[image: Microbiolres 14 00068 g007]







[image: Microbiolres 14 00068 g008 550] 





Figure 8. The amino acid interactions with the nsp14 protein, and the bond distances formed: (A) nsp14–elisapterosin A, (B) nsp14–ameristerol A, (C) nsp14–pseudopterolide, and (D) nsp14–pseudopterosin R. 






Figure 8. The amino acid interactions with the nsp14 protein, and the bond distances formed: (A) nsp14–elisapterosin A, (B) nsp14–ameristerol A, (C) nsp14–pseudopterolide, and (D) nsp14–pseudopterosin R.
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In Figure 8, we can see that elisapterosin A interacted with all three of the critical residues of nsp14. A conventional hydrogen bond (2.96 Å) was formed with ASN: 388. One alkyl bond (4.86 Å) was made with PHE: 367, and one pi–alkyl bond (4.35 Å) with PRO: 429, respectively. Amersiterol A produced a pi–alkyl bond (4.07 Å) with PRO: 429, and two alkyl bonds with PHE: 367 (4.49 Å and 4.94 Å). Furthermore, pseudopterolide made a carbon–hydrogen connection (3.64 Å) with PRO: 429, and two electrostatic linkages with PHE: 367 were evident (4.49 Å and 4.76 Å). Lastly, pseudopterosin R interacted strongly by forming six electrostatic bonds. Three bonds were made with PHE: 367 (4.20 Å, 4.24 Å, and 4.57 Å), and the other three bonds were created with PRO: 429 (4.07 Å, 4.65 Å, and 4.71 Å). Elisapterosin A being an exception, the other three NPs displayed only hydrophobic interactions with the amino acid ASN: 388.




3.2.3. MDs Simulations


Throughout the simulation (in Figure 9), the three docked nsp16–nsp10 complexes revealed minimal residue variations for the four essential catalytic amino acids. The residue LYS: 46 (0.180 Å) has the lowest RMSF score for pseudopterosin A, followed by LYS: 170 (0.225 Å), GLU: 203 (0.364 Å), and ASP: 130. (0.441 Å). The least fluctuating amino acid in the case of seco-pseudopterosin A was LYS: 170 (0.108 Å), followed by ASP: 130 (0.174 Å), GLU: 203 (0.279 Å), and LYS: 46. (0.324 Å). Last but not least, ameristerenol A bound with the nsp16–nsp10 complex, which also highlighted the residue LYS: 170 as being the least fluctuating (0.108 Å) among all the other amino acids, along with ASP: 130 (0.153 Å), LYS: 46 (0.325 Å), and GLU; 203. (0.673 Å).
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Figure 9. RMSF Plots for MDs simulations: (A) nsp16–nsp10-pseudopterosin A, (B) nsp16–nsp10-secopseudopterosin A, (C) nsp16–nsp10-amersiterenol A, (D) nsp13−Sandresolide B, (E) nsp13–amphilectosin A, (F) nsp13–amphilectosin B, (G) nsp13–pseudopteroxazole, (H) nsp13–elisabatin A, (I) nsp14–elisapterosin A, (J) nsp14–ameristerol A, (K) nsp14–pseudopterolide, and (L) nsp14–pseudopterosin R. The red lines mark the locations of the residues. 
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The helicase protein of SARS-CoV-2, when docked with sandresolide B, obtained the complex with the least fluctuating residue ASP: 374 (0.283 Å), whereas ARG: 567 showed the highest RMSF value, 1.638 Å. The amphilectosin A and B complexes showed the highest fluctuations for the amino acid GLN: 404, whereas the lowest RMSF score was seen for ASP: 374 (0.083 Å and 0.145 Å, respectively). Furthermore, in the case of pseudopteroxazole, LYS: 288 showed the maximum fluctuation value, at 1.098 Å. On the other hand, the minimal fluctuating residue was ASP: 374, with an RMSF value of 0.265 Å. Lastly, for the elisabatin A–nsp13 complex, the lowest RMSF score was evident for the amino acid ARG: 567 (0.295 Å), whereas LYS: 288 fluctuated the most (0.760 Å), compared to the other residues.



The elisapterosin A–nsp14 protein docked complex demonstrated that ASN: 388 fluctuated the least (0.919 Å), compared to PHE: 367 (1.176 Å), and PRO: 429 (1.459 Å). The nsp14 docked with ameristerol A showed PHE: 367 to be the least fluctuating (0.698 Å), whereas ASN: 388 had the slightly higher RMSF value of 0.850 Å, and PRO: 429 demonstrated the highest fluctuation score, 1.099 Å. The results for pseudopterolide displayed the highest fluctuation for the residue ASN: 388 (1.016 Å), followed by PRO: 429 (0.926 Å). On the other hand, the PHE: 367 residue fluctuated the least, at 0.713 Å. Finally, pseudopterosin R also showed PHE: 367 as the least fluctuating amino acid, with an RMSF value of 0.940 Å. Comparatively, ASN: 388 and PRO: 429 had the slightly higher RMSF values of 1.015 Å and 1.020 Å, respectively. All the complexes were found to be far below the 3.0 Å criterion. Thus, all twelve NPs formed a stable conformation with the proteins of interest.





3.3. Toxicity Evaluation


The toxic properties of the selected natural products were investigated, using the ProTox-II (see Table 4) and StopTox (see Table 5) web servers.
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Table 4. The ProTox-II server results for the selected NPs.
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ProTox-II Toxicity Report




	
Top Ligands

	
Toxicity Values

	
Probability




	
LD50 mg/kg

	
Toxicity Class

	
Hepatotoxicity

	
Carcinogenicity

	
Immunotoxicity

	
Mutagenicity






	
Amphilectosin A

	
3000

	
5

	
Inactive

	
Inactive

	
Active

	
Inactive




	
Amphilectosin B

	
3000

	
5

	
Inactive

	
Inactive

	
Active

	
Inactive




	
Ameristerenol A

	
2842

	
5

	
Inactive

	
Inactive

	
Inactive

	
Inactive




	
Ameristerol A

	
750

	
4

	
Inactive

	
Inactive

	
Active

	
Inactive




	
Elisapterosin A

	
50

	
2

	
Inactive

	
Inactive

	
Active

	
Inactive




	
Elisabatin A

	
220

	
3

	
Inactive

	
Inactive

	
Active

	
Inactive




	
Pseudopterosin A

	
3000

	
5

	
Inactive

	
Inactive

	
Active

	
Inactive




	
Pseudopterosin R

	
3000

	
5

	
Inactive

	
Inactive

	
Active

	
Inactive




	
Pseudopterolide

	
274

	
3

	
Inactive

	
Inactive

	
Inactive

	
Active




	
Pseudopteroxazole

	
1600

	
4

	
Inactive

	
Inactive

	
Inactive

	
Inactive




	
Sandresolide B

	
34

	
2

	
Inactive

	
Active

	
Inactive

	
Inactive




	
seco-Pseudopterosin A

	
3000

	
5

	
Inactive

	
Inactive

	
Active

	
Inactive
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Table 5. The StopTox server results for the chosen NPs.
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StopTox Acute Toxicity Report




	
Top Ligands

	
Endpoints




	
Inhalation

	
Oral

	
Dermal

	
Irritation and Corrosion

	
Skin Sensitization






	
Amphilectosin A

	
Non-Toxic

	
Non-Toxic

	
Non-Toxic

	
Eyes (−) Skin (−)

	
Non-Sensitizer




	
Amphilectosin B

	
Non-Toxic

	
Non-Toxic

	
Non-Toxic

	
Eyes (−) Skin (−)

	
Non-Sensitizer




	
Ameristerenol A

	
Non-Toxic

	
Non-Toxic

	
Non-Toxic

	
Eyes (−) Skin (−)

	
Non-Sensitizer




	
Ameristerol A

	
Non-Toxic

	
Non-Toxic

	
Non-Toxic

	
Eyes (−) Skin (−)

	
Non-Sensitizer




	
Elisapterosin A

	
Non-Toxic

	
Non-Toxic

	
Non-Toxic

	
Eyes (−) Skin (−)

	
Non-Sensitizer




	
Elisabatin A

	
Toxic

	
Non-Toxic

	
Toxic

	
Eyes (−) Skin (−)

	
Sensitizer




	
Pseudopterosin A

	
Non-Toxic

	
Non-Toxic

	
Non-Toxic

	
Eyes (−) Skin (−)

	
Non-Sensitizer




	
Pseudopterosin R

	
Non-Toxic

	
Non-Toxic

	
Non-Toxic

	
Eyes (−) Skin (−)

	
Non-sensitizer




	
Pseudopterolide

	
Toxic

	
Toxic

	
Toxic

	
Eyes (+) Skin (−)

	
Non-Sensitizer




	
Pseudopteroxazole

	
Non-Toxic

	
Non-Toxic

	
Non-Toxic

	
Eyes (−) Skin (−)

	
Sensitizer




	
Sandresolide B

	
Non-Toxic

	
Non-Toxic

	
Non-Toxic

	
Eyes (−) Skin (−)

	
Non-Sensitizer




	
seco-Pseudopterosin A

	
Non-Toxic

	
Non-Toxic

	
Non-Toxic

	
Eyes (−) Skin (−)

	
Non-Sensitizer









3.3.1. ProTox-II Results


The ProTox-II program categorizes ligands into six toxicity classes (a higher number means lower toxicity) on the basis of LD50 scores, which is an estimate of the median fatal dosage at which 50% of the test subjects die upon oral exposure. Moreover, the risk of liver damage, a propensity to induce cancer, adverse immune system effects, and the potential to produce genetic mutations are also evaluated.



Among the twelve NPs, only six NPs were found to be class 5 members (2000 < LD50 ≤ 5000), suggesting their probable non-toxic nature, and were found to be generally harmless when exposed orally. The NPs ameristerol A and pseudopteroxazole were the class 4 (300 < LD50 ≤ 2000) candidates, suggesting a low probability of being toxic when ingested orally. Elisabatin A and pseudopterolide were found to be Class 3 (50 < LD50 ≤ 300), indicating that they could be harmful when consumed. Only two NPs (5 < LD50 ≤ 50) belonged to class 2. They had a significant likelihood of becoming lethal when consumed. Sandresolide B and pseudopterolide, from class 2 and 3, might be a carcinogen and a mutagen, respectively. None of the proposed NPs caused hepatotoxicity. A slight immunotoxicity is desirable, as immunosuppression and immunostimulation to treat SARS-CoV-2 is of paramount importance. To summarize, around half of our recommended NPs may be considered safe to develop into oral drugs.




3.3.2. StopTox Server Output


The estimates of the probability of acute toxicity caused by the NPs were evaluated by the StopTox server.



According to our acute toxicity analysis, the majority of the selected NPs are safe. Just two NPs, elisabatin A and pseudopterolide, showed a probability of toxicity following inhalation and cutaneous exposure. Moreover, pseudopterolide was also found capable of causing oral toxicity. Moreover, both NPs have the potential to produce skin sensitivity. The likelihood of the NPs causing skin and ocular irritation and corrosion is minimal, except for pseudopterolide, which could cause eye irritation.





3.4. Drug-Likeness Evaluation


Checking the potential drug-like characteristics of the candidate compounds through in silico research is practically valuable in order to developing them into new therapeutics. Using a set of guidelines known as Lipinski or Pfizer’s rule of five, the drug-like characteristics of all the nominated NPs in this study were investigated (see Table 6).
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Table 6. The drug-likeness assessment of the shortlisted NPs.
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Drug-Likeness Assessment




	
Top Ligands

	
Mol. Weight (MW ≤ 500)

	
Rotatable Bonds RB ≤ 10

	
H Bond Acceptors HBA ≤ 10

	
H Bond Donors HBD ≤ 5

	
C Log p Log p ≤ 5

	
TPSA

(Å2) ≤ 140






	
Amphilectosin A

	
432.55

	
5

	
6

	
4

	
3.56

	
99.38




	
Amphilectosin B

	
432.55

	
5

	
6

	
4

	
3.56

	
99.38




	
Ameristerenol A

	
440.7

	
4

	
2

	
1

	
6.57

	
29.46




	
Ameristerol A

	
456.7

	
7

	
3

	
2

	
5.81

	
57.53




	
Elisapterosin A

	
348.43

	
0

	
5

	
2

	
2.08

	
83.83




	
Elisabatin A

	
310.39

	
1

	
3

	
1

	
3.71

	
54.37




	
Pseudopterosin A

	
432.55

	
3

	
6

	
4

	
3.34

	
99.38




	
Pseudopterosin R

	
488.61

	
5

	
7

	
3

	
4.06

	
105.45




	
Pseudopterolide

	
370.40

	
4

	
6

	
0

	
3.11

	
78.27




	
Pseudopteroxazole

	
309.45

	
1

	
2

	
0

	
5.31

	
26.03




	
Sandresolide B

	
320.42

	
1

	
4

	
2

	
2.91

	
66.76




	
seco-Pseudopterosin A

	
434.57

	
6

	
6

	
4

	
3.57

	
99.38









3.4.1. Lipinski Rule


Drug development commonly employs Lipinski’s Ro5. This criterion makes it possible to determine the likelihood of biologically active substances possessing the desired chemical and physical characteristics necessary for oral bioavailability and absorption.



All of the NPs that were shortlisted for this study followed the majority of the Lipinski principles. All molecules had molecular weights that were below the threshold of 500 Dalton. Moreover, the restriction of no more than ten rotatable bonds was not breached. The acceptors for hydrogen bonds were likewise discovered to be below ten. None of the candidate NPs went beyond the permitted limit of five hydrogen bond donors. Nonetheless, the consensus log p-value was slightly exceeded by ameristerenol A and pseudopteroxazole. The non-Lipinski parameter for the topological surface area cannot be more than 140 Å, and all of the NPs complied with this requirement as well. At least four of the five requirements must be met in order to pass Pfizer’s or Lipinski’s rule. As a result, all the NPs seem reasonable in terms of pharmaceutical drug development against viral diseases such as SARS-CoV-2.




3.4.2. Swiss-ADME


All of the selected NPs were put through the scanner on the Swiss-ADME website (see Table 7), which offers vital information regarding the absorption, distribution, metabolism, and excretion of the questioned molecules.
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Table 7. The ADME results for the filtered NPs.
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Swiss-ADME Output




	
Top Ligands

	
Water Solubility

	
Bioavailability

	
GI Absorption

	
Absorption (%)

	
BBB Permeant






	
Amphilectosin A

	
Soluble

	
0.55

	
High

	
74.71

	
No




	
Amphilectosin B

	
Soluble

	
0.55

	
High

	
74.71

	
No




	
Ameristerenol A

	
Poor

	
0.55

	
Low

	
98.83

	
No




	
Ameristerol A

	
Moderate

	
0.55

	
High

	
89.15

	
No




	
Elisapterosin A

	
Soluble

	
0.55

	
High

	
80.07

	
No




	
Elisabatin A

	
Moderate

	
0.55

	
High

	
90.24

	
Yes




	
Pseudopterosin A

	
Soluble

	
0.55

	
High

	
74.71

	
No




	
Pseudopterosin R

	
Moderate

	
0.55

	
High

	
72.62

	
No




	
Pseudopterolide

	
Soluble

	
0.55

	
High

	
81.99

	
Yes




	
Pseudopteroxazole

	
Moderate

	
0.55

	
High

	
100.00

	
No




	
Sandresolide B

	
Soluble

	
0.55

	
High

	
85.96

	
Yes




	
seco-Pseudopterosin A

	
Soluble

	
0.55

	
High

	
74.71

	
No









Of the twelve NPs, it was determined that seven were easily soluble in water. The moderate solubility of the other four NPs, namely ameristerol A, elisabatin A, pseudopterosin R, and pseudopteroxazole, is probable. Contrarily, only ameristerenol A is weakly soluble, and may not absorb well through the GI tract. All the NPs were shown to have high GI absorption values and good bioavailability scores, however. The highest AB% score was calculated for pseudopteroxazole. Just three of the twelve NPs screened positive for blood–brain barrier penetration (in Figure 10).
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Figure 10. The Swiss-ADME boiled egg for the twelve shortlisted NPs. 
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The only natural product that the GI tract cannot passively absorb is ameristerenol A. There is a higher probability of Elisabatin A and Sandresolide B being the penetrators of the blood–brain barrier. Pseudopterolide, on the other hand, seems to be virtually partly permeable. The remaining eight NPs, including amphilectosin A and B, ameristerol A, elisapterosin A, pseudopterosin A and R, pseudopteroxazole, and seco-pseudopterosin A may be absorbed passively through the GI tract. This analysis, taken as a whole, shows positive results for some of the NPs we proposed.




3.4.3. Bioactivity Prediction


The filtered ten NPs were screened for their potential bioactivities, to estimate the usefulness of these products as potential anti-SARS-CoV-2 agents.



Except for the three NPs named pseudopterolide, pseudopteroxazole, and sandresolide B, nine of the twelve NPs were anticipated to have anti-viral properties. Pseudopterolide, however, was shown to be a viral entrance inhibitor, and might also be effective in the treatment of severe acute respiratory syndromes. All the NPs had a significant likelihood of affecting the host’s immune system (in Table 8). The immune system needs to be strengthened to combat the illness in the early phases of infection. In contrast, the immune system has to be restrained in the later stages, to prevent inflammation, morbidity and, ultimately, the death of the patient [97,98]. Eleven NPs were predicted to be anti-inflammatory, except for seco-pseudopterosin A. Thus, the NPs mentioned above would be capable of either increasing or reducing the immune system activity. Depending on the stage of infection, the NPs could be chosen for treatment. Apart from seco-pseudopterosin A, eleven NPs were projected to have anti-inflammatory properties. Hence, the NPs indicated above showed the ability to alter the activity of the immune system. The NPs used for therapy might vary according to the stage of infection.
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Table 8. The predicted biological activities of the candidate NPs.
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PASSonline Program




	
Top Ligands

	
Predicted Relevant Bioactivity






	
Amphilectosin A

	
Antifungal, Antibiotic, Anti-diabetic, Anti-infective, Anti-viral, Antibacterial, Anti-parasitic, Anticancer, Antioxidant, Beta glucuronidase inhibitor, Histidine kinase inhibitor, 1,3-β-Glucan synthase inhibitor, Anti-inflammatory, Immunosuppressant, Immunomodulator, Interferon antagonist, Interferon gamma antagonist, Transcription factor NF kappa B stimulant, Wound healing agent, Free radical scavenger, Expectorant, and a Cytokine release inhibitor.




	
Amphilectosin B

	
Antifungal, Antibiotic, Anti-diabetic, Anti-infective, Anti-viral, Antibacterial, Anti-parasitic, Anticancer, Antioxidant, Beta glucuronidase inhibitor, Histidine kinase inhibitor, 1,3-β-Glucan synthase inhibitor, Anti-inflammatory, Immunosuppressant, Immunomodulator, Interferon antagonist, Interferon gamma antagonist, Transcription factor NF kappa B stimulant, Wound healing agent, Free radical scavenger, Expectorant, and a Cytokine release inhibitor.




	
Ameristerenol A

	
Antifungal, Anti-viral, Anti-inflammatory, Antineoplastic, 1,3-Beta-glucan synthase inhibitor, Transcription factor NF kappa B stimulant, Immunosuppressant, Respiratory analeptic, Antioxidant, Interferon antagonist, Interferon gamma antagonist, and an Interleukin 2 agonist.




	
Ameristerol A

	
Anti-viral, Antioxidant, Antifungal, Antibacterial, 1,3-Beta-glucan synthase inhibitor, Mucolytic, Respiratory analeptic, Transcription factor NF kappa B inhibitor, Expectorant, Anti-inflammatory steroid, Interferon gamma antagonist, Interleukin 2 agonist and an Immunosuppressant.




	
Elisapterosin A

	
Antiviral, Antifungal, Antioxidant, Histidine kinase inhibitor, Anti-parasitic, Antibacterial, JAK2 expression inhibitor, Interferon gamma antagonist, Immunosuppressant, Transcription factor NF kappa B stimulant, Tumour necrosis factor alpha release inhibitor, Cytokine release inhibitor, TNF expression inhibitor, Interleukin 2 agonist, Interleukin 1a and 10 antagonist, T cell inhibitor, RdRp Inhibitor, Respiratory analeptic, and an Anti-inflammatory steroid.




	
Elisabatin A

	
Antineoplastic, Anti-viral, Antifungal, histidine kinase inhibitor, β-Glucuronidase inhibitor, Anti-inflammatroy, Antibacterial, Anti-parasitic, Antimutagenic, hepatoprotectant, Immunosuppressant, JAK2 expression inhibitor, MMP9 expression inhibitor, TNF expression inhibitor, Cytokine release inhibitor, T cell inhibitor, Interleukin 10 antagonist, Interferon antagonist.




	
Pseudopterosin A

	
Anti-viral, Anti-infective, Antibiotic, Antineoplastic, Antioxidant, Anticancer, Free radical scavenger, Antibacterial, Antifungal, 1,3-β-Glucan synthase inhibitor, Beta glucuronidase inhibitor, Wound healing agent, Immunosuppressant, Anti-inflammatory, Transcription factor NF kappa B stimulant, Interleukin 2 agonist, Cytokine release inhibitor, Interferon antagonist, Interferon gamma antagonist, T cell inhibitor, Expectorant




	
Pseudopterosin R

	
Anti-bacterial, Anti-parasitic, Anti-infective, Anti-viral, Antifungal, Antifungal enhancer, β –Glucuronidase inhibitor, 1,3-β-Glucan synthase inhibitor, Antineoplastic, Anti-inflammatory, Immunosuppressant, Interleukin 6, 10 antagonist, Interferon antagonist, Interferon gamma antagonist, Cytokine release inhibitor, T cell inhibitor, GRP78 expression inhibitor, Expectorant




	
Pseudopterolide

	
Anti-inflammatory, Antioxidant, Antineoplastic, Antifungal, Antifungal enhancer, β-Glucuronidase inhibitor, Transcription factor NF kappa B stimulant, Antibacterial, Anti-parasitic, Histidine kinase inhibitor, Immunosuppressant, Antibiotic, Expectorant, Interleukin 10 antagonist, Severe acute respiratory syndrome treatment, Antineoplastic alkaloid, Interferon gamma antagonist, Cytokine release inhibitor, and a Viral entry inhibitor.




	
Pseudopteroxazole

	
Antibacterial, Antibiotic, Anti-parasitic, Antineoplastic alkaloid, Anti-inflammatory, Antioxidant, transcription factor NF kappa B stimulant, and an Immunosuppressant.




	
Sandresolide B

	
Antifungal, Antifungal enhancer, Mucolytic, Antibacterial, Antibiotic, Antineoplastic alkaloid, Anti-parasitic, Anti-infective, Immunosuppressant, Transcription factor NF kappa B stimulant, Interferon antagonist, Cytokine release inhibitor, Interferon gamma antagonist, T cell inhibitor, JAK2 expression inhibitor, TNF expression inhibitor, Macrophage colony stimulating factor agonist, Anti-inflammatory, Respiratory analeptic, Histidine kinase inhibitor, Beta glucuronidase inhibitor, Leukotriene agonist, and an Interleukin 2, 6, 10 antagonist.




	
Seco-Pseudopterosin A

	
Anti-viral, Anti-infective, Anti-tuberculosic, Anticancer, Antioxidant, Free radical scavenger, Antibiotic, Anti-diabetic, Antineoplastic, Antibacterial, Anti-parasitic, Antifungal, Mucolytic, Histidine kinase inhibitor, Immunosuppressant, Anti-inflammatory, Wound healing agent, Transcription factor NF kappa B stimulant, β –Glucuronidase inhibitor, 1,3-β-Glucan synthase inhibitor, Expectorant, Respiratory analeptic, Interleukin 2 and 12 agonist, and a Cytokine release inhibitor.












4. Conclusions


In conclusion, the COVID-19 pandemic has already claimed millions of lives [99], and continues to pose a threat to human health. The non-structural proteins of SARS-CoV-2 undoubtedly play important roles in infection [100,101,102,103]. Thus, these protein targets are important in drug development to tackle the virus. Our study demonstrated the potential of natural compounds from two species of soft coral, A. americana, and A. elisabethae, to combat SARS-CoV-2. In light of our findings, only 12 out of 165 NPs may function as inhibitors of the nonstructural proteins; namely, nsp16–nsp10, nsp13, and nsp14. With the catalytic residues of the target proteins, five NPs showed advantageous residue interactions. These five NPs were pseudopterosin A, seco-pseudopterosin A, sandresolide B, elisabatin A, and elisapterosin A. Fast MDs simulations also showed that all the docked complexes were stable. To validate their anti-viral propensities, in vivo and in vitro research must be conducted. Overall, the majority of the NPs shortlisted passed toxicity and pharmacokinetic assessments. Therefore, these NPs, with minimal laboratory interventions, can be transformed into novel therapeutics to treat SARS-CoV-2 infection.
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Figure 1. Illustration of the schematic workflow of the research. 
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Figure 2. The docking validation. (A) The default inhibitor SAH re-docked in the active site; (B) the superimposed crystal structures of the re-docked and 7R2V proteins; and (C) the original 7R2V protein chain A from the RCSB PDB database. 
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