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of Fish Nidoviruses of Genus Oncotshavirus Predicted to
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Abstract: Genome sequence analysis of Atlantic salmon bafinivirus (ASBV) revealed a small open
reading frame (ORF) predicted to encode a Type I membrane protein with an N-terminal cleaved
signal sequence (110 aa), likely an envelope (E) protein. Bioinformatic analyses showed that the
predicted protein is strikingly similar to the coronavirus E protein in structure. This is the first
report to identify a putative E protein ORF in the genome of members of the Oncotshavirus genus
(subfamily Piscavirinae, family Tobaniviridae, order Nidovirales) and, if expressed would be the
third family (after Coronaviridae and Arteriviridae) within the order to have the E protein as a major
structural protein.
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1. Introduction

Nidoviruses that infect fish are classified into two families, Coronaviridae and To-
baniviridae, order Nidovirales [1]. The virus order designation is derived from Latin
“nidus”, referring to the 3′-coterminal nested set of subgenomic mRNAs that characterize
its genome transcription [2]. Nidovirus particles are enveloped with long single-stranded
positive-sense polycistronic RNA genomes of ~12–41 kb in length—the largest among RNA
viruses [3,4]. These viruses cause important diseases in many hosts, including humans,
other mammals, birds, pythons, shrimp, and fish. Their relevance has skyrocketed with
the emergence of coronavirus disease 2019 (COVID-19), an extremely infectious pandemic
disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of
1 October 2021, this pandemic had infected ~234.8 million people worldwide, with more
than 4.8 million deaths [5]. While the most currently known nidovirus species are associ-
ated with terrestrial hosts, the greatest phylogenetic diversity of nidoviruses is associated
with hosts living in aquatic environments [6].

We isolated a novel salmonid nidovirus from farmed Atlantic salmon; its ultrastruc-
tural and genomic characteristics placed it in the genus Oncotshavirus (subfamily Piscaviri-
nae, family Tobaniviridae, order Nidovirales), and we named it Atlantic salmon bafinivirus
(ASBV) [7,8]. Oncotshavirus are among the least studied nidoviruses, with very little
known about their host range, pathogenicity, geographical distribution, and replication
kinetics. To date, genomic sequences of seven oncotshaviruses isolated from various fresh-
water fish species have been deposited in the GenBank database (Table 1). All the genomes
show an organization characteristic of the family Tobaniviridae [9] with a 5′ leader sequence
followed by four major open reading frames (ORFs) that encode the putative replicase
polyprotein (pp1ab) and the putative structural proteins spike (S), membrane (M), and
nucleocapsid (N) proteins [10,11]. Consistent with the subfamily Torovirinae, the subfamily
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Piscavirinae is also known to lack a homolog of the coronavirus (CoV) E protein [12]. The
difference in the presence of E protein has been used to explain the structural differences
between the coronaviruses and toroviruses, and E gene mutants of mouse hepatitis virus
(a coronavirus) were shown to display bacilliform morphology [13] resembling that of
members of the subfamilies Torovirinae and Piscavirinae [14].

Table 1. Oncotshavirus isolates 1 with complete genome sequences reported.

Virus Isolate GenBank
Accession No.

Genome
Length (nt)

% Sequence
Identity Host Fish Species Reference

CSBV NIDO KJ681496 27,004 -
Chinook salmon,
Oncorhynchus

tshawytscha
[15]

ASBV
VT01292015-09 KY130432 26,496 99.43% Atlantic salmon,

Salmo salar [7]

CSBV
WHQSR4345 MG600027 26,466 97.40%

Lesser spiny eel,
Macrognathus

aculeatus
[16]

CSBV HB93 MH171482 25,971 97.21% Crucian carp,
Carassius auratus [17]

YCBV
Shaoxing MH822145 26,985 96.24%

Yellow catfish,
Pelteobagrus

fulvidraco
[11]

CSBV
Cefas-W054 MT123520 25,969 97.99% Goldfish,

Carassius auratus [10]

PFO-1
ZJLH18531 MT424676 26,996 96.14%

Yellow catfish,
Tachysurus
fulvidraco

[18]

1 Oncotshavirus isolate Atlantic salmon bafinivirus (ASBV), Chinook salmon bafinivirus (CSBV), Yellow catfish bafinivirus (YCBV), and
Pelteobagrus fulvidraco oncotshavirus-1 (PFO-1).

Here, we describe the structure and topology of a novel integral membrane protein
encoded by a small ORF in the ASBV genome hitherto unknown in Tobaniviridae. We
show that this ORF is present in members of the genus Oncotshavirus but not in Bafinivirus.
Furthermore, the predicted protein is strikingly similar to the CoV E protein in structure.
Biological validation of these predictions and elucidation of the role of E protein in the life
cycle of oncotshaviruses are planned in future experiments. Thus, in future experiments,
we will establish whether the ASBV E protein is produced during virus replication by
investigating the kinetics of both transcript and protein production by virus-infected fish
cell lines and cells transfected with recombinant plasmids encoding the ASBV E protein.
The ASBV E transcripts would be quantified by RT-qPCR whereas the viral proteins would
be detected by Western blotting or immunoprecipitation with antibody reagents to ASBV
or ASBV E protein.

2. Materials and Methods

Nucleotide and amino acid sequences of 15 selected nidoviruses were obtained from
the GenBank database [19]. Similarity analysis of the DNA sequences was performed using
BLAST programs available via the National Center for Biotechnology Information [20].
The phylogenetic analysis was performed using CLUSTAL X package [21–23]. Different
sequence sets were explored to find stable conserved areas. Both amino acid sequences
and nucleotide sequences were explored. The sequence of Equine arteritis virus (EAV)
(genus Alphaarterivirus, family Arteriviridae) GenBank accession number: NC_002532, was
chosen as the outgroup to determine the root of the phylogenetic trees. The bootstrap-
ping procedure was performed to estimate the confidence level on the branches of these
phylogenetic trees. The number of bootstrapping trials was 1000; random numbers were
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used as seeds to simulate the random processes. Transmembrane topology prediction was
obtained by using DeepTMHMM [24] and TOPCONS [25], two predictors available on the
internet that separate signal peptides from N-terminal transmembrane domains [26,27].
Any predicted signal peptides and the location of their cleavage sites were confirmed
using SignalP 5.0 [28]. NetNGlyc-1.0 [29] was used to check for N-linked glycosylation
sites. GPS-Palm [30] was used for the prediction of S-palmitoylation sites. Phyre2 and
Alphafold2 [31] were used to build a 3D model of the predicted protein structure.

3. Results and Discussion

In the current study, the genomic sequence of ASBV VT01292015-09 obtained by
next-generation sequencing (NGS) on the Illumina® HiSeq 2000 platform (LC Sciences,
Houston, TX, USA) and completed by filling in the gaps between the assembled contigs
using conventional RT-PCR and the 5′-RACE and 3′-RACE to obtain the 5′ and 3′ terminal
sequences, respectively [7], was further analyzed. The full-length viral genome is 26,492 nt
starting at the 5′ GCA terminus with the untranslated region of 846 nt and the 3′ end
of the untranslated region of 220 nt, including a poly(A) tail of 23 nt. The four major
ORFs identified using the ORF Finder program [32], which are shown in Figure 1, are
in the following order: ORF 1ab encodes the putative replicase polyprotein, nt 847 to
14,361 for pp1a and nt 14,496 to 21,338 for pp1b (pp1ab, 6778 aa); S, nt 21,341 to 24,958
(1205 aa); M, nt 24,975 to 25,712 (245 aa); and N, nt 25,736 to 26,272 (178 aa). In addition, a
small ORF (marked as E), nt 21,510 to 21,846 (110 aa), is present between the pp1ab and
M ORFs. Similar to coronaviruses [33,34] and toroviruses [35], ASBV uses a “slippery”
heptanucleotide: 14,341TTTAAAC14,347 at a ribosomal frameshift (RFS) site, resulting in a
−1 frameshift from ORF1a to ORF1b (Figure 1).

The small ORF in the ASBV genome is predicted to encode an α-helical transmembrane
protein (110 aa); it is an integral viral membrane protein [36], likely a putative E protein
previously overlooked in genomes of members of the family Tobaniviridae probably
because of its small size. This ORF is present in members of the genus Oncotshavirus but
not in Bafinivirus. Moreover, the gene order is conserved in oncotshaviruses as expected of
a structural protein, although the different structural protein ORFs of oncotshaviruses have
not yet been experimentally verified for expression. Relative to ASBV E protein (110 aa), the
other six oncotshavirus isolates (Table S1) have a truncated E protein (86 aa, i.e., a shorter
C-terminus). However, all the essential features of the putative integral membrane protein
are conserved in the seven oncotshaviruses. As shown in Figure 2A, in isolate Yellow
catfish bafinivirus (YCBV) Shaoxing, the proposed signal peptidase cleavage site is at
residue K27 instead of R26, and in Chinook salmon bafinivirus (CSBV) HB93, the mutation
at position 82 (R→ I) results in a shorter transmembrane domain (TMD) (22 aa) whereas
if accompanied by a mutation at position 83 (T→ K) in isolates CSBV WHQSR4345 and
Pelteobagrus fulvidraco oncotshavirus-1 (PFO-1) ZJLH18531, they result in a longer TMD
(32 aa). Some of these mutations may be due to the complex transcription characteristics of
nidoviruses [37–39], or they could be sequencing errors.

Several lines of evidence lend support to the view that the ASBV small ORF is au-
thentic and encodes an integral membrane protein. Bioinformatic analyses of the amino
acid sequence using the latest and most accurate softwares, DeepTMHMM [24] and TOP-
CONS [25], show that the predicted protein is strikingly similar to the CoV E protein in
structure [40–42], albeit unique to members of genus Oncotshavirus. The CoV E protein is
a Type I membrane protein with a single TMD [40,43,44] and does not have a canonical
cleaved signal sequence [40,45] whereas, as defined by Goder and Spiess [46], the ASBV E
protein is predicted to be a Type I membrane protein with an N-terminal cleaved signal
sequence as shown in Figures 1 and 2. Thus the N-terminus consists of a signal peptide (SP)
(aa positions 4–24) followed by 25 amino acids and then a TMD of 29 residues (aa positions
51–79) and C-terminus approximately 30 amino acids (aa positions 80–110) (Figure 1). The
signal peptide was confirmed using SignalP 5.0 software [28]. The proposed topology of
the putative ASBV E protein is illustrated in Figure 2B. The hydrophobic regions in the



Microbiol. Res. 2021, 12 756

SP and the TMD impose a hairpin topology for the ASBV E protein before the N-terminal
SP being cleaved off at residue R26. The cleavage site at R26 was confirmed using Pep-
tideCutter software [47] and is +3 amino acids from the hydrophobic segment of the SP,
which conforms to the structure of a typical cleavable amino-terminal signal sequence [28].
Moreover, the location and size of the predicted SP region are characteristic of signal
sequences in eukaryotes (usually 16 to 30 amino acid residues in length and comprising a
hydrophilic, usually positively charged N-terminal region, a central hydrophobic domain,
and a C-terminal region with the cleavage site for signal peptidase [48]). The mature
protein would have the N-terminus on the ER lumen/virion exterior and the C-terminus
exposed to the cytoplasmic side/virion interior, as illustrated by Goder and Spiess [46] and
Figure 2B. The predicted 3D structure of ASBV E protein shown in Figure 2C removes any
ambiguity because it is similar to that of SARS-CoV-2 E protein [49].
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Figure 1. The genome architecture of ASBV VT01292015-09 with canonical features of nidovirus genomes annotated. The
full-length RNA genome is 26,496 nucleotides. Boxes represent major open reading frames (ORFs). The proteins encoded by
the ORFs are also indicated within, above, or below the boxes. The arrow indicates the position of the putative ribosomal
frameshift (RFS) “slippery” sequence (putative replicase polyprotein 1a and 1b; putative envelope protein E (p12.7); S, spike
protein; M, membrane protein; and N, nucleocapsid). The 5′ capped mRNA with a leader sequence is depicted by a small
black box. The poly(A) tail is indicated by A(n). The predicted structure of the ASBV E protein consisting of three domains:
the amino-terminal (N-terminal at aa positions 1–50), the putative transmembrane α-helical hydrophobic domain (at aa
positions 51–79), and the carboxy-terminal (C-terminal at positions 80–110) is shown. The ASBV E protein is predicted to be
a Type I membrane protein with an N-terminal cleaved signal sequence. The residues in the two hydrophobic domains
are in green, one in italics (aa positions 4–22) is in the signal peptide region (pink at aa positions 1–25), and another in the
transmembrane domain (green at aa positions 51–79), which would impose a hairpin topology for the ASBV E protein
before the N-terminal signal peptide is cleaved off. A signal peptidase cleavage site is marked with a star (*) at residue R26
in purple (proposed to be in the ER lumen/virion exterior resulting in a Type I membrane protein (i.e., a mature protein
with N-terminus on the ER lumen/virion exterior and the C-terminus exposed to the cytoplasmic side/virion interior). The
predicted palmitoylation site at residue C84 is marked with a star (*) in orange.
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Figure 2. (A) Amino acid sequences and topologies of the envelope (E) protein for 15 selected nidoviruses using 
DeepTMHMM Topology Prediction ([24], DeepTMHMM. https://biolib.com/DTU/DeepTMHMM) (accessed on 9 July 
2021). Abbreviations: S = Signal peptide (the putative α-helical hydrophobic domain at aa 4–22 is highlighted in bold in 
blue and the signal peptidase cleavage site is in bold in red as residue R26 or K27); O = outside (lumen side/virion exterior); 
M = Transmembrane domain/region (is highlighted in bold in cyan); I = inside (cytoplasmic side/virion interior); Virus 
names: ASBV = Atlantic salmon bafinivirus VT01292015-09; CSBV-NIDO = Chinook salmon bafinivirus NIDO; CSBV 
Cefas-W054; CSBV WHQSR4345; CSBV HB93; PFO-1 = Pelteobagrus fulvidraco oncotshavirus-1 ZJLH18531; YCBV = Yel-
low catfish bafinivirus Shaoxing; TGEV = Transmissible gastroenteritis virus Purdue; MHV = Murine hepatitis virus A59; 
MERS-CoV = Middle Eastern respiratory syndrome coronavirus HCoV-EMC/2012; SARS-CoV = Severe acute respiratory 
syndrome coronavirus Tor2; SARS-CoV-2 Wuhan-Hu-1; IBV = Infectious bronchitis virus Beaudette; PorCoV = Porcine 
coronavirus HKU15; and EAV = Equine arteritis virus Bucyrus. (B) The proposed topology of ASBV E protein is predicted 
to be a Type I membrane protein with an N-terminal cleaved signal sequence. The hydrophobic regions in the signal 
peptide and the transmembrane domains impose a hairpin topology for the ASBV E protein before the N-terminal signal 
peptide cleaves off. The mature protein would have the N-terminus on the ER Lumen/virion exterior, and the C-terminus 
exposed to the cytoplasmic side/virion interior with a putative palmitoylation site at residue C84 in the C-terminus. The 
proposed signal peptidase cleavage site at residue R26 is marked with X. (C) The predicted 3D structure of ASBV E protein 
using Phyre2 and Alphafold2 [31] and homology modelling to the SARS-CoV-2 E protein structure [49]. The ASBV E 
protein model includes the cleavable signal peptide which is absent in SARS-CoV-2 E. Image coloured by rainbow N → C 
terminus. Model dimensions (Å): X:45.023 Y:73.238 Z:39.549. 

Figure 2. (A) Amino acid sequences and topologies of the envelope (E) protein for 15 selected nidoviruses us-
ing DeepTMHMM Topology Prediction ([24], DeepTMHMM. https://biolib.com/DTU/DeepTMHMM) (accessed on
9 July 2021). Abbreviations: S = Signal peptide (the putative α-helical hydrophobic domain at aa 4–22 is highlighted in
bold in blue and the signal peptidase cleavage site is in bold in red as residue R26 or K27); O = outside (lumen side/virion
exterior); M = Transmembrane domain/region (is highlighted in bold in cyan); I = inside (cytoplasmic side/virion in-
terior); Virus names: ASBV = Atlantic salmon bafinivirus VT01292015-09; CSBV-NIDO = Chinook salmon bafinivirus
NIDO; CSBV Cefas-W054; CSBV WHQSR4345; CSBV HB93; PFO-1 = Pelteobagrus fulvidraco oncotshavirus-1 ZJLH18531;
YCBV = Yellow catfish bafinivirus Shaoxing; TGEV = Transmissible gastroenteritis virus Purdue; MHV = Murine hepati-
tis virus A59; MERS-CoV = Middle Eastern respiratory syndrome coronavirus HCoV-EMC/2012; SARS-CoV = Severe
acute respiratory syndrome coronavirus Tor2; SARS-CoV-2 Wuhan-Hu-1; IBV = Infectious bronchitis virus Beaudette;
PorCoV = Porcine coronavirus HKU15; and EAV = Equine arteritis virus Bucyrus. (B) The proposed topology of ASBV
E protein is predicted to be a Type I membrane protein with an N-terminal cleaved signal sequence. The hydrophobic
regions in the signal peptide and the transmembrane domains impose a hairpin topology for the ASBV E protein before the
N-terminal signal peptide cleaves off. The mature protein would have the N-terminus on the ER Lumen/virion exterior,
and the C-terminus exposed to the cytoplasmic side/virion interior with a putative palmitoylation site at residue C84 in the
C-terminus. The proposed signal peptidase cleavage site at residue R26 is marked with X. (C) The predicted 3D structure of
ASBV E protein using Phyre2 and Alphafold2 [31] and homology modelling to the SARS-CoV-2 E protein structure [49]. The
ASBV E protein model includes the cleavable signal peptide which is absent in SARS-CoV-2 E. Image coloured by rainbow
N→ C terminus. Model dimensions (Å): X:45.023 Y:73.238 Z:39.549.

https://biolib.com/DTU/DeepTMHMM


Microbiol. Res. 2021, 12 759

The E protein amino acid sequence found in different CoVs is variable [40], but the pre-
dicted structure and functional properties are highly conserved [42]. In this study, we were
unable to construct phylogenetic trees to include the E gene sequences of all 15 selected
nidoviruses (Figure 2A) as we could not find evidence that they were related. However,
we were able to generate two almost identical phylogenetic trees, one based on amino acid
sequences and another on nucleotide sequences, revealing two major clades consisting of
the seven members of genus Oncotshavirus (Table 1) and two members of genus Betacoron-
avirus, lineage B (SARS-CoV and SARS-CoV-2) [1]) (Figure 3). The onchotshavirus group of
seven sequences and the betacoronavirus group of two sequences are stable groups; we are
confident in them. For the rest of the sequences, their relationships with these two groups
cannot be determined through the analyses of the E protein. Such relationships might be
found by analyzing other protein sequences or nucleotide sequences such as the replicase
polyprotein and nucleoprotein sequences, and any failures demonstrate limitations of these
phylogenetic approaches in dealing with the diversity of nidoviruses [6].

The ASBV E protein is non-glycosylated. To date, among the CoV E proteins, only
the SARS-CoV E protein has been glycosylated (residue N66), although this constituted an
alternative minor form [42,50]; the glycosylation of SARS-CoV E protein during actual infec-
tion and its biological function remain to be further investigated [43]. A post-translational
modification of more functional importance for E proteins is palmitoylation. Bioinformatic
analysis of the ASBV E amino acid sequence using the GPS-Palm software to predict palmi-
toylation sites in proteins [29] demonstrated that, under the high threshold, residue C84 in
the C-terminus is modified by palmitoylation. Of the CoV E proteins, only infectious bron-
chitis virus (IBV), SARS-CoV, and mouse hepatitis virus (MHV) are palmitoylated [51–53].

Similar to the CoV E protein [48], the ASBV E protein may belong to the class of small
viral integral proteins called ‘viroporins’ that oligomerize within the membrane bilayer to
form channels that facilitate the transport of ions or small molecules. They include the M2
protein of influenza virus, the 6K protein of alphaviruses, Vpu of HIV-1 [36], p7 ion channel
of Hepatitis C virus (HCV) [54,55], as well as protein 3A of CoVs [56]. They are thought to
function in various ways to facilitate the assembly and release of new viral particles from
the infected cells [36].

In summary, this is the first report to identify a putative E protein ORF in Tobaniviridae,
and if expressed, would be the third family (after Coronaviridae and Arteriviridae) within
the order Nidovirales to have the E protein as a major structural protein. Experiments to
biologically validate these predictions and elucidate the role of E protein in the life cycle of
oncotshaviruses are planned.
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 Figure 3. Phylogeny of selected nidoviruses based on the amino acid and nucleotide sequences of the E proteins. Phylo-
genetic tree based on (A) amino acid sequences and (B) nucleotide sequences, of seven members of genus Oncotshavirus
(listed in Table 1) and two members of genus Betacoronavirus, lineage B (SARS-CoV and SARS-CoV-2) with Equine arteritis
virus (EAV) E protein sequence GenBank accession number: NC_002532) as the outgroup to determine its root. The
graphical editor for phylogenetic trees, TreeGraph 2 [57] was used to produce the figures. Each bootstrapping value
corresponds to the branch on the same vertical level. Only the bootstrapping supports higher than 70% are marked in the
phylogenetic trees. Abbreviations at the end of each sequence correspond to the virus names: ASBV = Atlantic salmon
bafinivirus VT01292015-09; CSBV-NIDO = Chinook salmon bafinivirus NIDO; CSBV Cefas-W054; CSBV WHQSR4345;
CSBV HB93; YCBV = Yellow catfish bafinivirus Shaoxing; PFO-1 = Pelteobagrus fulvidraco oncotshavirus-1 ZJLH18531;
SARS-CoV = Severe acute respiratory syndrome coronavirus Tor2; SARS-CoV-2 Wuhan-Hu-1; and EAV = Equine arteritis
virus Bucyrus.
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