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Abstract: Colonization of a biofertilizer Bacillus sp. OYK strain, which was isolated from a soil,
was compared with three rhizospheric and endophytic Bacillus sp. strains to evaluate the colonization
potential of the Bacillus sp. strains with a different origin. Surface-sterilized seeds of tomato (Solanum
lycopersicum L. cv. Chika) were sown in the sterilized vermiculite, and four Bacillus sp. strains were
each inoculated onto the seed zone. After cultivation in a phytotron, plant growth parameters and
populations of the inoculants in the root, shoot, and rhizosphere were determined. In addition,
effects of co-inoculation and time interval inoculation of Bacillus sp. F-33 with the other endophytes
were examined. All Bacillus sp. strains promoted plant growth except for Bacillus sp. RF-37,
and populations of the rhizospheric and endophytic Bacillus sp. strains were 1.4–2.8 orders higher
in the tomato plant than that of Bacillus sp. OYK. The plant growth promotion by Bacillus sp. F-33
was reduced by co-inoculation with the other endophytic strains: Klebsiella sp. Sal 1, Enterobacter sp.
Sal 3, and Herbaspirillum sp. Sal 6., though the population of Bacillus sp. F-33 maintained or slightly
decreased. When Klebsiella sp. Sal 1 was inoculated after Bacillus sp. F-33, the plant growth-promoting
effects by Bacillus sp. F-33 were reduced without a reduction of its population, while when Bacillus sp.
F-33 was inoculated after Klebsiella sp. Sal 1, the effects were increased in spite of the reduction of its
population. Klebsiella sp. Sal 1 colonized dominantly under both conditions. The higher population
of rhizospheric and endophytic Bacillus sp. in the plant suggests the importance of the origin of
the strains for their colonization. The plant growth promotion and colonization potentials were
independently affected by the co-existing microorganisms.

Keywords: OYK; PGPR; Bacillus sp.; tomato (Solanum lycopersicum); endophytes; co-inoculation; coloniza-
tion

1. Introduction

Plant growth-promoting rhizobacteria (PGPR) are becoming more widely accepted in
intensive agriculture to enhance sustainable agricultural production in various parts of the
world [1]. PGPR contain a diverse range of bacteria and several mechanisms have been
proposed though they are not fully understood [2]. In sustainable agricultural practices
using PGPR, inoculation techniques for their colonization at the rhizosphere is critical [3];
therefore, a further understanding of the interactions of PGPR with plant and indigenous
rhizobacteria is essential.

Bacillus spp. have been recognized as one of the most important PGPR and widely used
for sustainable agriculture as biofertilizers and/or antagonists against plant diseases [4–8].
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Bacillus spp. have also received considerable attention because of their benefits over other
PGPR in producing stable formulations [6,9] and stability in rhizosphere soil in semi-arid
deserts [10]. In addition, Bacillus spp. exhibit a significant reduction in disease incidence
on various crops by inducing systemic resistance [11,12] and by forming biofilm on root
surfaces [13].

In our previous study, when the commercial biofertilizer OYK consisting of the Bacil-
lus sp. strain was applied to sweet potato, no significant plant growth-promoting effect
was observed, and the inoculated Bacillus sp. strain was not detected in the plant tubers.
The possible reasons were due to competition of the inoculant against indigenous rhi-
zobacteria and endophytes, and a lack of endophytic potential of the inoculant, which was
originally isolated from soil [14]. As many endophytic Bacillus strains have been reported
in several plants [15–22], it is assumed that endophytic bacteria have some colonization
strategies in interaction with plants.

In addition to the individual colonizing ability of PGPR, interactions with other
co-existing bacteria would be important to determine the colonization and plant growth-
promoting potential. Synergetic effects of the inoculation with the other PGPR have
been reported in maize [23], cotton [24], ryegrass [25], strawberry [26], and cucumber [27].
On the other hand, negative interactions with co-existing bacteria should also be considered.
They inhibited the colonization of inoculants in sugarcane [28] and reduced the plant
growth-promoting effects in tomato plant [29,30].

For efficient and practical use of PGPR, it is essential to understand its colonizing
behavior and abilities to compete with co-existing bacteria. Though several studies have
been reported on the effects of co-inoculation with multiple bacteria on plant growth,
their effects on colonization have not been extensively studied yet. The aim of this study
was to evaluate the colonization properties of Bacillus sp. OYK, which was isolated from
a soil, in relation to its origin by comparing it with those of the other Bacillus sp. strains
isolated from plant endosphere and rhizosphere, and then to elucidate the effects of
co-inoculation of the endophytic Bacillus sp. strain with the other endophytes on their
colonization and plant growth-promoting activities.

2. Materials and Methods
2.1. Bacterial Strains

In addition to Bacillus sp. OYK, three strains of Bacillus sp.: two strains (Bacillus sp.
RF-12 and RF-37) isolated from the rhizosphere of sweet potato and another one (Bacillus
sp. F-33) as an endophyte of the same plant cultivated in Japan [16], and three strains
of endophytes: Herbaspirillum sp. Sal 6, Klebsiella sp. Sal 1, and Enterobacter sp. Sal 3,
isolated from Nepalese sweet potato [15], were used in this study (Table 1).

Table 1. Bacterial isolates used in this study [5,6].

Strain Most Similar Genus a Class Origin Accession Number

OYK Bacillus sp. Bacilli Soil LC590219
RF-12 Bacillus sp. Bacilli Rhizosphere LC593252
RF-37 Bacillus sp. Bacilli Rhizosphere LC593253
F-33 Bacillus sp. Bacilli Endophytic LC430058
Sal 1 Klebsiella sp. γ-Proteobacteria Endophytic LC389410
Sal 3 Enterobacter sp. γ-Proteobacteria Endophytic LC389433
Sal 6 Herbaspirillum sp. β-Proteobacteria Endophytic LC389442

a Based on the 16S rRNA gene sequence in the database.

2.2. Plant Growth Promotion and Colonization of Bacillus sp. Strains in Tomato Plant

To prepare the bacterial inoculum, each Bacillus sp. strain was cultivated in Modified
Rennie (MR) [31] liquid medium with shaking at 150 rpm at 26 ◦C for 3 days. The culture
was washed twice with sterilized distilled water by centrifugation at 10000× g at 4 ◦C for
10 min, and the cell pellet was resuspended with sterilized distilled water at 108 colony
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forming units (CFU)/mL to prepare an inoculum based on OD–CFU/mL correlated linear
equations prepared for each strain.

In this study, we used tomato as a test plant due to the difficulty in preparing bacteria-
free plants in sweet potato. Tomato seeds (Solanum lycopersicum L. cv. Chika F1 hybrid,
Takii & Co., Ltd., Kyoto, Japan) were surface sterilized with 70% ethanol for 1 min followed
by 1% sodium hypochlorite with 3–4 drops of Tween-20 for 13 min and washed 7–8 times
with sterilized distilled water. The seeds were sown in the sterilized vermiculite in a
Leonard jar [32] supplied with the sterilized Hoagland solution [33], and 1 mL of the
inoculum was added onto the seed zone. The jar was put in a ventilated (<0.2 mm pore
size) transparent plastic bag (Sun bag, Sigma-Aldrich, Tokyo, Japan), and after thinning
out to one plant per jar, the tomato plant was aseptically cultivated in a phytotron (Model-
LH 220S, Nippon Medical & Chemical Instruments Co., Ltd., Osaka, Japan) at 28/25 ◦C
(16h/8h, day/night) for 24 days. An autoclaved culture was used as a control, and the
experiment was conducted twice, using three plants for each treatment.

After cultivation, the tomato crop was harvested, and the fresh weight and length of
the root and shoot were measured. Then, the population of the inoculated strains in the root,
shoot, and rhizosphere was determined using two plants for each treatment. A rhizosphere
sample was prepared by dipping and gently shaking the roots in sterilized distilled water.
After washing the plant surface 6–7 times with sterilized distilled water, the root and shoot
samples were separated and macerated with sterilized distilled water using a sterilized
mortar and pestle, and the samples were subjected to dilution plating for the determination
of CFU/g. At the same time, an aliquot of the final washing solution was directly plated,
and no colony was observed. The inoculation experiment was conducted twice.

2.3. Effect of Co-Inoculation on Plant Growth Promotion and Colonization of Bacillus sp. F-33
with the Other Endophytic Strains in Tomato Plant

Bacillus sp. F-33 was used as a representative of the Bacillus sp. strains with the other
endophytic strains, Klebsiella sp. Sal 1, Enterobacter sp. Sal 3, and Herbaspirillum sp. Sal 6,
to examine the effect of co-inoculation on their plant growth promotion and colonization
in the tomato plant.

Each bacterial strain was cultivated under the same conditions as described in Section
2.2 to prepare the inoculum at ca. 108 CFU/mL. In case of co-inoculation, the same volume
of individual cell suspension was mixed. The sterilized seeds were sown in the sterilized
vermiculite in a capped glass tube (12 cm × 3 cm) supplied with the sterilized Hoagland
solution, and 1 mL of the inoculum was added onto the seed zone. The other procedures
were the same as those described in Section 2.2 except that the cultivation period was
14 days, and that the plant samples were macerated using a BioMasher (Nippi, Tokyo,
Japan). The morphologies of the colonies of the co-inoculated strains were clearly different
for counting separately. The inoculation experiment was conducted twice.

2.4. Effect of Time Interval Inoculation on Plant Growth Promotion and Colonization of Bacillus sp.
F-33 and Klebsiella sp. Sal 1 in Tomato Plant

Bacillus sp. F-33 and Klebsiella sp. Sal 1 were used as representatives of the Bacillus sp.
and the endophytic strains, respectively, to examine the effect of time interval of inoculation
on their plant growth promotion and colonization in the tomato plant. The experimental
procedures were the same as those described in Section 2.3 except that Bacillus sp. F-33
was inoculated first, and then Klebsiella sp. Sal 1 was separately inoculated 7 days after the
first inoculation. The tomato plants were harvested at 14 days after the first inoculation.
An experiment with a different order of inoculation, Klebsiella sp. Sal 1 first and Bacillus sp.
F-33 s, was also conducted in the same way. The inoculation experiment was conducted
twice, but one experiment was done using two plants and one of the plants was used to
determine the population.
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2.5. Statistical Analysis

Statistical analysis of the data on the plant growth and population of the inoculant
obtained in each twice-repeated experiment was performed using the MSTAT-C 6.1.4 [34]
software package. Data were subjected to Tukey’s test after one-way ANOVA.

3. Results
3.1. Plant Growth Promotion and Colonization of Bacillus sp. Strains in Tomato Plant

The effects of inoculation of the Bacillus sp. strains on the growth of the tomato plant
are presented in Figure 1. All Bacillus sp. strains except for Bacillus sp. RF-37 showed plant
growth promotion. The root and shoot weights, and the shoot lengths of the inoculated
tomato plant were significantly larger than the control while the root lengths were not
affected. More lateral root development was observed in the inoculated tomato plant
compared with the control.
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cillus sp. OYK in the rhizosphere, root, and shoot, respectively. The populations were 2.4–

Figure 1. The effects of inoculation of Bacillus sp. strains on the growth of the tomato plant.
The tomato plant was cultivated using sterilized vermiculite, and the parameters were measured
at 24 days after seed inoculation. CTL represents the control samples inoculated with autoclaved
cultures. The bars represent the standard deviation (n = 6), and different letters indicate significant
differences at p < 0.05 by Tukey’s test.

The populations of the inoculated Bacillus sp. strains in the rhizosphere, root, and shoot
of the tomato plants are presented in Figure 2. All Bacillus sp. strains were detected in
the rhizosphere, root, and shoot, and the populations of Bacillus sp. RF-12 and RF-37,
which were originally isolated from the rhizosphere of sweet potato, and that of Bacillus sp.
F-33, which was originally isolated as an endophyte of sweet potato, were higher than that
of Bacillus sp. OYK, which was originally isolated from soil. The populations of the three
Bacillus sp. strains were 0.9–2.2, 2.1–2.8, and 1.4–2.2 orders higher than those of Bacillus
sp. OYK in the rhizosphere, root, and shoot, respectively. The populations were 2.4–4.0
and 3.1–5.2 orders higher in the rhizosphere than those in the root and shoot, respectively.
No colony appeared in the control samples.
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Figure 2. Colonization of seed-inoculated Bacillus sp. strains in the rhizosphere (a), root (b), and shoot
(c) of the tomato plant. The tomato plant was cultivated using sterilized vermiculite, and colonization
was examined at 24 days after seed inoculation. No colony appeared in the control samples. The bars
represent the standard deviation (n = 4), and different letters indicate significant differences at p < 0.05
by Tukey’s test.

3.2. Effect of Co-Inoculation on Plant Growth Promotion and Colonization of Bacillus sp. F-33
with the Other Endophytic Strains in Tomato Plant

The effects of co-inoculation of Bacillus sp. F-33 with the other endophytic strains are
presented in Figure 3. The plant growth tended to be promoted by Bacillus sp. F-33 but
not significantly. The reduction tendencies of the effects were observed by co-inoculation
of Enterobacter sp. Sal 3 and Herbaspirillum sp. Sal 6. In shoot weight and root length,
the effects of the co-inoculation seemed to be negative in most cases.
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All strains colonized tomato plants, resulting in a large population, in which those of
the endophytic strains were 1.5–1.7, 1.7–2.6, and 1.2–2.3 orders higher than those of Bacillus
sp. F-33 in the rhizosphere, root, and shoot, respectively (Figure 4). Among the endophytic
strains, the populations were not different in the rhizosphere, but the populations of
Herbaspirillum sp. Sal 6 were about one order of magnitude higher than Klebsiella sp. Sal 1 in
the plant parts. The populations were 1.8–2.7 and 2.3–3.3 orders higher at the rhizosphere
than those in the root and shoot, respectively. No colony appeared in the control samples.
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Enterobacter sp. Sal 3, and Herbaspirillum sp. Sal 6, on colonization in the rhizosphere (a), root (b), and shoot (c) of the
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In case of the co-inoculation, no apparent change in the population was observed in
most cases. In co-inoculation of Bacillus sp. F-33 and Herbaspirillum sp. Sal 6, however,
the population in the shoot tended to decrease by 0.8 and 1.8 orders in Bacillus sp. F-33 and
Herbaspirillum sp. Sal 6, respectively. In addition, one example of a positive tendency in the
co-inoculation was observed in the population of Klebsiella sp. Sal 1 in the shoot, in which a
1.4-order increase was observed.

3.3. Effect of Time Interval Inoculation on Plant Growth Promotion and Colonization of Bacillus sp.
F-33 and Klebsiella sp. Sal 1 in Tomato Plant

The effects of the time interval of inoculation of Bacillus sp. F-33 and Klebsiella sp. Sal 1
are presented in Figure 5. The plant growth seemed to be promoted by Bacillus sp. F-33
but not by Klebsiella sp. Sal 1. When Klebsiella sp. Sal 1 was inoculated after Bacillus sp.
F-33, the plant growth-promoting effects tended to be reduced in root weight. On the other
hand, when Bacillus sp. F-33 was inoculated after Klebsiella sp. Sal 1, the effects seemed to
be increased compared with the single inoculation of Klebsiella sp. Sal 1.
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sterilized vermiculite, and the parameters were measured at 14 days after seed inoculation. In the
time interval of inoculation, F-33 + Sal 1 and Sal 1 + F-33, the second inoculation was conducted
7 days after the first inoculation and analyzed 7 days after the second inoculation. CTL represents
the control samples inoculated with autoclaved cultures. The bars represent the standard deviation
(n = 5), and different letters indicate significant differences at p < 0.05 by Tukey’s test.

In individual inoculation, populations of Klebsiella sp. Sal 1 were 1.9, 1.7, and 3.0
orders higher than those of Bacillus sp. F-33 in the rhizosphere, root, and shoot, respectively,
and the populations were 2.7–2.8 and 2.5–3.7 orders higher in the rhizosphere than those
in the root and shoot, respectively (Figure 6). When Klebsiella sp. Sal 1 was inoculated
after Bacillus sp. F-33, the populations of Bacillus sp. F-33 were similar to those in the
individual inoculation. When Bacillus sp. F-33 was inoculated after Klebsiella sp. Sal 1,
those were 1.3–2.4 orders lower than those in individual inoculation. The populations of
Klebsiella sp. Sal 1 showed similar levels under any conditions. No colony appeared in the
control samples.
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Figure 6. The effect of the time interval of inoculation of Bacillus sp. F-33 and Klebsiella sp. Sal 1 on colonization in the
rhizosphere (a), root (b), and shoot (c) of the tomato plant. The tomato plant was cultivated using sterilized vermiculite,
and colonization was examined at 14 days after seed inoculation. In the time interval of inoculation, F-33 + Sal 1 and Sal
1 + F-33, the second inoculation was conducted 7 days after the first inoculation and analyzed 7 days after the second
inoculation. The bracket on the x-axis indicates each population in the time interval of inoculation, and the arrows on the
bracket indicate the order of inoculation. No bracket indicates a single inoculation. No colony appeared in the control
samples. The bars represent the standard deviation (n = 3), and different letters indicate significant differences at p < 0.05 by
Tukey’s test.

4. Discussion

Significant plant growth-promoting properties were observed in the Bacillus sp. strains
except for Bacillus sp. RF-37 (Figure 1). Similar PGPR properties in Bacillus spp. have
been previously reported [35–38]. In this study, the inoculants stimulated lateral root
growth, resulting in greater root weight, which could explain the inconsistent results on
root weight and root length in the inoculated plants. As indole-3-acetic acid (IAA) is known
to have similar effects on plants [39], the plant growth promotion might be caused by IAA
production by the inoculants. In another experiment, Bacillus sp. RF-12 and F-33 showed
an IAA-producing ability while Bacillus sp. RF-37 did not (data not shown). However,
since Bacillus sp. OYK also showed no activity, the reason for the plant growth promotion
is unclear.

In addition to the IAA production, other tomato plant growth-promoting mechanisms
by Bacillus spp. strains have been reported as follows: gibberellic acid (GA3) as well as IAA
production [37,40,41], organic acid production and phosphate-solubilizing abilities [37,40,41],
siderophores production [37,42], nitrogen fixation [37], and 1-aminocyclopropane-1-carboxylate
(ACC) deaminase production [37,42].

In our previous study, the inoculated Bacillus sp. OYK strain could not establish
its population as an endophyte in sweet potato [14], although Bacillus spp. strains have
been reported as indigenous endophytes in sweet potato [15,16], tomato [19], banana [20],
and switchgrass [21]. We attributed it to the competition with indigenous rhizobacteria
and endophytes, as well as the endophytic ability of the inoculant.

In this study, all Bacillus strains colonized in the rhizosphere and endosphere of the
tomato plants cultivated using sterilized vermiculite (Figure 2), suggesting that Bacillus
sp. OYK has endophytic potential, and that the presence of indigenous microorganisms
inhibited its colonization. However, the 1.4–2.8-orders lower populations of Bacillus sp.
OYK in the plants compared with the other Bacillus sp. strains, which were isolated from
the rhizosphere or as an endophyte (Figure 2), suggests decreased competitiveness of
Bacillus sp. OYK against indigenous plant-associated microbes. Some genes and functions
may be involved in the plant colonization ability, and PGPR strains from different habitats
may have different interactions with plants. The use of originally plant associated PGPR
could establish their populations at the rhizosphere and/or endosphere of plants.

The plant growth-promoting effects of Bacillus sp. F-33 were reduced in the presence
of the other endophytes, though the population of Bacillus sp. F-33 was maintained
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(Klebsiella sp. Sal 1 and Enterobacter sp. Sal 3) or slightly decreased (Herbaspirillum sp. Sal 6)
(Figures 3 and 4), suggesting that its phyto-stimulating ability was neutralized by the other
strains. As the three co-inoculated strains have IAA-degrading ability [30], they might
degrade IAA produced by Bacillus sp. F-33 below the effective level.

Synergetic effects of co-inoculation have been reported [23–26] while cancelation
of the positive effects [43–45], and negative effects of co-inoculation have also been re-
ported [29,30]. The effects of the co-inoculation seemed to be dependent on the combination
of the strains. In most studies that examined the effects of co-inoculation of PGPR, changes
in populations of the PGPR by co-inoculation were not measured. In the limited examples
of the study using Azospirillum brasilense Sp245 and Bacillus subtilis 101 [29], and Klebsiella
sp. Sal 1 and Herbaspirillum sp. Sal 6 [30], their plant growth promotions were reduced
even though the populations of the PGPR were maintained, as observed in this study.
In our previous study, diverse endophytic bacterial communities were observed in sweet
potato, and some components of the communities disappeared by inoculation of Bacillus sp.
OYK [14]. It is crucial to elucidate the mechanisms of the microbial interactions; however,
it might be complex given the actual environment.

After the establishment of Bacillus sp. F-33 in the rhizosphere and in the tomato
plant, Klebsiella sp. Sal 1 could colonize the same population as the strain was individually
inoculated (Figure 6) and inhibited the plant growth-promoting ability of Bacillus sp. F-33
without reducing its population (Figure 5), as in the co-inoculation experiment. The high
colonizing potential of Klebsiella sp. Sal 1 seemed not to be affected by the about 2-orders
lower population of the previously established Bacillus sp. F-33.

On the other hand, after the establishment of Klebsiella sp. Sal 1, the colonization of
Bacillus sp. F-33 was reduced by 1.3–2.4 orders than those in the individual inoculation
(Figure 6). The relatively lower potential for colonization of Bacillus sp. F-33 might be the
reason. The microbial community structure might be a crucial factor to determine the fate
of allochthonous microorganisms, such as a PGPR inoculant. Pre-inoculation of PGPR prior
to transplantation could be one practical method to enhance higher colonization in plants.

In spite of the reduced population of Bacillus sp. F-33, the plant growth promotion
was increased when the strain was inoculated after Klebsiella sp. Sal 1 (Figure 5). It was
suggested that the level of the population is not a determinant of the potential of the strain.
Although the population of Bacillus sp. F-33 was maintained both in the co-inoculation
and in the inoculation of Klebsiella sp. Sal 1 after Bacillus sp. F-33, the PGPR potential
of Bacillus sp. F-33 was reduced in the presence of Klebsiella sp. Sal 1, so unknown
factors might be involved in plant growth promotion. In addition, the ratio between the
populations might not be constant when plants developed, and the kinetic of the different
bacterial populations might not be reflected by one sampling time. Time course analysis
after inoculation could reveal the progress of colonization in the plant. The results of
this study also indicate that there are different niches for the different strains and the
colonization of these niches may not have the same impact on plant growth. It may mean
that bacteria are competing for some niche colonization.

In addition to plant growth-promoting properties, the colonization potential should
be considered as important criteria when assessing their suitability for commercial devel-
opment. The lower population of Bacillus sp. OYK, which was isolated from soil, than the
other Bacillus sp. strains, which were isolated from either the rhizosphere or endosphere of
plant samples, suggests the importance of the origin of the strains for their colonization.
The plant growth promotion and colonization potentials were independently affected by
the co-existing microorganisms. Further studies are necessary to evaluate the colonization
potential of PGPR under field conditions where diverse microorganisms exist.

5. Conclusions

In this study, the higher population of rhizospheric and endophytic Bacillus sp. in the
plant suggest the importance of the origin of the strains for their colonization. The plant
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growth promotion and colonization potentials were independently affected by the co-
existing microorganisms.
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