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Abstract: The effect of climate change on flora and fauna has been widely discussed for years. How-
ever, its consequences on microorganisms are generally poorly considered. The main effect of climate
change on microbiota is related to biodiversity changes in different regions of the planet, mainly
due to variations in temperature. These alterations are resulting in a worldwide (re)distribution of
pathogens, which was not considered a few years ago. They mainly affect different food chain sectors
(such as agriculture, livestock and fishing), as well as human health. Hence, the spread of numerous
animal and plant pathogens has been observed in recent years from south to north (especially in
America, Europe and Asia), leading to the spread of numerous plant and animal diseases, which
results in economic and ecological losses. In addition, global warming that accompanies climate
change could also be related to emerging antibiotic resistance. However, the mitigation of climate
change goes hand in hand with microorganisms, which can help us through different natural and
industrial processes. Thus, this manuscript presents the direct and indirect effects of climate change
on microorganisms described up to date and how they act on this worldwide phenomenon.
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1. Introduction

Climate change is probably the main concern of the 21st century, which not only
affects the weather people experience but also the air they breathe, the water they drink,
the food they eat and even where they are able to live. In the last decades, extreme weather
events have become frequent, and records are continuously being broken. Thus, the last
few years have been the hottest on average as long as records have existed, and more than
400 weather stations all around the World have beaten their heat records in 2021 (reaching
up to 48.8 ◦C in Italy on 20 July, 49.6 ◦C in Canada on 29 June or even 54.4 ◦C in the US
on 9 July) [1]. The global annual temperature has increased by 0.08 ◦C on average per
decade between 1880 and 1981, culminating in 2021 with a temperature of 0.84 ◦C above the
average of the 20th century, according to the “2021 Annual Climate Report” of the NOAA
(National Oceanic and Atmospheric Administration of the US Department of Commerce;
https://www.ncdc.noaa.gov/sotc/briefings/20220113.pdf, accessed on 19 July 2023). In
addition, the mean annual precipitation is expected to be lower in southern Europe and
higher in northern Europe over the next few years, leading to warmer and drier climates,
particularly in southern and central Europe during spring and summer. In short, an increase
in the risk of extreme weather events, such as heatwaves, extreme rainfall and extended
drought periods, in the years to come due to climate change is strongly suggested [2].

Climate change seems to be the result of both natural (Earth’s magnetic field changes)
and anthropogenic (e.g., methane and carbon emissions) factors [3,4]. It was first reported
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in 1824 by the French physicist Joseph Fourier [5], but it was not until 1975 that Wallace
Broecker introduced the term “global warming” into the public domain [6]. Sixteen years
later, the Intergovernmental Panel on Climate Change (IPCC) was formed to collate and
assess evidence. Thus, climate change can be defined as the long-term alteration of tem-
perature and typical weather patterns (including, but not only, temperature, rainfall and
wind). These changes can cause an unprecedented loss of biodiversity and endangered life
on Earth. However, although the loss of plant and animal species has been reasonably well
studied and documented, the effects of climate change on microorganisms are generally
overlooked [2].

Microorganisms date back to Earth’s origin, at least 3.5 billion years ago [7], and they
will undoubtedly exist well beyond any future extinction events. Their abundance and
diversity (~1030 bacteria and archaea cells and ~1012 microbial species) are the life support of
the biosphere and the basis for maintaining healthy ecosystems [2]. They play a critical role
in nutritional cycles, such as carbon and nitrogen, as well as in animal (including humans)
and plant health, agricultural yields and food security. Thus, as climate change can intensify
seasonal disturbances and lead to an increase in extreme events [8], it is reasonable to
consider a possible effect on microbial biodiversity and its subsequent consequences [2,9,10].
Nowadays, the most studied effect of climate change on microorganisms refers to the
increase in animal and plant pathogens due to the geographical expansion of numerous
marine and terrestrial vectors, mainly because of global warming [2], as detailed throughout
this work. However, the relationship between microorganisms and climate change is
a two-way road, since microorganisms can directly affect climate change due to their
involvement in greenhouse gas (GHG) synthesis and consumption, but they are part of
the solution by acting as mitigation agents, and also their biodiversity is being affected by
environmental modifications.

2. Impact of Climate Change on Microbial Diversity

Ecology aims to understand the generation and maintenance of biodiversity over
time and space, where climate strongly conditions the structure and interactions inside
communities, as well as their functionalities [11]. Thus, the impact of climate change on
the ecosystems’ inhabitants, including microorganisms, is expected to be significant and
complex, although its quantification seems challenging [12]. Among all the environmental
factors affected by climate change (e.g., alterations in precipitation patterns, drought stress
and changes in radiation), global warming has a pervasive influence on the variation in
soil microbial diversity, playing a primary role in shaping microbial diversity compared
to other proposed environmental drivers by increasing the temperature in the surface soil
and decreasing its moisture [13,14].

It is important to note from the outset that the effects of climate change on microbial
communities in both terrestrial and aquatic environments are complex and, at times, even
contradictory, with both deterministic and stochastic influences. On one hand, it has been
widely reported that changes in temperature have an impact on microbial biodiversity
at various levels (e.g., geographical range, phenology, distribution or abundance) [13].
Microbial metabolism, population growth rate and species number increase exponentially
with increasing temperature. In fact, bacterial and fungal diversity tends to decrease with
increasing global latitude as temperatures decline [14]. However, variations in temperature
can affect microbial biodiversity through several mechanisms. First, the most commonly
reported mechanism is that increasing temperature leads to higher rates of metabolism,
resulting in increased population doubling times [14] as well as the rates of ecological and
evolutionary processes, including mutation, speciation and interactions (e.g., parasitism,
predation, competition or mutualism among others) [12,14,15]. Therefore, if temperature
drives the increase in microbial diversity, it can be expected that warming ecosystems
(from tropical to alpine forests) will become more diverse and active, potentially enhancing
processes such as decomposition, nutrient cycling and carbon sequestration [14]. However,
higher temperatures can also act as a deterministic filter, selecting more adapted microor-
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ganisms and constraining the stochastic drift and dispersal of species, ultimately leading
to a decrease in the temporal scaling rates of soil microbial communities. In addition,
microbial community responses to climate change greatly depend on microbial lineages
and functional groups [12,15].

On the other hand, higher temperatures lead to an increase in the number of plant
species, and this higher plant diversity allocates nutrients to belowground ecosystems,
as there is a well-known correlation between microbial taxa richness and plant species
diversity [14]. This shift in nutrient allocation could lead to changes in plant–microbe
interactions, particularly affecting populations of plant growth-promoting rhizobacteria
(PGPR) that rely on rhizodeposition [16,17]. In addition, the alterations in precipitation
patterns and drought stress associated with climate change negatively impact the formation
of a mycorrhizal mycelium in plant roots [16,18]. These changes in climatic conditions
contribute to an increased incidence of environmental stresses, which can also enhance the
activities of pathogens and heterotrophic microorganisms, leading to the redistribution of
beneficial microbes across different ecological niches [16,17].

Despite the reported potential impact of climate change on microbial composition
and interactions, most of the conducted studies have focused on specific regions and
conditions (especially on terrestrial ecosystems). Therefore, given the complex interplay
between microorganisms and their biotic and abiotic surroundings, information obtained
from a single point in time provides only a snapshot of the microbial community, and it is
unsuitable for ecosystem model simulation and interpretation. Further research is needed
to fully comprehend this dynamic relationship.

3. Microorganism Involvement in Production/Consumption of Greenhouse Gases

The appearance of oxygenic photosynthetic cyanobacteria, 2.3 billion years ago, altered
the course of evolution by allowing aerobic respiration and the development of complex
multicellular life [19]. Since then, microorganisms have been involved in some of the most
relevant events in recent history, such as the 1918 influenza pandemic (with a third of the
world’s population infected and 50 to 100 million deaths); the discovery of penicillin by
Alexander Fleming in 1928 [20], allowing the beginning of the golden era of antibiotics; or
the recent COVID-19 outbreak due to the SARS-CoV-2 coronavirus.

Microorganisms are simultaneously involved in the production and consumption of
three main GHGs responsible for 98% of the increase in global warming: carbon dioxide
(CO2), methane (CH4) and nitrous oxide (N2O) [21]. First, microorganisms are part of a large
global carbon cycle. They extract carbon from non-living sources and make it available to
other living organisms, mostly from atmospheric carbon dioxide (carbon fixation). The best-
known example of carbon fixation is photosynthesis, and, despite this process being mainly
attributed to plants, half of the global CO2 photosynthetic incorporation is performed
by marine phytoplankton (e.g., Vicicitus spp. or Emiliania huxleyi) even though they only
represent 1% of the photosynthetic biomass of the entire biosphere [2,19].

Secondly, methane is a simple hydrocarbon that is ~30 times more impactful than
CO2 as a GHG. While microbes are sources of CH4 (between 70–90% of the total methane
produced) as part of natural processes, some of their recent increase is due to changes
in human activities. Methane is mostly produced “anthropogenically” (as a result of
human activity) during agricultural practices (e.g., feed digestion in ruminants due to
methanogenic archaea, rice paddies), as well as methanogenic microorganisms in landfills,
coal mines and natural gas production. However, natural sources of methane also exist,
such as anoxic sediments (oceans and lakes), wetlands, termite nests and soils [22]. In
contrast, methane-consuming microorganisms are crucial for maintaining a worldwide
balance, as these methanotroph species (which literally means “methane eaters”) are able to
use this methane as an energy source [1,2,19,23]. Examples of well-known methanotrophs
are the members of the genus Methylococcus or Methylobacter [22].

Finally, nitrogen is one of the most important gases in the atmosphere (~78%), which
exists in numerous forms, such as NH3, NO and N2O, although N2 is its most habitual state.
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However, it is not directly available to plants and animals, and it enters the biosphere via
biological fixation through different bacteria (such as Azotobacter, Beijerinckia, Clostridium
or Rhizobium) or blue-green algae. Hence, marine fixation is 30% higher than terrestrial
nitrogen fixation [19,23].

This brief introduction of microbial relevance in the GHG worldwide balance presents
microorganisms as relevant players in climate change, but they also play several roles
outside atmospheric gas control. Thus, the relationship between climate change and mi-
croorganisms (including bacteria, fungi, unicellular algae and protozoa) will be addressed
point-by-point along different human sectors (e.g., industrial and health).

4. Microorganism-Mediated Effect on Productive Sectors

Climate variations (e.g., temperature increase, rainfall instability, glacial retreat, ex-
treme weather events, etc.) have foreseeable impacts on certain industries. These impacts
encompass technical concerns (e.g., power supply) or extend to more severe problems in
sectors such as agriculture, forestry, livestock and commercial fishing, which are primary
sectors of great economic relevance, whose global value grew by 73% between 2000 and
2019, reaching USD 3.5 trillion in 2018 [24]. Nowadays, farmers and scientists are already
both turning their eyes to the use of biofertilizers and eco-friendly tillage practices in order
to protect soil health, reduce GHG emissions and increase carbon sequestration [25]. How-
ever, the increase in outbreaks of several diseases, as well as the geographical expansion of
different pathogens, is compromising the balance between eco-friendly activities and the
way to face these new climate-change-derived risks [2] (Figure 1). Thus, the microorganisms
involved in these processes play a crucial role as detailed below.

Microbiol. Res. 2023, 14,  4 
 

 

Finally, nitrogen is one of the most important gases in the atmosphere (~78%), which 
exists in numerous forms, such as NH3, NO and N2O, although N2 is its most habitual 
state. However, it is not directly available to plants and animals, and it enters the bio-
sphere via biological fixation through different bacteria (such as Azotobacter, Beijerinckia, 
Clostridium or Rhizobium) or blue-green algae. Hence, marine fixation is 30% higher than 
terrestrial nitrogen fixation [19,23]. 

This brief introduction of microbial relevance in the GHG worldwide balance pre-
sents microorganisms as relevant players in climate change, but they also play several 
roles outside atmospheric gas control. Thus, the relationship between climate change and 
microorganisms (including bacteria, fungi, unicellular algae and protozoa) will be ad-
dressed point-by-point along different human sectors (e.g., industrial and health). 

4. Microorganism-Mediated Effect on Productive Sectors 
Climate variations (e.g., temperature increase, rainfall instability, glacial retreat, ex-

treme weather events, etc.) have foreseeable impacts on certain industries. These impacts 
encompass technical concerns (e.g., power supply) or extend to more severe problems in 
sectors such as agriculture, forestry, livestock and commercial fishing, which are primary 
sectors of great economic relevance, whose global value grew by 73% between 2000 and 
2019, reaching USD 3.5 trillion in 2018 [24]. Nowadays, farmers and scientists are already 
both turning their eyes to the use of biofertilizers and eco-friendly tillage practices in order 
to protect soil health, reduce GHG emissions and increase carbon sequestration [25]. How-
ever, the increase in outbreaks of several diseases, as well as the geographical expansion 
of different pathogens, is compromising the balance between eco-friendly activities and 
the way to face these new climate-change-derived risks [2] (Figure 1). Thus, the microor-
ganisms involved in these processes play a crucial role as detailed below. 

 
Figure 1. Main effects of climate change on microorganisms: (i) expansion and increase in water-
borne diseases affecting fish and shellfish and causing an increase in food poisoning outbreaks and 
loss of marine biodiversity; (ii) expansion and intensification of pathogenic fungal infections in crops 
all around the world; and (iii) outbreaks of livestock diseases, emergence of new zoonotic diseases 
and increase in antibiotic resistance. 

  

Figure 1. Main effects of climate change on microorganisms: (i) expansion and increase in waterborne
diseases affecting fish and shellfish and causing an increase in food poisoning outbreaks and loss of
marine biodiversity; (ii) expansion and intensification of pathogenic fungal infections in crops all
around the world; and (iii) outbreaks of livestock diseases, emergence of new zoonotic diseases and
increase in antibiotic resistance.

4.1. Agriculture and Soil Microbiome: Eternal Feedback

One of the most important worldwide primary sectors is agriculture, which relies
on food production. The total production of crops increased by 53% between 2000 and
2019, yielding 9.4 billion tons in 2019 [26]. However, the variation in soil microbial com-
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munities influenced by climatic change affects the physiology, temperature sensitivity or
plant growth rate, which jeopardizes the final yields and compromises the future of this
sector [27]. The relationships among microorganisms, atmospheric gases and crops show-
case an intricate feedback system. Discrepancies have been observed between short-term
laboratory studies and long-term field experiments on how climate change affects soil
communities and nutritional balances. These differences may be caused by several factors,
including variations in environmental conditions, differences in experimental designs and
the complexity of soil ecosystems [27–31].

Thus, increased temperatures accelerate microbial decomposition activities, leading
to faster CO2 emissions. As a result, soils will become a carbon dioxide source rather
than a sink [27]. However, an increase in atmospheric CO2 has been reported to stim-
ulate rhizosphere-colonizing bacteria such as Burkholderia and Pseudomonas as well as
plant-growth-promoting fungi, while non-rhizospheric species such as Bacillus were not
stimulated. This CO2 enrichment enhances the development of rhizobial populations
and the increase in N-fixing microorganisms in controlled environments, although mul-
tiple resource limitations dampen rhizobial responses in natural systems. In contrast,
high temperatures lead to drought, which reduces colonization by arbuscular mycorrhizal
fungi [27,28].

In addition, temperature and soil humidity play a critical role in microbial-soil abun-
dance, diversity and metabolic functionality, since climatic factors greatly modify the type
and quantity of some plant species that predominate in a landscape. Thus, owing to the
relationship between soil microbial biodiversity and the presence of certain plant species,
this vegetal redistribution also affects soil microbial communities in a continuous feedback
system [29,30]. Furthermore, the consequences of climate change on soil communities
and nutritional balances depend on the specific soil type, vegetation cover and manage-
ment techniques. As a result, the total effects of climate change on soil communities and
nutritional balances seem logical but unclear [27,28,32].

4.2. Plant Pests’ and Diseases’ Effect on Agriculture and Forest: The Uncomfortable Travelers

The prediction of climate change effects on crop yields is being analyzed by means
of several models, which, despite not being consistent with the final balances, predict
multi-million dollar losses in numerous crops throughout the world as a result of pest and
pathogen movement to new geographic locations [33–38]. In 2020, Delgado-Baquerizo
and co-workers demonstrated that warming temperatures increase the presence of soil-
borne fungal pathogens [39], and Bebber and co-workers’ study in 2013 reported that the
poleward movement of numerous pathogens and pests of around 3 km per year has been
underway since 1960 [40]. However, although there are certain difficulties in accurately
quantifying the potential impacts of climate change on plant pests, crop production and
risks to natural biodiversity [41,42], numerous bacterial and fungal diseases have already
begun their geographical expansion, although most of them have not actually been related
to climate change (Table 1).

Fungi annually destroy one-third of all food crops, including rice, wheat, maize,
potatoes and soybean. The mitigation of this loss would have been enough to feed around
8.5% of the world population of seven billion in 2011 [38]. According to Chaloner and co-
workers [43], Europe and North America, followed by some regions of Asia, are expected
to be the most affected areas by the spread of non-commonly detected fungi as a result of
the temperature increase, where the most economically devastating is Magnaporthe oryzae
affecting rice and wheat [38]. Thus, some models create a devastating scenario for 2050,
with a large increase in fungal infections throughout Europe, such as the following:

• Brown rust (mainly caused by Puccinia recondita), in the case of wheat, is forecast to
increase its pressure on the crop by 20–100%, and yellow rust (caused by Puccinia
striiformis) will increase by 5–20% in cold regions.
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• Rice pathogens such as Pyricularia oryzae (the main cause of blast) and Bipolaris oryzae
(or brown spot) are favored in all European rice districts, with the most critical situation
in northern Italy (with an increase of close to 100%).

• In the case of grape, Plasmopara viticola (also called downy mildew) will increase by
5–20% across Europe, while Botrytis cinerea (or bunch rot) will have diverse impacts,
ranging from a 20% decrease to a 100% increase in infection events [44].

Indeed, the spread of several agricultural diseases toward northern regions of Europe
has already been reported:

• An increase in cases of diseases in leafy vegetable and cereal crops has already been
reported in Italy, as a result of several pathogens’ effect, such as Plectosphaerella cuc-
umerina, Alternaria sp., Fusarium equiseti, Myrothecium verrucaria, Myrothecium roridum,
Phoma valerianellae, Pleospora betae, Peronospora belbahrii and Pythium ultimum, as well
as the appearance of new pathogens like different species of Pythium (Pythium aphani-
dermatum, Pythium irregulare, Pythium dissotocum, Pythium coloratum, Pythium diclinum
or Pythium lutarium) and new species causing yellow rust or stem rust [44–46].

• Among the new infections that have been reported in recent years in southern Europe
and the Mediterranean coast, different species of the fungus Diaporthe have been found
infecting several citruses, and the bacterium Xylella fastidiosa has also been discovered
in olive trees [47].

On the other hand, fungal infections of invertebrate hosts also require attention, not
only because they are an important route of transmission of pathogens to new areas but also
because they can boost agricultural crises due to ecological imbalance. Thus, a dramatic
example is bee broods, which are susceptible to some fungal infections, like those caused
by Ascosphaera and Aspergillus, and viruses, such as Deformed wing virus (DWV) or Varroa
destructor virus-1 (VDV1). Thus, agricultural production is highly dependent on bee
pollination, and infections may lead to unprecedented disasters (see below) [29,41,48].
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Table 1. Geographical expansion of agricultural diseases reported in recent years.

Disease Pathogen Host Origin Spread and Development Refs.

Ash dieback Hymenoscyphus fraxineus Ash trees Asia Asia, Europe and Africa [49,50]
Bacterial blight or Bacterial leaf

blight Xanthomonas oryzae Rice Japan Worldwide (especially Asia
and Africa) [51,52]

Bacterial canker Pseudomonas syringae Fruit trees Depends on pathovar Worldwide [53,54]
Brown rust or Leaf rust Puccinia recondita Cereals (wheat, rye and barley) Eastern Australia Worldwide [55,56]

Brown spot Bipolaris oryzae Rice USA Asia, Europe and South
America [44,57]

Bunch rot or Gray mold Botrytis cinerea Wide range Unknown Worldwide [58]
Chestnut canker Cryphonectria parasitic Chestnut tree Asia North America [59]

Disease dependent on the
Diaporthe species Diaporthe spp. Wide range Germany Europe, Australia and Asia [47,60]

Disease dependent on the X.
fastidious subspecies Xylella fastidiosa Wide range USA South and North America and

Europe [47,61]

Downy mildew Plasmopara viticola Grape North America Worldwide [62–64]

Dry root rot Rhizoctonia bataticola (also
Macrophomina phaseolina) Chickpea India North America, Asia and

Africa [65]

Dutch Elm disease Ceratocystis ulmi (also
Ophistoma ulmi) Elm Asia Worldwide [66]

Fire blight Erwinia amylovora Apple, Pearl and some
Rosaceae North America Europe and Asia [67]

Rice blast Magnaporthe oryzae (anamorph
Pyricularia oryzae) Rice Brazil South America, Asia, Africa

and Europe [44,68]

Stewart’s wilt Pantoea stewartii (formerly
Erwinia stewartii) Corn USA Italy, Malaysia [69,70]

Yellow rust or Stripe rust Puccinia striiformis Wheat Transcaucasia (Armenia,
Georgia and Azerbaijan) Worldwide [55,71]

Wheat blast Pyricularia graminis-tritici Wheat Brazil North and South America and
Asia [72]
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The forest industry accounted for USD 244 billion in derivatives such as paper and
paperboard, agglomerates or pellets in 2020 (https://www.fao.org/forestry/statistics/80
938/en/, accessed on 19 July 2023). In the same way as agronomic soils, global warming is
affecting the microbial communities of forest soils where a variation of just 5 ◦C unbalanced
the relative abundance of soil microbiota in a field experiment (mainly fungi and some
actinobacteria) [73]. However, the most visible problem today is the increase and expansion
of pests and pathogens into new areas, which yield severe environmental and economic
impacts, including the near-extinction of certain tree species, such as the following:

• Chestnut blight, caused by the pathogenic fungus Cryphonectria parasitica, native to
Southeast Asia, which has killed more than 4 billion trees in the US to date.

• Ash dieback, caused by the newly identified Hymenoscyphus fraxineus, first detected in
Asia, which has been recently detected in the UK and Northern Ireland [59].

• Dutch Elm disease, caused by Ceratocystis ulmi, a fungus responsible for its spread
from Asia to Europe in 1918 that has killed millions of elms in Europe, western Asia
and North America all throughout the 20th century [74].

• Needle blight of Pinus contora in north-western British Columbia, Canada, caused by
outbreaks of Dothistroma septosporum as a result of a summer rainfall increase [75].

In summary, the causative agents of plant diseases are troublesome travelers that
result in huge economic losses for the agricultural and forestry sectors, although obtaining
realistic analyses seems complex.

4.3. Livestock and Climate Change: An Arthropoda Matter

The livestock sector is a capital pillar of the global food system, which, according
to the FAO [24], represents 40% of the global agricultural output value and supports the
livelihood, food and nutrition security of almost 1.3 billion people [24]. Although the
increase in productivity efficiency helps to minimize the detrimental environmental impact
of livestock, global farm-gate GHG emissions increased by 11% between 2000 and 2019,
and around 55% of them are related to the livestock industry [76,77].

As in the agricultural sector, climate change could directly and indirectly influence
livestock production in many ways: (i) growth performance, (ii) the yield and quality of
the product, (iii) reproductive performance and (iv) health status. However, the main
risk of climate change, as far as microorganisms are concerned, is an increase in fungal
and bacterial diseases [76]. In addition, changes in temperature may trigger the secretion
of stress hormones such as cortisol, which suppresses the immune system and favors
pathogen infections, which also increases their transmission and expansion [78].

Pathogens’ geographical extension is sometimes attributed to both anthropogenic and
natural effects, including climatic factors and fauna and flora spread. Hence, the increased
temperatures in the northern regions favor the expansion of numerous pathogen vectors
(e.g., insects) that increase their chance to be established in new regions [79], promoting
the geographic spread and increasing the incidence of some infections and diseases [80]
(Table 2). The most climate-sensitive diseases are those transmitted by arthropods. Thus,
the prevalence of tick-borne diseases has increased throughout Europe during the last
decades [79]. In fact, 50% of tick species have the potential to expand their range worldwide,
many of them being vectors of important animal diseases. These tick vectors that are already
spreading north include the following:

https://www.fao.org/forestry/statistics/80938/en/
https://www.fao.org/forestry/statistics/80938/en/
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Table 2. Geographical expansion of livestock diseases reported in recent years.

Disease Pathogen Vector Host Origin Spread and Development Refs.

Anaplasmosis Anaplasma phagocytophilum Ixodes scapularis, Ixodes
pacificus Sheep and cattle Scotland Worldwide [81,82]

Babesiosis

Babesia microti, Babesia
venatorum and Babesia

divergens
Ixodes ricinus, I. scapularis Mammals Romania Europe and North

America [83]

Babesia bovis and Babesia
bigemina Rhipicephalus microplus Mammals Asia, Africa, South and

Central America
Europe and North

America [84]

Bluetongue Virus Orbivirus Culicoides imicola Ruminants South Africa USA, Canada, Australia,
South and Central Europe [85]

Canine Babesiosis Babesia spp. Dermacentor reticulatus Mammals (especially
cattle) and birds Romania Worldwide [26]

Colorado tick fever Coltivirus Dermacentor andersoni Mammals Western US Europe and North
America [86,87]

Ehrlichiosis Ehrlichia chaffeensis and
Ehrlichia ewingi Amblyomma americanum Mammals Canada North America and

Europe [88,89]

Leptospirosis Leptospira spp. Environmental
transmission Mammals Japan and Europe Asia, Australia, America

and South Europe [90,91]

Lyme disease Borrelia burgdorferi Ixodes scapularis Rodents USA North America and
Eurasia [92–94]

Powassan virus disease Powassan virus Several tick species Mammals Unknown North America [95]

Q fever Coxiella burnetii D. reticulatus Ruminants (cattle, goat
and sheep) Australia Europe and North

America [96]

Rocky Mountain spotted
fever

Rickettsia rickettsii D. andersoni
Mammals South and Central

America
North America

[97]
Rickettsia parkeri A. maculatum Central and North

America
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• Ixodes scapularis and Ixodes pacificus, which transmit anaplasmosis disease, mainly
caused by the bacterium Anaplasma phagocytophilum (formerly Erilichia phagocytophilum),
which has also been reported in new regions worldwide [98]. In addition, they can also
transmit the pathogen bacteria Borrelia miyamotoi, which has recently been reported in
new areas of North America [81,82,99].

• Dermacentor reticulatus, which can transmit canine babesiosis, tularemia or Q fever [100,101].
Canine babesiosis is caused by the intracellular protozoan Babesia spp., and the number
of reported cases has increased in northern countries, including Canada, Germany,
Hungary, Switzerland and the Netherlands [26,78,95]. Q fever, meanwhile, is an
important zoonotic disease caused by the bacterium Coxiella burnetiid. It was originally
described in Australia in 1933, although it began to spread across North America
and Europe only two decades ago. In Europe, some cases were initially reported
in southern countries such as France, Spain and Germany, although in recent years,
significant outbreaks have been reported even in countries further north like the
Netherlands [96].

• Ixodes ricinus, which transmits encephalitis and Lyme disease (borreliosis).

Another important group of vectors spreading to the north are mosquitoes, such as
Culicoides imicola, which transmits bluetongue virus (BTV). It has spread northward from
Africa and Cyprus causing BTV outbreaks (with high mortality and morbidity rates) in the
Netherlands, Germany, Belgium, Luxembourg, Great Britain and other northern European
countries since 2007 [80,85]. BTV is an infectious disease caused by an Orbivirus that
mainly affects ruminants (especially sheep), but other non-ruminants can also be infected
(e.g., shrews or dogs) [102,103]. In addition, changes in air currents associated with climate
change can alter the dispersal of mosquitoes, leading to outbreaks of infectious diseases,
such as leptospirosis and foot rot, although no confirmatory studies have been conducted
to prove this [78].

On the other hand, although vector-borne diseases are prone to be impacted by global
warming, other kinds of weather events (such as abundant rains, extreme drought or
changes in air currents) may play an important role in their geographical expansion. These
events have been extensively studied in processes such as El Niño events. After these ex-
treme weather events, an increase in diseases, like Rift Valley fever, has been observed. This
acute viral hemorrhagic fever is caused by a member of the genus Phlebovirus. It triggers
high livestock morbidity and mortality and has traditionally been identified in sub-Sahara
regions. However, there have recently been outbreaks as far north as the Arabian Peninsula
and Asia, with the potential to spread further into Europe in the future [13,78,104].

In addition to the geographical expansion of vector-borne diseases, the ability of
microbial pathogens to mutate and adapt to environmental changes is a significant factor
in understanding the potential impact of climate change on livestock. For instance, in
the case of Venezuelan equine encephalitis virus (VEEV), a single amino acid substitution
in the envelope glycoprotein was observed (Ser→ Asn), enabling the virus to adapt to
a new efficient epizootic vector. This change occurred after a shift in the representative
mosquito population, where the mosquito species Ochlerotatus taeniorhynchus became the
most abundant after deforestation eliminated the habitats of Culex taeniopus, the previous
principal mosquito vector. It serves as an example of viruses’ rapid response to changes in
their vector populations [80]. In addition, RNA viruses have no proof-reading, leading to a
high evolutionary rate, mainly those with segmented genomes. The conservation degree
of host receptors used by the pathogen is also important, and, although it is not directly
affected by climate conditions, climate change could reduce the species barrier and facilitate
contagion to new species through the invasion of new habitats [80].

Finally, apiculture is a livestock sector often forgotten when it comes to climate change.
Apis mellifera is the most common species of honeybees in Europe and is the most valuable
pollinator of agricultural crops worldwide [105–107]. However, they suffer from a wide
variety of bacterial, fungal and viral pathogens, as well as microsporidial or ectoparasitic
mites. Among its most common diseases, European foulbrood (EFB), American foulbrood
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(AFB), chronic bee paralysis (CBP), sacral brood, calcareous brood and varroosis [108] are
worth mentioning. Thus, different model predictions have described a positive relationship
between temperature and the incidence of some of these important diseases [109], although
they are not usually the focus of numerous analyses. Two of the most studied ones are
chronic bee paralysis (caused by an unclassified bipartite RNA virus usually called chronic
bee paralysis virus) [110] and American foulbrood (caused by the Gram-positive bacteria
Paenibacillus larvae), whose expansion and intensification have already been reported despite
the absence of models linking it to climate change [108,111].

4.4. Fishing and Marine Microbiome

Fishing and shellfish are relevant food industrial sectors. On average, a person eats
approximately 20.5 kg of fish and shellfish every year. The 179 million metric tons of total
seafood from 2018 landings had a farm-gate production value exceeding USD 401 billion,
and global fish consumption has continued to increase at an average annual rate of 3.1%
since 1961 (a higher rate than all other animal protein foods) [24,112]. However, marine
animals are mainly ectotherms, and, as a result, they are particularly sensitive to changes in
water temperature, which highlights the effect of global warming on this fauna. Over the
past few decades, there has been a significant increase in temperature in the European seas,
with warming rates four to seven times higher than the global average. This accelerated
warming has important implications for marine life because it can disrupt migration
patterns, reproductive cycles, food availability and species distribution [113].

Climate change may also affect other environmental factors such as seawater acidi-
fication, hypoxia, CO2 accumulation, salinity or sea level modifications [114] (Figure 2).
These changes disturb marine ecosystems, including microbial biodiversity, which has been
under-researched for decades. Marine microorganisms account for 90% of marine biomass.
They form the basis of marine food webs and are responsible for important biogeochemical
cycles [115]. However, most of the ocean observation programs and studies do not target
microbes [2,116], and the few reported just point to changes in the ocean’s microbial bio-
diversity mainly due to the increase in water temperatures and sea acidification [117,118].
Therefore, Wang and co-workers [119] observed that warmer oceans will alter microbial
communities, especially in thermally stable regions, and Hutchins and Fu [120] reported
that ocean warming causes losses in microbial populations, leading to the predominance of
a few earlier insignificant taxa.

To date, 25 viruses, 33 bacteria, 23 protists and 21 metazoans have been reported as
the main causes of marine diseases in plants, corals, mollusks, crustaceans, echinoderms,
fishes, turtles and mammals [114], although it is estimated that a greater part of the
diversity in marine microbial biodiversity remains undiscovered, with less than 0.1%
being described [121]. Thus, some studies have illustrated how marine warming alters
host–pathogen dynamics, which can be described as follows:

• First, environmental changes like those caused by climate change may lead to stress in
both fish and shellfish species, leading to lower immune responses against various
pathogens and diseases [2]. Urchins are a clear example of this. Both tank and real-
world experiments showed a strong correlation between mass mortality events and
long-term elevated temperatures. While urchins experience thermal stress, leading to a
decrease in the immune response (increasing infection rates) and fertility (minimizing
population recovery) at higher temperatures, pathogens increase their replication and
transmission rates [122].

• Second, a rise in temperatures leads to an increase in several marine pathogens’ viru-
lence by increasing their metabolism and inducing higher rates of transmission [122].
Such as the case of the host–pathogen interaction between Pocillopora damicornis and
Vibrio coralliilyticus. At temperatures above 27 ◦C, pathogen virulence increases be-
cause multiple virulence factors are upregulated, including extracellular proteases
that cause lysis and mortality in P. damicornis [123].
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• Third, pathogen geographical expansion comes with increasing temperatures. A
shining example is Perkinsus marinus, a protist parasite of the eastern oyster Cras-
sostrea virginica that has expanded its range from the mid-Atlantic to the northeast
in recent decades, primarily due to increased winter water temperatures, since both
P. marinus infection patterns and C. virginica immune response are dependent on the
temperature [124,125]. In addition, P. marinus infection intensity increases above 20 ◦C,
especially at temperatures close to 25 ◦C, and some models predict longer periods of
sustained higher temperatures after 2100, which may allow the geographical spread
of P. marinus and its establishment farther north along the coast [122]. Other cases
come from the Vibrio genus, which includes more than 110 different species. Some of
them are well-known animal and human pathogens, like Vibrio cholerae, responsible for
cholera disease, which causes between 100,000 and 120,000 deaths every year globally.
Zooplankton is one of the main environmental reservoirs of vibrios in aquatic environ-
ments, and some species can be found infecting molluscan and crustacean shellfishes,
as in the case of Vibrio parahaemolyticus and Vibrio vulnificus. Both species are related
to typical human infections associated with seafood consumption, and the risk area
for both vibrio infections has greatly increased during warmer water temperature
episodes in the last years [113,126]. A similar effect is expected in other aquaculture
species due to Vibrio harveyi, which poses a great risk to some of the most impor-
tant species in the fish market, such as rainbow trout (Oncorhynchus mykiss), Atlantic
salmon (Salmo salar L.), Senegalese sole (Solea senegalensis), Japanese seabass (Lateo-
labrax japonicus), cobia (Rachycentron canadum) and common dentex (Dentex dentex),
among others [127].

• Last, habitat expansion is likely to cause novel contact among populations, pathogens
and vectors, potentially increasing interspecies infections. For example, Brucella, a
group of Gram-negative bacteria and the causative agents of brucellosis. Novel species
of Brucella named Brucella ceti and Brucella pinnipedialis have been reported to cause
infection in marine mammals like cetaceans and seals, respectively [122].

On the one hand, although temperature is presented as the dominant climate change
effect disrupting microbial marine communities, there are physical and chemical factors that
may also affect infection and disease transmission in aquatic environments. A reduction in
water salinity has the potential to significantly impact the immune response of host organ-
isms. For instance, oysters exposed to low-salinity stress exhibited increased susceptibility
to infection by Vibrio alginolyticus, resulting in higher mortality rates [128]. Similarly, ocean
acidification can affect the immunological defenses of diverse organisms, such as urchins,
mussels, oysters, finfishes, corals, bivalves and seagrasses. In addition, different studies
have reported that Vibrio tubiashii grows better and increases its infectivity against mussels
(Mytilus edulis) and hemocytes when exposed to low-pH conditions [114,129]. On the
other hand, elevated partial pressures of CO2 (usually known as hypercarbia) may impact
the immune response by activating the complement system, activating the inflammatory
response and down-regulating IgM expression. Thus, the joint effect of hypercarbia and
temperature changes can alter the first and second lines of finfish defense, affecting their
susceptibility to infections and diseases [114].
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to changes in microbial biodiversity and expansion of both pathogen geographic ranges and patho-
gen virulence, inducing an increase in disease outbreaks and fauna and flora mortality. 
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(b) after 2100. Among the changes that will have the greatest impact are (i) increases in atmospheric
CO2 uptake and, therefore, water acidification, (ii) increase in temperature, (iii) shallowing of the
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(v) reduction in oxygen both at the surface and in the underlying deep ocean. All these changes
lead to changes in microbial biodiversity and expansion of both pathogen geographic ranges and
pathogen virulence, inducing an increase in disease outbreaks and fauna and flora mortality.

5. Human Health and Climate Change

Last but not least, human health is also affected by climate change effects. According
to the World Health Organization, the epidemiology of infectious diseases constantly
fluctuates in response to environmental changes and interactions among pathogens, hosts,
reservoirs and vectors. The report of the IPCC (Intergovernmental Panel on Climate Change;
https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/, accessed on
19 July 2023) indicates that an intensification in infectious disease outbreaks due to climate
change will be observed because several pathogens will spread to new regions and emerge

https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/
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in areas where they were previously under control. In addition, diseases that have never
previously affected humans may “spill over” from animals, through a process known
as zoonosis [130]. It properly fits the concept of One Health which recognizes the close
connection between human and animal health and our shared environment (https://www.
cdc.gov/onehealth/index.html, accessed on 19 July 2023). Thus, climate variation and
its effect on human health can be considered directly due to the evolution and expansion
of different disease vectors or indirectly through antibiotic resistance, which hampers
microbial disease control.

5.1. Human Infective Diseases: Evolution and Expansion

Climate change can modify the relationship between humans and pathogens, thereby
increasing their probability of contracting infections and diseases. Rising temperatures
would modify the host immune system and boost the growth rate of pathogens, which
supports their perpetuation and transfer [2,131] in a similar manner previously described
for livestock. The most positively affected pathogens are those transmitted by vectors, food,
air, water and other environmental agents [2]. Thus, the forecast for the near future is an
increase in the infection transference and spread, as well as a change in the patterns of
infectious pathologies due to rising temperatures, early changes of season and fluctuations
in rainfall. For example, the spread of mosquito-borne diseases like dengue fever or Zika
virus will be the result of increasing temperatures and changes in rainfall patterns, which
lead to more breeding sites. In addition, infectious disease-causing pathogens are able to
adapt to new climatic conditions that enhance their transmission and prevalence [132–134].

The impact of rising temperatures and the adaptation of pathogens to new conditions
poses a significant threat, leading to the emergence of previously unrecorded human infec-
tious diseases. A notable example is the Chikungunya virus, transmitted by mosquitoes,
which causes fever and severe joint pain. Although it was initially identified in Tanza-
nia in the 1950s, it has since spread to other parts of the world, including America and
Asia [135,136]. Pathogens may develop thermotolerance as a survival mechanism in re-
sponse to changing environmental conditions and their adaptation to new hosts. The
acquisition of this thermotolerance involves various molecular and cellular mechanisms,
such as (i) the activation of heat shock response genes encoding heat shock proteins (HSPs),
(ii) DNA repair mechanisms, metabolic adaptations to optimize energy production and uti-
lization at higher temperatures or (iii) gene regulatory network modulation and signaling
pathways to coordinate the expression of heat-responsive genes [137]. As these pathogens
adapt to higher temperatures, they acquire the ability to cross the mammalian endothermic
barrier (which creates a zone of thermal inhibition to prevent infection), thereby adapting to
the internal environment of the host. This, together with the increased population density of
pathogens, poses a greater threat to human health and increases the likelihood of infection.
For instance, certain strains of Vibrio, commonly found in coastal waters, have become more
virulent in response to escalating ocean temperatures, leading to outbreaks of infections
among individuals exposed to contaminated water or seafood. Additionally, pathogens
preserved in Arctic permafrost may also resurface, causing diseases such as tularemia or
anthrax, as old variants long forgotten by the immune system regain activity [138].

The effect of climate change on the expansion and proliferation of some human
diseases is presented in this section based on their transmission manners (vector-borne,
foodborne or waterborne diseases) (see Table 3 and Figure 3).

https://www.cdc.gov/onehealth/index.html
https://www.cdc.gov/onehealth/index.html
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5.1.1. Human Vector-Borne Diseases

The most important vector-borne diseases in Europe are caused by pathogens sensitive
to climatic conditions because they are spread mostly by cold-blooded arthropods, which
expand their geographic ranges owing to the effects of climate change (global warming,
rainfall variations and extreme weather events) [2,130,138]. Vector-borne diseases account
for more than 17% of all infectious diseases, causing 700,000 deaths every year worldwide.
Although mosquitoes are the best-known disease vector in humans and animals, other
arthropods, such as ticks, black flies, sandflies, midges, fleas and triatomine bugs, also act
as relevant vectors and should be kept in mind [2,139–141].
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The effects of climatic variations can be observed with the spread of some tropical
diseases, such as dengue and Zika, both transmitted by mosquitoes of the Aedes family.
Dengue transmission has increased since 1950 by 8.9% in the case of Aedes aegypti and
by 15.0% when considering Aedes albopictus, reaching almost 4 billion people in over
128 countries at risk of contracting dengue [130,139,140,142]. In addition, there was a 50%
increase between 2005 and 2015 in the number of deaths caused by dengue, which has
become the most prevalent disease among travelers in Southeast Asia, surpassing malaria.
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Table 3. Effect of climate change on the expansion and development of different diseases.

Disease Microorganism Vector Host Origin Spread and
Development Effects of Climate Change Refs.

Ve
ct

or
-b

or
ne

di
se

as
es Chikungunya Chikungunya

virus Aedes albopictus Human Tanzania Asia and Africa Increase in temperatures, changes
in rainfall and increase in the

number and severity of extreme
weather events multiply the risk
and the ranges of infection and

the spread of diseases

[139]

Dengue Dengue virus
(DENV)

Aedes aegypti
Human Africa

Tropical and subtropical
areas and Europe [133,142]Aedes albopictus

Leishmaniasis Leishmania spp. Female sand-fly Human Africa Southern countries of the
European continent [138,139]

Zika Zika virus (ZIKV) Aedes albopictus Human Africa North America and
South America [138,139]

Fo
od

bo
rn

e
di

se
as

es Diarrheal disease Campylobacter spp. Contaminated
food Human America Worldwide Temperatures rise favors the

contamination of food by
pathogens that cause diseases

[138,139]

Salmonellosis Salmonella spp. Contaminated
food Human America Worldwide [139,143]

W
at

er
bo

rn
e

di
se

as
es

Cholera Vibrio cholerae Contaminated
water Human Asia and Africa Africa, Asia and

North America

Increased precipitation can wash
pathogens into waterways, while
rising sea temperatures activate
impulses for pathogen spread

and development

[1,111,112,117,
119,120]

Leptospirosis Leptospira spp. Contaminated
water Human Germany Tropical and

subtropical areas

Warmer temperatures and
extreme weather events can

create favorable conditions for
the survival and persistence of

Leptospira bacteria in the
environment. Alterations in land

use and deforestation can also
increase human contact with

animal reservoirs of leptospirosis

[2]
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Thus, a 30-fold increase in dengue incidence over the last 50 years, as well as an
extension in the geographic area of this disease, is a clear warning sign. Hence, forecasts
estimate the future expansion of dengue, which will increase the risk of infection in the
global population [138,144]. Currently, the greatest concern is the mosquito A. albopictus,
which can spread from temperate regions to higher altitudes. This mosquito species is
known to transmit diseases such as chikungunya and Zika viruses, making its presence
a cause for heightened attention and concern. Some studies have related the spread of
outbreaks to an increase in total viral load with an increase in the number and range of
vectors, which is directly related to climate change [139,144–146].

Leishmaniasis, which is transmitted in warm environments by protozoa of the Leish-
mania genus, is moving into regions that are now temperate as a result of climate change,
including areas of southern Europe such as Italy, Greece and Spain, as well as regions in
South America, such as Argentina and Brazil [147–149]. In this way, the reproduction and
survival of protozoa are advantaged because although the number of protozoa per cell
does not increase, the concentration of these protozoa in the environment rises, since warm
temperatures enhance their reproductive cycle. This has resulted in an alarming growth of
cutaneous leishmaniasis in areas where this protozoa was not previously detected (because
temperatures were much lower before), such as the southern countries of Europe, especially
in Mediterranean countries such as Spain, Italy, France and Greece [138,139,150].

The effectiveness of disease transmission by a vector depends on the time taken for
the vector to become infectious after encountering an infected host. Higher temperatures
play a significant role in boosting efficacy. When temperatures are higher, the time between
contact with the infected host and the vector becoming infectious is shortened. This shorter
timeframe results in higher vector concentrations. As a result, there are more opportunities
for the vector to transmit the disease within its lifespan, thereby increasing the overall
transmission potential. Hence, the spread of vector-borne diseases is favored by rising
temperatures, lengthening transmission seasons, increasing pathogen replication in the
vector and increasing geographic range [2].

5.1.2. Foodborne Diseases

Nowadays, more than 200 types of foodborne diseases have been reported, most
of which could be affected by climate change [139,143]. Approximately 420,000 deaths
per year are caused by foodborne diseases, and an increase is expected because rising
temperatures favor food contamination and pathogen establishment in new temperate
regions [139,143]. In addition, the more humid the environment, the greater the survival
of pathogens (such as Trichinella spp. and Toxoplasma gondii) and parasite eggs, larvae
and cysts. The rainfall rises and its intensity, as well as the increase in floods, favor crop
and food contamination because the air bacterial concentration is increased after a drizzle.
Additionally, after a flood, wastewater is more likely to overflow, causing contamination of
fresh produce [134,151].

Several examples of climate change effects on foodborne diseases have been described,
such as an increase in Campylobacter infections due to rising temperatures and intense
rainfalls [152]. According to a study carried out by Kuhn and collaborators in 2020 [152],
there is a possible increase of between 3 and 20% in cases of Campylobacter infections
if climate change is not delayed. In addition, salmonellosis, transmitted by Salmonella
species, which activates reproduction at high temperatures, is another relevant concern.
Global warming has been linked to an increase in Salmonella infections, and it is estimated
that every degree of temperature rise would cause a 5% to 10% increase in Salmonella
infections [139,143,153]. Morgado and co-workers, in 2021 [154], showed a direct relation-
ship between warm temperatures, increased rainfall (especially during extreme weather
events) and a rise in diagnosed cases of salmonellosis. In this way, higher temperatures
can lead to increased bacterial concentrations, potentially resulting in more severe cattle
infections. This has significant implications for the food industry, as contaminated meat
can contribute to outbreaks of salmonellosis in humans [128].
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5.1.3. Waterborne Diseases

Increased rainfall can drive pathogens into waterways and overwhelm water treat-
ment systems, causing different disease outbreaks. In addition, as presented in previous
sections, the increase in sea temperature and salinity changes can cause the development
and proliferation of numerous Vibrio species, such as Vibrio cholerae. Thus, it should be
kept in mind that these temperature changes, no matter how small, can lead to significant
alterations in host–pathogen relationships [133,139,153,155]. In addition, it must be consid-
ered that the spread and development of some pathogens (Vibrio cholerae, Cryptosporidium,
Leptospira spp., etc.) can lead to the contamination of urban water, which can result in
an increase in several diseases [156,157]. Most of these pathogens are transmitted by the
fecal–oral route or indirectly through contaminated water, where they can survive for long
periods, even though their nutrient access can be scarce [143,144]. An example is cholera
disease, whose clinical impact has increased in recent years, mainly due to temperature
and rainfall variations. In fact, it has been observed that each increased degree raises the
risk of cholera infections by around 15–29% [144,158].

Other cases of waterborne infections are those caused by the toxic microalgae Vicicitus
globosus (formerly Chattonella globosa), which contaminates the food chain through shellfish
consumption. Hence, climate change has intensified the proliferation of this algae because
of the increase in the concentration of CO2 in water, driving an upsurge in food poisoning
outbreaks [2,159]. Ocean acidification has also been linked to the formation of toxic algal
blooms. Some species of algae, including Emiliania huxleyi, produce toxins when their
environment changes due to acidification. These blooms can lead to the accumulation of
toxins in the food chain, causing harm to marine organisms and potentially even to humans
who consume seafood [159].

5.2. Antibiotic Resistance

The World Health Organization indicates antibiotic resistance as “one of the greatest
threats to global health, food security and development today” (https://www.who.int/en/
news-room/fact-sheets/detail/antibiotic-resistance, accessed on 19 July 2023). In recent
years, antibiotic resistance has risen sharply to become a public health problem, with
23,000 people dying annually as a result of antibiotic-resistant infections. This health
threat has been due to the wide variety of antibiotic applications (e.g., human and animal
health, growth promotion in food-producing animals, disease prevention, crop-disease
control as pesticides) in the last 80 years [160]. Worldwide, antibiotic consumption rose by
approximately 39% between 2000 and 2015, and it is estimated that it will continue to rise
up to 200% in a few years. These data, which are worrying for public health, were reviewed
by Jim O’Neill (UK Prime Minister commissioned the Review on Antimicrobial Resistance)
in 2014 [161], who reported that deaths from untreatable infections could reach 10 million
annually after 2050. In addition, there was a reminder a few years later in 2019 from the
IACG (Interagency Coordinating Group on Antimicrobial Resistance) hosted by the WHO
(World Health Organization) with contributions from FAO and OIE (Organization for
Animal Health) [162].

Latest studies relate antibiotic resistance spread to temperature increase because bac-
terial duplication time is accelerated, multiplying the chance of mutations, the horizontal
transfer of genes (some of them related to antibiotic resistance) and infectivity [2,161,163,164]
(Figure 3). Particularly, this increase in resistance has been notably higher in southern Eu-
rope, where climate change has led to a rise in minimum temperatures. As a consequence of
this temperature increase in these southern countries, the intensification of antibiotic resis-
tance has increased from 0.33% to 1.2% per year [163]. Acinetobacter baumannii, Pseudomonas
aeruginosa and Klebsiella pneumoniae are examples of this peculiar connection between tem-
perature and antibiotic resistance, which is currently causing serious sequelae because
some strains are hard to tackle with current antibiotic formulations [165,166]. In addition,
the increase in deaths due to antibiotic-resistant strains of tuberculosis causes more than
2000 deaths annually [167].

https://www.who.int/en/news-room/fact-sheets/detail/antibiotic-resistance
https://www.who.int/en/news-room/fact-sheets/detail/antibiotic-resistance
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Furthermore, it has been observed that the higher the temperature, the faster the new
instances of resistance upsurge [163,168]. Thus, salmonellosis could increase both burden
and morbidity due to global warming [169].

Another particular case is Candida auris, a new drug-resistant yeast species [167]. Its
most enigmatic aspect is that it emerged simultaneously as a human pathogen on three
continents in 2009, exhibiting antifungal agent resistance. One hypothesis is that the
increase in environmental temperature increased the concentration of C. auris and favored
the appearance of new mutations, including those for antibiotic resistance. In addition,
seabirds acted as intermediate hosts and reservoirs, and it became a zoonotic disease after
breaking the mammalian thermal barrier through adaptation to climate change. According
to Casadevall’s conclusions [135], C. auris was the first human pathogen to appear as a
result of climate change [135,167].

The increase in temperature leads to higher growth rates and enhanced survival of
pathogens, resulting in higher population densities. This, in turn, leads to an increased num-
ber of pathogens, which subsequently contributes to an increased occurrence of random
mutations [138,170]. It is important to note that resistance to one stressor, such as higher
temperatures, can provide protection against other stressors (e.g., antibiotics) [171]. This
phenomenon is known as collateral resistance or cross-protection, which was studied by
Rodríguez-Verdugo et al. in 2013 [172]. Interestingly, certain generations of E. coli have ac-
quired antibiotic resistance despite never being directly exposed to them. Instead, resistance
emerged owing to exposure to elevated temperatures. Both temperature and antibiotics
influence the transcription of RNA polymerase, leading to the acquisition of mutations as a
survival mechanism against heat stress, conferring also resistance to antibiotics [167,172].

Additionally, warmer environmental temperatures promote biofilm formation, mainly
because of the decrease in oxygen solubility with increasing temperature. In response
to these changing conditions, bacteria adapt their growth and behavior, transitioning
from planktonic bacteria to biofilms. Within biofilms, bacteria enter a dormant state,
enabling them to better tolerate the presence of antibiotics. Consequently, biofilms exhibit
increased resistance to antibiotics. In the context of reduced oxygen availability, certain
bacterial species can adapt their metabolism and form biofilms to enhance their survival
and persistence. Biofilms provide protection and access to nutrients, allowing bacteria
to thrive in oxygen-depleted environments [171]. In summary, microorganisms have the
ability to adapt and persist by undergoing genetic mutations and selecting strains that are
better suited to their environment. This includes developing resistance to antibiotics as a
means of survival in the presence of these drugs [167].

6. Microbial Mitigation of Climate Change

Hitherto, this review has presented microbes as actors and recipients of climate change
(e.g., GHG producers, crop destroyers or players in human and animal health concerns).
However, although there are still a limited number of non-model studies focused on using
microorganisms as a counterpart (mitigation agents) of global climate variation, some hope
glimmers appear on the horizon. Thus, microbial support can be considered in a direct
manner (e.g., plant biostimulants) or in an indirect way (e.g., helping in the transition to
the circular bioeconomy (a way to maximize resource efficiency, reduce waste generation
and promote the regeneration of natural systems) [173]).

The direct commitment of microorganisms to decreasing or slowing down climate
change can be considered if those microbes are relevant players acting straightly against
the causes or effects, such as the following:

• Inoculants: one of the main strategies to deal with the inevitable effects of climate
change on crops is the use of biostimulants, which recover plant resistance and re-
silience to biotic and abiotic stresses showing low toxicity and avoiding the appearance
of new resistant strains of pests and pathogens. Hence, the biofertilizer market has
steadily increased in the last years, with Europe being the world industry leader [174].
Several microorganisms can act as biostimulants providing crop-limiting nutrients:
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(i) by nitrogen fixation (Azospirillum, Azotobacter or Rhizobium), (ii) mineral solubiliza-
tion like phosphorus, potassium or zinc (Pseudomonas, Bacillus or arbuscular mycor-
rhiza) or (iii) siderophore production (Pseudomonas and Acinetobacter) [174,175].

• Biofertilizers tackle climate change concerns in different positions:

(i) Some microbial species have shown crop protection from warmer temperatures,
such as Paraburkholderia phytofirmans in potato crops, Bacillus and Azospirillum
species in wheat and soy or Pseudomonas species in wheat [174],

(ii) Biofertilization minimizes N2O (GHG) emissions from soybean root nodules.
Thus, bacterial strains with higher N2O reductase activities (such as Azospira
sp. or Bradyrhizobium diazoefficiens) may provide avenues for reducing N2O
emissions in such crops [176,177],

(iii) Methanotrophic bacteria are gaining attention as biofertilizers, since it has been
estimated that they are able to consume approximately 40–60% of the methane
produced in wetland environments. Thus, methanotrophs can be used in land-
fills and agricultural soils, ultimately helping to reduce atmospheric methane
levels (e.g., Methylococcus or Methylococcus species) [22,178,179].

• Microorganisms are leaders in carbon sequestration:

(i) Several soil microbes contribute to carbon sequestration through different
mechanisms, although certain microbes possess faster metabolic rates and,
therefore, sequester carbon faster. It is possible to enrich soils with these
species of interest through the introduction of microbial formulations respecting
the environment, as well as by enhancing the capacity to collect carbon in
agricultural soil [180].

(ii) In addition, studies on the production of biofuels at an industrial level by
means of algae, which are one of the most powerful microorganisms for carbon
fixation (1.83 kg of CO2 is needed for each kg of dry algae biomass production),
connect two relevant concepts of the circular bioeconomy. On the one hand,
CO2 sequestration is closely connected to the carbon credits that pollute the
air, and on the other hand, the biomass produced by some of these algae
genera (e.g., Botryococcus sp., Scenedesmus, Neochloris) is ideal for energy fuel
production and multiple value-added products (e.g., feeds). Therefore, it would
be a particularly interesting cycle, since concerns about the depletion of fossil
fuels have increased general interest in recent years, and this process could
be interesting not only from an ecological point of view for the biological
sequestration of carbon from punctual sources but also from an economic
one [181].

• Livestock rumen: manipulation of rumen microbiota and breeding programs has
been proposed as a suitable solution to reduce methane emissions from cattle. The
objective would be to obtain cattle lines producing less methane without affecting the
health and productivity of animals [2].

On the other hand, the indirect involvement of microorganisms in the fight against
climate change can be considered if those microbes work in the transition to the circular
bioeconomy by helping to reintegrate residual materials or by-products in the production
chains, as well as by supporting the degradation of recalcitrant material to their elementary
components or biomolecules (e.g., as biomass to the environment), such as the following:

• The Rs concept is aimed at the transition to a circular bioeconomy by means of dif-
ferent wording that collects the spirit of the materials’ reinsertion into the production
system. Initially, three Rs were considered (Reduce, Reuse and Recycle); later, it was
increased to six Rs (the three Rs plus Rethink, Refuse, Repair), and, nowadays, it contin-
ues increasing the number of Rs (the six Rs plus Refurbish, Remanufacture, Repurpose,
Recover). In this context, the recent isolation of the poly(ethylene terephthalate)
(PET)-degrading bacterium Ideonella sakaiensis [182], the description of epoxy-degrader
microorganisms, such as Pseudomonas putida [183], or the description of the wax moth
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caterpillars (Galleria mellonella) as polyethylene degraders [184] have boosted the re-
search on the biotechnological degradation of plastic. Excessive use of these materials
increases plastic accumulation on land and sea. Microbes are the predominant or-
ganisms able to face this problem, the so-called plastic biodegradation [185]. The
degradation to these basic molecular components presents the microorganisms or their
enzymatic activities as relevant players in environmental sustainability.

• New protein sources: the search for new sources of protein to cover the increasing
demand for meat protein has led to single-cell protein (SCP) development. In the
first place, efforts have been made to convert plant protein into meat protein, getting
low yields. Thus, the production of SCP was initiated, which are dried microbial
biomass or the total amount of protein extracted from bacteria, yeasts, fungi or algae
cultures [186]. A clear example is the production of burger patties from the fungal
protein of Aspergillus oryzae, with similar organoleptic properties to meat burgers and
rich nutritional content [187].

• Bioremediation: oil spills are one example of pollution that can have devastating
effects on ecosystems and habitats. The bacterium Alcanivorax borkumensis thrives in
hydrocarbon-rich environments and has been shown to play a crucial role in the degra-
dation of oil spills [188]. This microorganism has been used in several bioremediation
efforts, including the clean-up of the Deepwater Horizon oil spill in the Gulf of Mexico
in 2010 [189].

• Liquid-3: Pollution is growing steadily around major urban centers. In 2021, Dr. Ivan
Spasojević from the University of Belgrade launched Liquid-3 on the market, a 600-L
tank filled with microalgae design to remove CO2. The tank effect is able to replace
two 10-year-old trees or 200 square meters of lawn (https://liquid3.rs/, accessed on
19 July 2023).

7. Conclusions

Doomsday scenarios have been a constant concern throughout the second half of the
XX century and the beginning of the XXI. Thus, the “unsustainable” worldwide overcrowd-
ing in 60 s that could compromise food supplies (±3.0 billion people in 1960 compared to
±7.9 billion today) or the nuclear arms race of the Cold War between the United States and
the Soviet Union, which kept the Doomsday Clock a few minutes before the midnight for
several years (nowadays, it is 90 s to midnight (https://thebulletin.org/doomsday-clock/,
accessed on 19 July 2023), are two examples of theoretical, but fortunately non-fulfilled,
risks for the humankind. Currently, climate change is a highly relevant concern at different
levels all around the world that could be presented as the next doomsday scenario due to
social controversy, which also affects the scientific community, with both pros and cons
to climate change. However, what is sure is that microorganisms are rarely the focus of
the analyses. They have not been considered in policy development, probably because
of their immense diversity and varied responses to environmental changes, which make
it a challenge to determine their role in the ecosystem. Nevertheless, based on scientific
evidence, as it has been reviewed throughout this manuscript, numerous alarms have been
raised in recent years due to the rise in the appearance and spread of several diseases
throughout the world. Several pathogenic fungi and bacteria have already extended their
geographical area of influence northward and are advancing at a great speed through
Europe and North America, with the immense economic losses that this entails. These
pathogens not only affect the three most important food production sectors—agriculture,
livestock and fishing—but human diseases (especially tropical) are also targeted, and the
appearance of new ones (zoonoses) is relevant. The mitigation of these illnesses is compli-
cated since they are climate-conditioned, and the appearance of new antibiotic resistance
further complicates the resolution.

Nowadays, microorganisms can be used to bring some light to climate change con-
cerns, and they should play a more relevant role. On the one hand, they can be used as
reporters of the weather variations tracing the appearance, evolution or impact of non-

https://liquid3.rs/
https://thebulletin.org/doomsday-clock/


Microbiol. Res. 2023, 14 940

common diseases at novel locations. On the other hand, their ability to decrease greenhouse
gases, due to their involvement in the carbon (fixing atmospheric CO2) and nitrogen cycles,
is also remarkable and should be valued at its full potential. In addition, microbial involve-
ment in the worldwide degradative tasks of recalcitrant compounds also presents them as
relevant players in climate change mitigation.

The evolution of climate change, as well as the truthfulness and accuracy of the
model predictions, highly condition the future results of climate variations and the role of
microorganisms. However, although the hands of the Doomsday Clock point to midnight,
the microorganisms will continue living here.
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