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Abstract: Mycotoxins are fungi-produced secondary metabolites that can contaminate many foods
eaten by humans and animals. Deoxynivalenol (DON), which is formed by Fusarium, is one of the
most common occurring predominantly in cereal grains and thus poses a significant health risk.
When DON is ingested, it can cause both acute and chronic toxicity. Acute signs include abdominal
pain, anorexia, diarrhea, increased salivation, vomiting, and malaise. The most common effects of
chronic DON exposure include changes in dietary efficacy, weight loss, and anorexia. This review
provides a succinct overview of various sources, biosynthetic mechanisms, and genes governing
DON production, along with its consequences on human and animal health. It also covers the effect of
environmental factors on its production with potential detection, management, and control strategies.

Keywords: deoxynivalenol; food and feed contamination; human health; management strategies

1. Introduction

Natural contaminants in food and feed are significant sources of human and animal health
concerns [1–3]. Mycotoxins are deadly substances produced by fungi that flourish in food or
feed, and they pose a major health risk to humans and animals [4–9]. When mycotoxins enter
the bodily system, they are well-known for causing serious health problems in humans and
animals, and they exhibit their effects in a variety of ways. Ingesting mycotoxin-contaminated
food or animal feed has been shown to cause carcinogenic, mutagenic, teratogenic, and immuno-
suppressive consequences [10]. Aspergillus, Fusarium, and Penicillium are the most common
mycotoxin-producing fungal genera. Contamination with mycotoxin is a global problem,
but it is exacerbated in warm, humid areas that promote fungal growth and mycotoxin
synthesis. Contamination with mycotoxins has a financial impact on agriculture and the
food industry. Aside from the financial costs of mycotoxin contamination of crops and food
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products, additional significant mycotoxin concerns include human and animal health diffi-
culties, reduced agricultural production, and the recall and disposal of mycotoxin-infected
commodities [11].

Deoxynivalenol (DON) is a prevalent mycotoxin identified in cereals around the world.
It is a type-B trichothecene that Fusarium graminearum and Fusarium culmorum typically
produce [12–14]. It is also known as vomitoxin because of its emetic effects in pigs and
gastrointestinal complaints in people [15]. DON can also be found in pastures and silages,
as well as cereals such as wheat, maize, barley, rye, oat, and safflower seed. Asia, Africa,
America, Europe, and the Middle East are all affected by DON pollution [16]. DON is a
naturally occurring foodborne mycotoxin that is easily caused by environmental changes
and is typically present in grains during the preharvest, processing, drying, and storage
processes (e.g., temperature, humidity). DON is also extremely thermostable, withstanding
temperatures ranging from 170 to 350 ◦C (no reduction detected after 30 min at 170 ◦C
treatment), rendering it a common dietary pollutant in mycotoxins pollution [15].

This article provides an overview of the main sources, chemistry and biosynthetic
pathway, genes responsible for DON occurrence in food and feed, as well as the mech-
anism of toxicity and health effects on humans and animals, considering the numerous
publications describing the toxicological consequences of mycotoxins. It also highlights the
effect of environmental factors on DON production as well as discusses the management
and control strategies with special emphasis on masked mycotoxins.

2. Major Source of Deoxynivalenol

DON is a naturally occurring metabolite produced by the fungi of the Fusarium
genus, especially Fusarium graminearum, Fusarium crookwellense, and Fusarium culmorum,
which contaminate the food and feed globally [17,18]. The fungi growth is enhanced
by mild temperatures and high humidity during flowering and maturation periods [19].
Other environmental factors that affect growth and toxin accumulation are water activity
(aw), pH, and nutrient composition [20]. The most commonly infected food groups are
cereals like wheat [21], maize [22], barley [23], rice [22], oats [24], and their products viz,
breakfast cereals [25], infant cereals, meals, feed, and baby mix. Fusarium head blight
(FHB) infection and DON contamination are dependent on agricultural practices such as
crop rotation, tillage, fungicide application, FHB resistant varieties, and climatic factors
such as spring rainfalls and warm temperatures that promote the infection and DON
formation on cereal crops [26]. The most common disease caused by Fusarium graminearum
in cereal crops like wheat and barley is FHB or scab, which causes not only economic loss
but also safety concerns related to mycotoxin (DON) accumulation in products due to
its stability [27]. The fungus grows as mycelia which develop into perithecia that release
ascospores which are then carried by wind or rain to the crop plants [28]. DON suppresses
protein synthesis by binding to the 60S ribosomal subunit’s peptidyl transferase protein
RPL3 and two F. graminearum strains can be distinguished by their production of 3-ADON
or 15-ADON, which differ in the position of the acetyl group [29]. Fusarium culmorum is the
major species that causes FHB in cereal crops, such as durum wheat, triticale, rye, and bread
wheat in Europe, thus contaminating the grains with DON [30]. Fusarium crookwellense was
responsible for causing infection and producing DON in oat kernels [31]. Fusarium cerealis
has been known to cause FHB and DON accumulation in durum wheat [32]. Another strain
causing the FHB and DON accumulation is Fusarium equiseti, which has also been studied
to cause infection in wheat in South Africa [33]. Some of the species that have been recently
reported to cause infection are F. verticillioides, F. poae, F. proliferatum, F. subglutinans, and
F. temperatum [34].

3. Chemistry and Biosynthesis of Deoxynivalenol

DON (3,7,15-trihydroxy-12,13-epoxytrichothec-9-en-8-one) is a trichothecene myco-
toxin present mainly in cereals and cereal-based products [35,36]. DON has a double
bond with oxygen at carbon number 8 in its molecular structure, making it a type B tri-
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chothecene [37]. In eukaryotic cells, DON is a potent inhibitor of protein synthesis [38]. It is
hazardous to human and animal wellbeing, as well as playing a key role in plant infection.
DON inhibits protein synthesis by binding to peptidyl transferase and mediates oxidative
stress-induced DNA damage and apoptosis. DON toxicity in humans and livestock causes
anorexia, malnutrition, gastroenteritis, endotoxemia, and even shock-like death [36].

DON is made by combining three mevalonate units derived from trans-farnesyl
pyrophosphate (FPP), which are then cyclized to form tricodiene, a precursor to tri-
chothecenes. DON biosynthesis is governed by fifteen genes distributed over three chro-
mosomes that code for the enzymes and regulatory proteins involved [39]. The remain-
ing loci include TRI1-TRI16 and TRI101, while one locus contains a set of 12 TRI genes.
Trichothecene synthase, which is encoded by the TRI5 gene, catalyzes the reaction that
produces trichothecene, which is followed by nine reactions catalyzed by enzymes encoded
by the TRI4, TRI101, TRI11, and TRI3 genes, which produce various DON precursors.
An acidic pH is a significant environmental element that encourages DON biosynthe-
sis. The accumulation of ammonium is caused by the absorption of available nitrogen-
containing compounds in food or the culture medium, which causes the pH to decrease.
The TRI5 gene product, which is responsible for FPP cyclization and the production of
tricodiene, a precursor to DON, is activated in this state. DON biosynthesis is also in-
duced by plant defense mechanisms in response to fungi infection. DON is produced by
F. graminearum, which causes fungi to develop hyphae and spread from an infected branch
to a healthy branch. In addition, the toxin inhibits the thickening of plant cell walls, which
will serve as a deterrent to fungal invasion [39].

4. Genes Responsible for Deoxynivalenol Production

All the TRI genes involved in trichothecene biosynthesis have been identified in Fusar-
ium graminearum and Fusarium sporotrichioides. Except for TRI1, TRI16, and TRI101, the
other TRI genes are included in the largest TRI gene cluster [40]. The biosynthesis of the my-
cotoxin DON in Fusarium graminearum is affected by several host and environmental factors
and is controlled by two pathway-specific transcription factors, TRI6 and TRI10. The TRI6
binding site in the promoters of TRI genes has formerly been recognized and characterized.
TRI10 deletion in F. graminearum suppresses the expression of the TRI gene, despite the
fact that its exact function is unclear. However, how the transcription factors Tri6 and
TRI10 are designed to regulate the expression of other TRI genes is unknown (Jiang et al.,
2016). The cyclic adenosine monophosphate (cAMP) signaling pathway, as well as all
three MAP kinase pathways, is required for DON biosynthesis in F. graminearum [41,42].
Extracellular signals are likely to activate TRI6 and TRI10, which regulate TRI gene expres-
sion, by any of these key signaling pathways. Extracellular signals are likely to activate
TRI6 and TRI10, which regulate TRI gene expression, by any of these key signaling path-
ways [38]. In addition, the sequenced F. graminearum strain PH-1 lacks functional TRI13
and TRI7, preventing DON development and Nivalenol production (NIV). TRI5 is a key
cluster gene that catalyzes the formation of trichodiene from farnesyl pyrophosphate, the
first step in trichothecene biosynthesis [40].

5. Effects of Environmental Factors on Deoxynivalenol Production

The environmental factors that primarily affect mycotoxin production are temperature,
moisture, water activity (aw), substrate oxygen levels, physical damage, competition, and
the presence of fungal spores [35,43]. The growth of the fungi, Fusarium, and its mycotoxin,
DON, is dependent on weather conditions, such as high intensity warm and wet conditions
and heavy precipitation, which makes the transfer of macroconidia to the upper parts of
the plant easier through raindrops. The optimum temperature conditions are 10–25 ◦C
during flowering and humidity greater than 85–90% [44]. High to extreme humidity during
the growth and harvesting period enhances the growth of mold and hence the production
of mycotoxin [35]. It has been shown by Pascari et al. [26] that warm temperatures and
rainfall promote the growth and consequently mycotoxin formation in cereals. The other
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factors that affect mycotoxin production are aw and incubation time, and as reported
by Han et al. [45], these factors affected the DON production through TRI5 gene expres-
sion under optimum conditions of 20–30 ◦C, 0.95–0.98 aw, and 7–28 days of incubation.
Rainfall positively affected the growth of mold and DON production as temperature and
humidity are important factors for growth and flowering [46]. Ramirez et al. [47] studied
the effect of temperature, aw, and incubation time and observed that growth was optimum
at 0.99 aw and 25 ◦C, and the growth was negatively affected when the aw of the medium
was reduced. A temperature of 22 ◦C after 35 days of incubation time also favored the
DON production, as shown by Martins and Martins [48].

The environmental factors affect not only the growth of mold but also other physio-
logical processes that are important for survival and competition, such as the expression
of hydrolytic enzymes playing a crucial role in a fungal establishment on a substrate [49].
DON production was maximum at 0.98 aw, 30 ◦C, and 400–800 ppm of CO2 [50]. It was
also observed that the DON concentration was maximum at 0.97 aw and 30 ◦C [51].
The favorable condition for DON production was 25 ◦C and 0.98–0.99 aw, as observed
by Rybecky et al. [52]. Further, the optimum growth of the fungus was observed at 0.99 aw
and the growth decreased as aw was lowered from 0.97 to 0.94 [53]

6. Occurrence in Food and Feed, including Masked Mycotoxins

The most infected foodstuffs are cereals such as wheat, maize, barley, rice, oats, and
their products viz; breakfast cereals, infant cereals, meals, feed, and baby mix. FHB infection
and DON contamination are dependent on agricultural practices, such as crop rotation,
tillage, fungicide application, FHB resistant varieties, and climatic factors, as spring rainfalls
and warm temperatures promote the infection and DON formation on cereal crops [26].
In the real world, DON is always co-occurring with related metabolites, such as modified
or masked versions and related molecules like Culmorin (CUL). CUL is classified as an
“emerging mycotoxin” as it has yet to be controlled by food safety authorities, despite the
fact that it has been found in a variety of foods, sometimes in significant amounts [54].
CUL contamination levels and natural occurrence have been linked to DON occurrence
and levels, with CUL concentrations up to three times greater than DON in naturally con-
taminated samples [55,56]. Although CUL is mildly hazardous; there have been few studies
on the possible health risks of CUL in food products; whether alone or in combination
with DON [57,58]. As a result, the high frequencies and amounts of CUL and related
compounds in cereal-based raise concerns regarding their co-occurrence with disguised
DON mycotoxins. Contamination of DON in wheat and its by-products poses a significant
danger to public health. The occurrence of DON in foods and feeds (Table 1) is a major
concern for the food industry around the world.

Table 1. Occurrence of Deoxynivalenol in food and feed around the world.

Food/Feed Matrix Country Range (µg/kg) Detection Technique Reference

Food

Barley/Bakery
products

Argentina 2360 HPLC-UV [59]
Brazil 310–15,500 LC-MS/MS [60]

Romania 0–4000 ELISA [61]
Tunisia 500–3600 HPLC [62]

Hungary 97–3065 HPLC [63]

Corn South Korea 3.3–232.56 HPLC [64]
Corn/Corn germ meal China 100–4320.9/100–4402.7 HPLC [65]
Corn flour/Cornflakes Serbia 931/878 HPLC [66]
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Table 1. Cont.

Food/Feed Matrix Country Range (µg/kg) Detection Technique Reference

Food

Maize

China 100–19,811 HPLC-UV [67]
Egypt 26–807 LC-MS/MS [68]

Hungary 225–2963 ELISA [69]
Poland 1–6688 HPLC [70]
Serbia 260.4–9050 ELISA [71]

South Africa 9176 LC-MS/MS [72]
Nepal >1 HPLC [73]

Oats

Canada 50–2340 HPLC-PDA [74]
Finland 21,608 GC-MS [23]
Portugal 17,900 HPLC [75]
Russia 50–1030 HPLC-MS [76]

Sweden 99–5544 HPLC/ESI-MS/MS [77]
UK 1866 LC-MS/MS [78]

Noodles and Pasta Italy 35–450 LC-MS/MS [79]
Rice Pakistan 6.99 LC-MS/MS [80]

Wheat

Netherlands 100–11,000 LC-MS/MS [81]
Serbia 630–1840 HPLC [82]
Iran 23–1270 ELISA [83]

Romania 110–1787 LC-MS/MS [84]
Uruguay 1400–3400 HPLC/UV [85]
Norway 5–94 HPLC [86]
Sweden 1189 HPLC/ESI-MS/MS [87]

Hungary 1880 ELISA [88]
Argentina 9480 LC-MS/MS [89]

Switzerland 10,600 LC-MS/MS [90]
Israel 1.2–1746 LC-MS/MS [90]

Nigeria 119–2560 LC-MS [91]
Brazil 73–2794 HPLC [92]

Poland 10–1265 HPLC [93]
China 33–3030 HPLC [94]

Sweden 1189 HPLC/ESI-MS/MS [87]
India 70–4730 HPLC [95]

Canada 4700 HPLC-PDA [74]
Slovakia 788 ELISA [96]

Spain 6178 HPLC [97]
Italy 56–27,088 GC-MS [98]

Serbia 64–4808 HPLC/ELISA [99]
Iran 23–1270 ELISA [83]

Finland 5510 LC-MS/MS [100]
Serbia 154–16,528 ELISA [101]

Albania 1916 LCMS [102]

Spring wheat Lithuania 100–10,644 UPLC/MS [103]
Wheat dust Belgium 607–14,043 UPLC/MS [104]

Winter wheat Lithuania 100–1393 UPLC/MS [103]
Winter wheat Slovak Republic 20–2651.79 HPLC-DAD [105]
Wheat flour Spain 501 HPLC [106]

Wheat flour and bread Iran 0.78 ELISA [107]
Infant Food USA 10–224 HPLC-UV [108]
Infant Food India 5–228 ELISA [109]

Barley/Pasta Romania 21.52–721.88/28.23–173.55 ELISA and HPLC [21]
Flour and

breakfast cereals Romania 31.56–172.37 ELISA and HPLC [21]
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Table 1. Cont.

Food/Feed Matrix Country Range (µg/kg) Detection Technique Reference

Food

Feed

Broiler feeds Thailand 33.58–60.81 LC-MS [110]

Cattle compound feed Spain 289.9 UPLC–MS/MS and
UPLC–QTOF–MS [111]

Cattle/Chicken/Pig
feed South Korea 91.65–950.25/

3.3–603.10/32.38–932.48 HPLC [64]

Concentrated
feed/Formula

feed/Premixed feed
China 11.6–277.6/47.1–864.5/

97.4–776.3 UPHLC-MS [112]

Dairy concentrate feed Kenya 18.53–179.89 ELISA [113]
Duck complete feed China 100–2613.7 HPLC-UV [67]

Finished feed South Africa 9805 LC-MS [72]
Forage maize Northern Germany 2237–3038 LC-HRMS [114]

Compound feeds South Africa 3.22–56.52 UHPLC-MS/MS [115]
Feed Egypt 1516 LC-MS/MS [68]

Pig complete feed
(powder)/(pellet) China 100–2767.6/100–3346.0 HPLC [65]

Silage

Brazil 300 HPLC [116]
Spain 43.1–6685.6 LC-MS [117]

England 10–7111 UPLC [118]
Poland 1–7, 860 HPLC [70]

Poultry/Sheep/Swine
compound feed Spain 250/250/254.9 UPLC–MS/MS and

UPLC–QTOF–MS [111]

Swine feed Hungary 137–997 ELISA [69]

7. Mechanism of Toxicity

Consumption of DON contaminated food and feed is a potential risk to the health
of both humans and animals. DON is the most reported mycotoxin in cereals and is
linked with gastroenteritis and immune disorders [119,120]. Exposure to the toxin can
result in numerous problems such as digestive problems, feed refusal, diarrhea, repro-
ductive problems, nutrient malabsorption, increased incidence of diseases, and endocrine
disruption [121–123]. DON also causes oxidative stress due to the production of free radi-
cals, which then damage DNA and the cell membrane. It also causes degradation of the
ribosome, inducing ribotoxic stress, inhibiting protein synthesis, and ultimately apopto-
sis [121,124,125]. Studies have proven that DON is associated with the rise of reactive
oxygen species, triggering lipid peroxidation and hepatoxicity as the liver is the main organ
to get affected by oxidative stress [122,126–128]. Exposure to a high dose of DON, even for
a short period, causes gastrointestinal problems in both humans and animals.

At doses as low as 25 ng/mL, DON-induced cytokine and chemokine production can
be generated in human blood monocytes [129]. Induction of these mediators, like endotoxin,
may play a role in DON-induced anorexia. DON inhibits intestinal cell development and is
absorbed via the intestinal epithelium via simple diffusion [130]. DON activated p38 ERK
and JNK as well as disrupted intestinal permeability at levels equivalent to those reported
in nature. DON suppresses the activity of numerous intestinal transporters [131].

8. Effects on Human Health

DON causes hematopoietic progenitor cells less harm in vitro than T-2 toxin [132].
Human platelet progenitors (CFU-MK) are cytotoxic to DON; however, human red blood
cell progenitors (CFU-GM) are not (BFU-E). In CD34+ cells, DON does not cause DNA
fragmentation or annexin-V binding, both of which are apoptotic markers [133]. In addition,
Bensassi et al. [134] studied DON toxicity in human colon cancer cells (HT 29), finding
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that the toxin caused DNA breakage as well as p53 and caspase-3 activation. DON causes
direct DNA damage, according to scientists, and might be categorized as a genotoxic agent
capable of causing apoptotic cell death.

DON has been linked to gastroenteritis in humans, but its long-term effects are un-
known [135]. DON directly suppresses protein synthesis, but it also has an indirect effect
on DNA and RNA synthesis, inflammatory responses (ribotic stress response), and neuro-
logical functioning [136]. Two species typically used to evaluate DON toxicity include the
pig, a highly sensitive food-producing animal with economic ramifications, and the mouse,
a model widely used in human disease and safety investigations [136].

9. Effects on Animal Health

The sensitivity of the DON varies in different species, age groups, and sex of the
animals. Hogs are the most sensitive to DON contamination, along with the ruminants,
poultry, cats, dogs, and rodents [137,138]. The qualitative and quantitative production rates
of the egg, meat, and milk get reduced by the DON contamination. The DON concentration
in the range of 0.1–2 µg/mL can inhibit the protein synthesis related to the lymphocytes
and fibroblasts due to cytotoxicity [139]. In addition, DON contamination results in weak
offspring, dead birth, stiff hog, female pig’s abortion, reduced quality and quantity of the
produced eggs in poultry, as well as decreased production performance in cattle [140].
Further, the increased rate of embryo deformity in chicken and chromosomal aberration
due to DON contamination has been reported [141]. In cows, a slight reduction in the
consumption of the feed was reported when the DON quantity increased from 1.5 to
6.4 mg/kg [142]. In hogs, the absolute feed refusal was found at 12 mg/kg of DON,
and at 20 mg/kg of DON, they started vomiting. Compared to hogs, chickens are less
sensitive to DON and the reduced weight gain and feed refusal were observed when the
feed concentration of DON increased up to 16–20 mg/kg [143].

The estimated mean dietary concentration of the DON and its derivatives range
between 64.2–996 µg/kg for lactating cows and beef sheep. Ruminants are less sensitive
to DON as compared to poultry. In cows, poultry, and hogs, the transmission of the DON
from their feed to foodstuffs was reported. The concentration of DON at 9 mg/kg of feed
can negatively affect the chickens [142]. Even exposure to a lower dose for a long time
poses a potential risk. A study by Huang et al. [144] administered different doses of the
toxin via oral gavage (0, 0.03, 0.1, 0.3, 1, and 3 mg/kg/day) to female rats (F0 generation)
during gestation and then to offspring (F1 generation) up to 27 days postnatal. The results
showed that a dose of up to 3 mg/kg/day has no effect on the body weight or survival of
the F0 generation, but a decrease in body weight was observed in offspring (F1 generation)
at a dose of 3 mg/kg/day. As there was no significant data on maternal toxicity either
during gestation or lactation, the decrease in the bodyweight of F1 rats could be considered
a direct effect of DON.

Further, DON is known to cause neurotoxicity. In a study by Wang et al. [145], piglets
were fed on a DON-based diet of different concentrations (1.3 and 2.2 mg/kg) for 60 days
and observed for its effect on their hippocampus, cerebral cortex, and cerebellum. The in-
creasing concentration of the toxin was found to be linked with oxidative damage in
brain parts, where the damage in the cell structure of the hippocampus was revealed
using scanning electron microscopy. Moreover, an increase in the concentration of cal-
cium and Ca2+ calmodulin-dependent kinase II (CaMKII) was observed. Other studies
have suggested that the calcium ions are linked with neurotransmitter release and cell
proliferation, and the disruption in Ca2+ homeostasis can negatively affect the neuronal
circuits of the hippocampus [146,147]. Wang et al. [145] further suggested that DON toxicity
involves Ca2+/CaM/CaMKII signaling pathways in neurotransmission and lipid perox-
idation. The cytotoxic effect of DON has also been studied in mammary epithelial cells.
Research indicated a lower yield of milk when cows were fed contaminated feed [148,149].
Lee et al. [150] investigated the effect of DON on mammary epithelial cells (MAC-T) in
bovine animals. Different concentrations of the toxin (1–10 µM) were used for their impact
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on MAC-T cells. Results showed a significant reduction in proliferation activity of the
cells with the increase in toxin level with the highest effect at 10 µM. The phosphoryla-
tion of phosphoinositide-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK)
signaling molecules increased in MAC-T cells, demonstrating that DON regulates these
signaling pathways.

10. Detection Techniques including Masked Mycotoxins

The conventional analytical methods for detecting DON includes gas chromatography-
mass spectrometry (GCMS), high-performance liquid chromatography (HPLC) [151,152] and
liquid chromatography-tandem mass spectrometry (LCMS/MS) [153,154]. Although these
methods benefit from high sensitivity and specificity, the downsides are that they are
time-consuming for sample preparation, require expensive instrumentation, and highly
qualified personnel to operate [151]. Other methods for convenient, cheap and high sensi-
tivity detection include enzyme-linked immunosorbent assay (ELISA) [155], lateral-flow
immunochromatographic assay [156], lateral flow immunoassay [84], fluorescence [157],
surface-enhanced Raman scattering (SERS) [158,159], and electrochemical detection [160].

To meet the need for real-time monitoring of mycotoxin, methods like lateral flow
immunoassays (LFA) [161,162] and biosensing assays [163–165] were developed. LFA is
supposed to be the cheapest, fastest and simplest way of detecting mycotoxins [166].
Jin et al. [167] developed a new dual near-infrared fluorescence-based LFA for detecting
DON in maize. 5 g chopped maize sample was combined with 25 mL 70% methanol and
vortexed for 2 min for sample preparation. The extracted solution was centrifuged at
5000× g for 5 min, and the supernatant was diluted 10 times with phosphate buffer saline,
PBS (0.01 M, pH 7.4), followed by Tween 20 added to get a final 0.5% (v/v), and 200 µL of the
diluted sample was evaluated by the NIR-based LFA. Further, Zhao et al. [168] developed a
fast lateral flow fluorescence microsphere immunoassay test strip (FM-ICTS) for detecting
DON residues in a variety of agricultural goods. 5 g of material was shaken for 8 min with
25 mL of extraction solution, then centrifuged (8000× g for 12 min). The supernatant was
diluted 10-fold in 10 mM PBS + 3% Rhodasurf® On-870 before being detected with FM-
ICTS. For identifying DON residues in agricultural goods, this approach is easy, reliable,
and sensitive.

In addition, electrochemical and bio-sensors are powerful tools with high transmission
and easy and low-cost operation [169,170]. Ong et al. [171] developed a selective biosens-
ing device based on iron nanoflorets graphene nickel (INFGN) for selective detection of
DON. Furthermore, Li et al. [172] developed a sensitive and selective antibody-like sen-
sor based on molecularly imprinted poly(L-arginine) on carboxylic acid-functionalized
carbon nanotubes for detecting DON in agri-food products. The sample was made by
mixing wheat flour with acetonitrile/deionized water (84:16, v/v), ultrasonic extraction for
30 min, centrifugation at 15,000 rpm for 10 min, and collecting the supernatant. Finally, the
supernatants were filtered and incubated at 4 ◦C through a 0.22 µm sterile membrane.
This method provides a realistic biomimetic sensing platform for identifying mycotoxins in
food and agriculture.

Besides these, multiplex immunochromatographic assays (mICAs) are employed for
screening mycotoxins with rapid and excellent selectivity [173]. Recently gold nanoparticles
(AuNPs) and quantum dots (QDs) [174,175] have been used as signal tags for detecting
multiple mycotoxins in foodstuffs. Semiconductor QDs with a unique luminescent property
are utilized for developing highly sensitive biosensors based on Forster resonance energy
transfer (FRET). Goryacheva et al. [176] developed a FRET-based fluorescent immunoassay
for detecting DON. 25 g of wheat samples were mixed with 100 mL of methanol/water
(70/30, v/v) for 15 min on a horizontal shaker at room temperature. The wheat particles
were precipitated via centrifugation (4000× g, 20 ◦C, 15 min). The supernatant was used
for analysis after dilution of 1:5 with PBS.

As conventional immunochromatographic assays (ICAs) based on AuNPs have low
sensitivity, Li et al. [177] developed a highly sensitive ICA based on polydopamine coated
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zirconium metal-organic frameworks labeled antibodies for visual determination of DON.
Still, AuNPs-based mICAs show low sensitivity while QDs-based mICAs have interference
between multiple analytes and recognition molecules [178,179]. Thereby, a multiplex
immunochromatographic assay (mICA) was developed by Zhao et al. [168] based on
novel α-Fe2O3 nanocubes (FNCs) for the simultaneous detection of DON. For 15 min, 5 g
of samples were mixed with 10 mL methanol–water (70:30, v/v) and then sonicated for
10 min, followed by centrifugation (5439× g, 10 min) and dilution to 10-fold with 10 mM
PBS (pH 7.4) solution to get the supernatant. The FNCs-mICA method provided sensitive,
quick, and repeatable detection of multiple mycotoxins on-site.

Similarly, Huang et al. [180] developed an immunochromatographic test strip for rapid
and simultaneous detection of fumonisin B1 and DON in grains. 1 g sieved sample was
combined with 5 mL ultrapure water in a vortex mixer for 5 min, allowed to stand for
10 min, and the supernatant was filtered through 0.45 and 0.22 µm filter membranes to
get clear solutions for the analysis. The developed technique was suitable for the on-site
screening of large-scale samples. Furthermore, Subak et al. [181] developed a voltametric
aptasensor for detecting DON in food and feed samples. A high-speed blender was used to
mix 25 g of maize flour with 50 mL of 50% ethanol/water (v/v) for 5 min. The supernatant
was collected and evaporated to dryness under a nitrogen flow after centrifugation at
5000 rpm for 5 min. The dried sample obtained was suspended in affinity buffer and
differential pulse voltammetry measurements were used to record the response.

DON can bind with proteins or carbohydrates to form a varied structure known
as “modified mycotoxins”, which include both “biologically and chemically modified”
forms [182–184]. The term “masked mycotoxins” especially refers to “biologically mod-
ified” forms conjugated by plants [184]. Masked form of DON forms Deoxynivalenol-3-
β-D-glucoside (D3G) by enzymatic interaction with glucose [39,185,186] while 3-Acetyl-
deoxynivalenol (3Ac-DON) and 15-Acetyl-deoxynivalenol (15Ac-DON) [187,188] are formed
during deacetylation of DON. DON and its masked forms, namely D3G, 3Ac-DON, and
15Ac-DON, have been reported in cereal and cereal-based products [189]. There is limited
study on the toxicodynamics of these forms; however, their absorption, bioavailability, and
toxicity have been studied [186,190].

These modified or masked forms of mycotoxins remain undetected by conventional ana-
lytical techniques leading to underreporting [184,185]. Hence, there are serious health concerns
associated with masked/modified DON. They can even re-convert to their native form [187],
which raises further toxicity concerns in mammals [3–6,191]. Therefore, Fan et al. [112] devel-
oped and validated an Ultra-High-Performance Liquid Chromatography-tandem Mass
Spectrometry Method (UHPLC-MS) for simultaneous detection of masked DON in various
feed samples. Further, Olopade et al. [192] used LC-MS/MS procedure to quantify DON
and its masked forms, 3Ac-DON and 15Ac- DON. Despite this, their combined effects are
unknown [193], necessitating additional toxicokinetic studies of masked versions [194].
To address these concerns, modified DON could be transformed using a hydrolytic pro-
cess involving alkaline, acidic, or enzymatic methods [195,196] as well as an integrated
strategy for qualitative and quantitative analysis of modified mycotoxins, as suggested by
Lu et al. [194].

11. Legislation

Due to its widespread occurrence and severe impacts on human and animal health,
DON has attracted international attention. As a result, measures for preventing, excluding,
or inactivating DON in meals and feeds must be developed. DON contamination might be
difficult to avoid from preharvest to manufacture. DON management strategies have been
developed to (a) minimize DON formation or contamination prior to harvest, (b) degrade
or eliminate DON from polluted foods and feeds, and (c) reduce DON bioavailability by
reducing gastric absorption [16]. Table 2 summarizes the permissible limits of DON in
various foods and feeds set by various regulatory organizations. The permissible limits
of DON in various foods and feeds are higher in Europe than that set by US-FDA and
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FAO. Further, among the cereal category, the limits for maize and maize-based products
are higher. In a real-world situation of an eco-environmental system, DON contamination
occurs in combination with other mycotoxins, as well as its masked forms in food and feeds.
This could be the reason behind the variation in permissible limits depending on the type of
food and feed and their geographical location, which poses new challenges for government
organizations with setting scientific legislation, regulations, and standards [15].

Table 2. Permissible limits of DON in various foods and feeds established by different govern-
ing bodies.

Governing Body Food/Feed Type Permissible Limit (mg/kg) Reference

European Commission

Cereals and cereal-based products
(except for maize by-products) 8

[197]

Maize by-products 12

Complete feedingstuffs and
complementary with the exception of: 5

Complete feedingstuffs and
complementary for pigs 0.9

Complete feedingstuffs and
complementary for calves (<4 months),

lambs, and kids
2

United States Food Drug &
Administration (US-FDA)

Wheat products (e.g., bran, flour, and
germ) for human consumption 1 [137]

Food and Agricultural
Organization (FAO) of the

United States/Codex
Alimentarius

Maize, barley, and raw wheat 2

[137]
Maize or barley derived flour, semolina,

meal, and flakes, wheat 1

Cereal-based infant foods 0.5

12. Management and Control Strategies, including Pre-Harvest Preventive Strategies
and Post-Harvest Treatments and Detoxification Strategies

The development and implementation of efficient management and control strategies
are necessary to reduce the DON contamination in food and feed when pre- and post-
harvesting strategies cannot control them [198]. This detoxification technique is classified
into physical, chemical, and biological methods [139]. Physical methods include washing,
cleaning, dehulling, segregation, sieving, heat treatments, gamma, UV, and visible light
radiations [199]. This method is most suitable for food compared to feed. Thermal treatment
in food processing techniques has been divided into dry methods (baking, roasting, and
frying) and wet methods (steaming and cooking) [200] and is considered to be an important
tool for DON mitigation in foods, but the degradation products formed can have different
toxic behavior than the parent mycotoxin [201].

Stadler et al. [202] concluded that baking of food could cause a partial degradation of
DON because a considerable reduction in DON was observed with increased baking time
and temperature, and the degradation of by-products was less toxic. The reduction during
baking is either due to binding to matrix compounds or due to the transformation into other
toxins but not the actual destruction of toxins [203]. During roasting, an effective reduction
in DON was observed between 180 ◦C to 220 ◦C for 30 min and the reduction increased with
increasing temperature [35]. However, frying had no significant effect on DON levels due to
the high thermal stability and release of bound forms [200]. Further, Kalagatur et al. [204]
observed that high pressure (1000–5500 bar) between 30–60 ◦C for 10–30 min during
cooking significantly reduced DON levels in foods. More than a 40% reduction in DON was
observed in the boiled product due to the leaching of DON into the broth [205]. In addition,
gamma radiations have successfully reduced DON levels in wheat [198]. Several works
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have also reported degradation of DON using UV [206,207], where significant was observed
without any changes in color and protein content of the treated food samples [208].

Chemical and biological methods are suitable for both food and feed samples. The chemical
method uses chemicals such as calcium hydroxide monomethylamine and sodium bisul-
fite [209–211], moist and dry ozone [210,211], ascorbic acid and ammonium hydroxide [139],
acid and alkaline electrolyzed water [212], and ammonia [213]. However, the physical and
chemical methods have several disadvantages, such as limited efficacy, high cost, harmful
chemical residues, loss of nutritional value, sophisticated equipment requirements coupled
with safety issues; hence, environmentally-friendly techniques using microorganisms and
enzymes have been developed [214].

Biological detoxification involves the use of bacteria, fungi, and actinomycetes to
reduce or eliminate DON from products either through adsorption or enzymatic degrada-
tion [215,216]. Li et al. [217] observed that Bacillus subtilis had the highest detoxification
rate out of 16 strains of bacteria and showed a synergistic effect with Lactobacillus plan-
tarum, B. velezensis RC 218, and Streptomyces albidoflavus RC 87B showing up to 51% DON
reduction in durum wheat, hence a potential biocontrol agent [218]. B. subtilis ASAG
216 degraded 81.1% DON under optimum temperature (35–50 ◦C), time period (8 hr), and
pH (6.5–9.0) conditions because of degradation ability inherent in extracellular enzymes or
proteins [219]. Bacillus licheniformis strain YB9 also reduced 82.6% DON [220]. Further, the
bacterial consortium C20 was able to degrade DON at 30 ◦C and pH 8 [221]. Devosia insulae
A16 was also able to degrade 88% DON within 48 hrs at 35 ◦C at pH 7 [222]. Slackia sp. D-G6
reduced DON by deep oxidation between 37–47 ◦C and pH 6–10 with non-toxic DOM-1 as
a degradation by-product [223]. In addition, Pseudomonas sp. Y1 and Lysobacter sp. S1, soil-
derived bacteria, had a significant DON degrading ability by an enzymatic transformation
of DON into less toxic, 3-epi-DON [224]. Pelagibacterium halotolerans ANSP101 degraded
DON by transforming it into less toxic 3-keto-deoxynivalenol at 40 ◦C and pH 8 [225].
Devosia strain D6-9 completely removed DON in wheat by catabolizing it into 3-keto-DON
and 3-epi-DON [226]. Several works listed by Gao et al. [223] have shown the biodegrada-
tion of DON by fungi. DON detoxification can also be achieved by enzymatic reactions
such as deep oxidation, oxidation, epimerization, and glycosylation and the formation of
by-products like DOM-1, 3-keto DON, 3-epi DON, and DON-3-glucoside (D3G) [188].

However, due to certain limitations of physical, chemical, and biological methods such
as low efficacy, the requirement of expensive chemicals, sophisticated equipment, and the
formation of harmful chemical residues [227], a novel technology such as photocatalytic
degradation has been developed that is easy to use, inexpensive, environmentally friendly,
reusable, and has high stability [228]. This technique degrades the target toxin using a suit-
able photocatalyst such as the TiON@PdO nanoparticle [229], carbon-supported TiO2 [230],
ZnO@graphene hybrids [231], upconversion nanoparticles@ TiO2 composite [215], and
dendritic-like-Fe2O3 [232]. Another technique is electrochemical oxidation (ECO), which
has emerged as a new oxidation technology that destroys DON by several mechanisms;
in an experiment using graphite as an electrode, DON was significantly reduced due to
the high potential and acidic conditions of the technique [233]. Atmospheric cold plasma
technology (ACP) is another novel non-thermal approach for detoxification of DON, which
utilizes plasma under low atmospheric pressure conditions with the main advantage of
high chemical reactivity and efficacy compared to ozone or UV treatments and resulting in
decontamination of DON within seconds [227,234].

With food safety becoming a global concern, significant focus on the control and
prevention of accumulation of DON and its entry into the food supply chain is achiev-
able through scientific agricultural interventions at pre-and post-harvest conditions [235].
These interventions involve good agricultural practices (GAPs), good storage practices
(GSPs), and good management practices (GMPs) [236].

The mycotoxin contamination occurs during the growing period of crops, so it be-
comes necessary to identify appropriate pre- and post-agronomic practices to avoid grain
contamination [237]. Pre-harvest strategies include the use of resistant varieties, removal
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of weed and damaged kernels, soil analysis, use of herbicide, fungicide and insecticide,
seedbed treatment, crop rotation, tillage and plowing, the use of fertilizers, and genetically
modified plants for suppression of mycotoxins [238–240]. The most effective practice to
control the disease is the use of genetic resistant varieties, pedigree selection, and identifica-
tion of primary infection pathways, such as silk channels, during the flowering time [46].
An attractive technology is to employ gene editing to resist fungus growth or to prevent
mycotoxin formation in plants through kernel-specific RNA interference (RNAi) gene
cassette targeting the aflC gene involved in the mycotoxin biosynthetic pathway [241].
Crop rotation or tillage is also suggested as a control measure of the disease as it decreases
and manages the crop residue where most of the fungi survive [242]. The use of fertilizers,
particularly nitrogen, boosts Fusarium development together with a favorable effect on
plant growth, and, therefore, mycotoxin contamination rises [243].

During harvesting, it is important to consider the time of harvesting as a greater
number of over mature or immature seeds can increase the mycotoxin levels in final
products [244]. Crop stress during harvesting should also be minimized by avoiding
early harvesting, damaged kernel collection, mechanical damage, and kernel contact with
soil [245]. While transporting the harvested grain, the containers and vehicles should be
clean, dry, and free of insect and fungal growth [246]. After harvesting and before storage,
it is important to dry the grains to reduce the moisture level, which is responsible for
fungal growth, and it can be done by the use of solar dryers instead of sun drying as
slow drying increases the mycotoxin concentration [247]. During storage, it is necessary to
control moisture, temperature, and relative humidity of the grain to prevent deterioration
through fungal growth and mycotoxin production, with the ideal temperature being
1–4 ◦C in winter and 10–15 ◦C in summer, the water activity of less than or equal to
0.70 and relative humidity less than 70% [248]. Along with these storage conditions, the
storage rooms should be clean, well ventilated, and protected from rain, drainage, insects,
rodents, and birds and aeration of place with the circulation of air to maintain a uniform
temperature [246]. For best management practices of stored grains, the most important
principle is SLAM (sanitation, loading, aeration, and monitoring) [249].

To lower mycotoxin levels, post-harvest management strategies include adequate
drying, shipping, and packaging, sorting and cleaning, drying, smoking, insect control,
and pesticide use in storage rooms. These interventions can also involve best-practices
teaching and awareness initiatives. It is critical to maintaining appropriate hygiene and the
application of natural and chemical agents after harvesting the crop during storage [250].
From farm to table, a successful application of the Hazard Analysis Critical Control Point
(HACCP)-based postharvest strategy should include measures for prevention, control, and
quality [248].

13. Conclusions

DON mycotoxin is found in agricultural products worldwide, presenting a health risk
to humans and animals. The extensive prevalence of DON in small grain cereals worldwide
necessitates the application of fast and effective techniques. This is particularly important
in developing countries, where DON and its transformed forms are underappreciated.
Relevant food safety initiatives should be prioritized, with an emphasis on the unknown
health effects of these mycotoxins co-occurring in vulnerable populations. The most effec-
tive way to monitor the occurrence of total mycotoxins in cereals and cereal-based products
is to take preventive steps before and after harvest. Future studies should concentrate
on elucidating previously unknown pathways of both individual and cumulative toxic
impacts, as well as being more objective in determining the risk level of chronic DON
toxicity in both humans and animals, which is essential for designing more precise policies
and regulations to ensure of food and feed safety and security.
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70. Kosicki, R.; Błajet-Kosicka, A.; Grajewski, J.; Twarużek, M. Multiannual mycotoxin survey in feed materials and feedingstuffs.
Anim. Feed Sci. Technol. 2016, 215, 165–180. [CrossRef]
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