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Abstract
Early availability of information on

bacterial pathogens and their antimicrobial
susceptibility is of key importance for the
management of infectious diseases patients.
Currently, using traditional approaches, it
usually takes at least 48 hours for identifica-
tion and susceptibility testing of bacterial
pathogens. Therefore, the slowness of diag-
nostic procedures drives prolongation of
empiric, potentially inappropriate, antibac-
terial therapies. Over the last couple of
years, the improvement of available tech-
niques (e.g. for susceptibility testing, DNA
amplification assays), and introduction of
novel technologies (e.g. MALDI-TOF) has
fundamentally changed approaches towards
pathogen identification and characteriza-
tion. Importantly, these techniques offer
increased diagnostic resolution while at the
same time shorten the time-to-result, and
are thus of obvious importance for antimi-
crobial stewardship. In this review, we will
discuss recent advances in medical microbi-
ology with special emphasis on the impact
of novel techniques on antimicrobial stew-
ardship programs.

Introduction
The pace of diagnostic processes in

clinical microbiology laboratories has
largely been unchanged for almost 100
years, as availability of diagnostic results
essentially depended on the growth of bac-
teria. Using traditional approaches, it takes
at least 24 hours for obtaining growth from
clinical specimens, and an additional 24
hours for down-stream isolate characteriza-
tion (i.e. biochemical identification and
phenotypic susceptibility testing). As a con-

sequence, therapeutic decisions are com-
monly made empirically until the availabil-
ity of species identification and resistance
patterns. The emergence of pathogens car-
rying acquired resistance determinants, e.g.
methicillin-resistant Staphylococcus aureus
(MRSA), extended spectrum beta-lacta-
mase- (ESBL-) producing
Enterobacteriaceae, or carbapenem-resis-
tant Gram-negative rods, has resulted in
increasingly broad empiric treatment regi-
mens, often including glycopeptides and
broad-spectrum beta-lactams such as
piperacillin-tazobactam or carbapenems.
The resulting overuse of these reserved
agents itself drives the emergence and
spread of multi-resistant organisms. The sit-
uation is aggravated by the often unsuccess-
ful recovery of pathogens from patients
receiving prior broad-spectrum antibiotics
and, in consequence, unavailability of sub-
sequent drug susceptibility data. Moreover,
it is a common problem that (successful)
empiric broad-spectrum therapy remains in
place although microbiological test results
justify de-escalation.1 Therefore, it is evi-
dent that overtreatment is, at least partially,
linked to the discrepancy between tradition-
al microbiological procedures and the clini-
cal need for more rapid results. Over the
past couple of years, several new technolo-
gies have entered clinical microbiology lab-
oratories. Accelerated phenotypic methods,
molecular techniques, MALDI-ToF and
next generation sequencing (NGS) all hold
promise or have already proven to not only
optimize workflows within the lab, but also
to offer increased diagnostic resolution and
decreased time-to-result. In this article, we
will discuss recent advances in medical
microbiology with special emphasis on the
impact of novel techniques on antimicrobial
stewardship programs.

Rapid phenotypic susceptibility
testing

Antimicrobial susceptibility testing
(AST) of bacterial pathogens is one of the
principal tasks of the clinical microbiology
laboratory and phenotypic AST is still con-
sidered the gold standard for the determina-
tion of antimicrobial susceptibility.
Phenotypic AST offers two advantages as
compared to genotypic testing methods: i) it
predicts not only drug resistance but also
drug susceptibility; ii) it permits to quantify
the level of susceptibility of a bacterial iso-
late to individual antimicrobials (quantita-
tive AST). Quantitative AST is of major
importance as a clear correlation between
the presence of a genetic resistance marker
and the resulting drug susceptibility pheno-

type is not always possible, e.g. due to vari-
able expression levels or sequence varia-
tions causing unknown substrate specifici-
ties. 

Delays in phenotypic AST lead to pro-
longed hospitalization, increased cost and
patient mortality.2-7 Therefore, efforts to
reduce the time-to-result for phenotypic
AST are crucial to facilitate timely adminis-
tration of appropriate antimicrobials and to
improve patient outcome and cost-effec-
tiveness of anti-infective therapies. In prin-
ciple, two strategies exist to meet this chal-
lenge: i) acceleration of classical phenotyp-
ic AST techniques and ii) introduction of
novel, more rapid methods for phenotypic
AST. Using these strategies, significant
progress towards accelerated reporting of
antimicrobial susceptibility data was made
in recent years. However, some major
issues need to be addressed before rapid
phenotypic AST can be provided on a large
scale. 

Acceleration of classical techniques
Classical AST techniques such as broth

microdilution, disk diffusion, gradient tests,
agar dilution and breakpoint tests (testing
bacterial growth at breakpoint concentra-
tions only) are based on continuous expo-
sure of a bacterial isolate to a set of antimi-
crobials followed by visual detection of
growth (Table 1). Classical AST techniques
involve a defined inoculum of a bacterial
pure culture and are standardized to 16 to 20
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hours of incubation with some species
requiring longer incubation periods of 72
hours and more. Accordingly, breakpoints
by AST committees such as EUCAST and
CLSI were calibrated to these incubation
periods. For positive blood cultures, this
leads to a time-to-result of at least 2 work-
ing days, as both primary growth from a
positive blood culture bottle and subsequent
AST from the isolated bacteria require
overnight incubation. In order to shorten
this period, three possibilities exist: i)
replacement of standardized inocula pre-
pared from pure bacterial cultures by direct-
ly using sample material such as positive
blood cultures or urine as a starting point for
AST (direct AST); ii) acceleration of bacte-
rial growth; iii) more sensitive detection. 

With respect to bacterial growth, both
intrinsic properties of the pathogen and
experimental conditions influence the
behavior of the AST system. The lag phase,
in which cells are adjusting to a new envi-
ronment through synthesis of RNA,
enzymes and other molecules, presents a
lower boundary for accelerated AST using
classical techniques, as cell division is
greatly down-regulated.8 Furthermore,
basic test parameters of classical AST sys-
tems (temperature, nutrient supply) are
already set in order not to limit bacterial
growth during the subsequent log phase.
Therefore, novel strategies for rapid classi-
cal AST focus on more sensitive growth
detection. Semi automated devices (e.g.
Biomerieux Vitek, BD Phoenix, Beckman
Coulter MicroScan), which use optical sys-
tems to measure subtle changes in bacterial
growth, can produce susceptibility test
results in a shorter period than manual read-
ings (6 to 12 hours). Recently, Kahlmeter et
al. reported results of disk diffusion AST
read after 6, 8 and 12 hours of incubation
(ESCMID eLibrary 2016 Tentative break-
points for early reading of disk diffusion
tests for Escherichia coli, Klebsiella pneu-
moniae, Staphylococcus aureus and
Streptococcus pneumoniae). The data show
that separation between wild type and non-
wild type populations was poorer with short
compared to standard incubation. Notably,
application of the standard EUCAST
meropenem screening diameter for detec-
tion of carbapenemase production would
have resulted in a significantly larger num-
ber of false-positive screening results after
6 hours as compared to the standard time
point (18 hours). Similarly, MRSA screen-
ing using the EUCAST recommended
cefoxitin 30 ug disk with a threshold zone
diameter of 22 mm would have led to sig-
nificantly more methicillin-susceptibly
strains being classified as methicillin-resis-
tant after 8 hours as compared to the regular
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reading after 18 hours of incubation. In
addition, inducible expression of chromoso-
mal or plasmid-borne resistance genes such
as ampC (resistance to betalactams) in
many Enterobacteriaceae or erm (resis-
tance to macrolides, streptogramins and lin-
cosamids) e.g. in streptococci, presents
another major challenge for rapid phenotyp-
ic AST.9-11 Little is known regarding the
resistance phenotype of strains carrying
such genes as a function of incubation time
in classical AST systems and more research
is needed to clarify these important issues.
In conclusion, new breakpoints will have to
be established and minimal incubation peri-
ods for reliable detection of inducible resist-
ance markers will have to be evaluated
before rapid AST data based on convention-
al AST systems can be delivered.

Novel approaches to rapid 
phenotypic antimicrobial 
susceptibility testing

Novel approaches to rapid phenotypic
AST typically require shorter exposure to
antimicrobials and are either designed for
early reporting of a full surrogate of the
conventional antibiogram or focused on
early detection of resistance to particularly
critical  compounds. For example, Entenza
et al. demonstrated that reduced susceptibil-
ity to vancomycin in S. aureus can be
detected in under 8 hours by
microcalorimetry, i.e. by measuring reduced
bacterial heat production in the presence of
vancomycin.12 Similarly, novel techniques
for phenotypic carbapenemase detection in
Enterobacteriaceae and nonfermenters
have been reported. These tests, such as the
Rapid Carb Blue Kit (Rosco Diagnostica,
Taastrup, Denmark) and the Rapidec Carba
NP test (bioMérieux, Marcy L’Etoile,
France), can be performed directly from
colonies grown on selective or non-selec-
tive agar plates.13,14 Imipenem hydrolysis
due to carbapenemases is detected using a
colorimetric pH indicator in as little as 30
minutes. Of note, known limitations of the
Carba NP test such as relatively low sensi-
tivity for detection of Oxa-48 carbapene-
mases and false negative results with
Providencia rettgeri, Providencia stuartii or
Proteus mirabilis can be overcome by run-
ning the test for 120 minutes and doubling
the inoculum recommended by the manu-
facturer.15,16 With a sensitivity of >90% and
a specificity of 100% these tests can be con-
sidered useful tools for rapid confirmation
of carbapenemase-producing
Enterobacteriaceae not least because the
continual discovery of novel, genetically
distinct carbapenemases presents a techni-
cal challenge for PCR-based detection.

Commercially available systems to

shorten the time-to-result for the entire
antibiogram include the Accelerate ID/AST
platform (Accelerate Diagnostics, Tucson,
USA) which, after a gel electro-filtration
step, uses fluorescence in situ hybridization
for species identification (1 hour) and auto-
mated time-lapse microscopy on individual
bacterial cells for AST (5 hours) directly
from positive blood cultures. MICs are
determined by matching growth patterns to
reference profiles, for which correlations to
conventional MICs have been established.
An agreement of >92% as compared to the
reference method (broth microdilution)
could be demonstrated for common com-
pound/species combinations.17 Other novel
developments such as two-photon excita-
tion assays (ArcDia, Turku, Finland), ultra-
high-resolution bacterial mass measurement
(LifeScale, Santa Barbara, USA) or
pathogen-specific bioparticles that bind to
specific bacterial targets and deliver cus-
tom-designed DNA molecules causing
viable bacteria to express luciferase (Roche,
Basel, Switzerland) are under commercial
development and show promising potential.
However, more peer-reviewed studies will
be required to assess their usefulness in the
routine clinical microbiology laboratory.

In addition to these commercial or pre-
commercial developments, various studies
describe novel approaches to rapid pheno-
typic AST, which warrant further explo-
ration. For instance, Huang et al. reported a
novel method utilizing flow cytometry and
adaptive multidimensional statistical met-
rics to analyze the data.18 Matsumoto and
co-workers described a microfluidic chan-
nel method for rapid AST (3 hours) of
Pseudomonas aeruginosa by automated
microscopic detection of cell growth and
morphology of single bacterial cells follow-
ing incubation in antimicrobial-coated
microfluidic channels and good correlation
with the reference (broth microdilution)
method was demonstrated.19 Weibull et al.
developed a high-throughput nanowell AST
device allowing heat map representation of
MIC data within 4 hours.20 Finally, Metzger
et al. reported a general method for rapid
species identification and AST involving a
short initial cultivation step in the absence
or presence of different antimicrobials fol-
lowed by padlock probe detection of bacte-
rial target DNA as a surrogate for bacterial
growth. In a small clinical validation study,
antibiotic susceptibility profiles of E. coli
for ciprofloxacin and trimethoprim were
determined with 100% accuracy in 3.5
hours.21

In conclusion, it is clearly established
that rapid phenotypic susceptibility testing
lowers the rate of incorrect empiric treat-
ment choices, shortens the length of hospi-

tal stay and reduces patient mortality. Many
novel options for rapid phenotypic AST will
be available in the near future. Before
adopting one or more of these systems, clin-
ical microbiologists will need to evaluate
their benefit in the context of local require-
ments: Is there a need to bridge a particular
diagnostic gap such as rapid AST in sepsis?
What is the capacity of the system (parallel
processing)? Is it cost-efficient under local
circumstances? Is there sufficient peer-
reviewed validation data? How is the flexi-
bility of in-house solutions weighted
against the ease-of-use of proprietary sys-
tems (black box)? Finally, the benefits of
rapid phenotypic AST will not translate into
improved patient care unless extended
staffing schedules and more rapid transmis-
sion of verified results can be provided.

Usefulness of MALDI-TOF to
optimize anti-infective therapies

MALDI-TOF mass spectrometry fin-
gerprinting has now been widely adopted
by clinical microbiology laboratories for
rapid identification of cultured microorgan-
isms.22-25 Compared to other conventional
(e.g. biochemical) identification workflows,
turnaround times are typically reduced by at
least one working day up to several days for
slower growing species or isolates that
require complex tests for definite identifica-
tion.26,27

Precise speciation can inform treatment
decisions by facilitating better judgment of
clinical relevance of microbial isolates (e.g.
S.aureus vs. coagulase-negative staphylo-
cocci) or directly guide selection of antimi-
crobials based on known patterns of intrin-
sic resistance (e.g. according to EUCAST
expert rules) and local susceptibility data.
Targeted modification of antimicrobial
treatment can often be suggested upon iden-
tification of non-fermenting Gram-negative
bacilli (Acinetobacter spp., Pseudomonas
spp., Stenotrophomonas maltophilia), the
CESP group of Enterobacteriaceae
(Citrobacter spp., Enterobacter spp.,
Serratia spp., Providencia spp., Hafnia
spp.,) or enterococci. Given the usually low
rates of acquired resistance, species identi-
fication is exceptionally useful for the treat-
ment of fungal infections. In observational
studies, introduction of MALDI-TOF with
antimicrobial stewardship intervention sig-
nificantly reduced time to effective antimi-
crobial treatment in patients with blood-
stream infection26-28 and Acinetobacter bau-
mannii pneumonia29 and shortened inappro-
priate use of vancomycin in patients with
CoNS-contaminated blood cultures by more
than 60 hours.30
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      Highest impact on turnaround times
and prescription policies is expected for
rapid identification from positive blood cul-
ture bottles.27,31 While MALDI-TOF finger-
printing had originally been introduced and
approved for the identification of solid
media cultures, it has readily been adopted
for liquid enrichment cultures.32 Currently,
sample preparation kits for blood cultures
are offered by both major suppliers of
MALDI-TOF fingerprinting systems.

Compared to conventional processing,
direct identification of organisms from pos-
itive blood-cultures by mass spectrometry
reduced turnaround times by at least one
working day and provided species level
identification results the day after sample
collection in more than three fourths of
cases.32 The technique is thus suitable to
inform clinicians within the critical phase of
septic illness when laboratory reports are
known to have highest impact on treatment
decisions.33 In observational studies, identi-
fication by MALDI-TOF added significant-
ly to Gram stain reports, leading to addi-
tional treatment modifications in more than
10% of cases.27,31,34 Combined with selected
molecular resistance marker tests or modi-
fied phenotypic susceptibility tests,
MALDI-TOF based workflows can provide
sufficient information for definite treatment
within 12 hours of blood culture positivi-
ty.35,36 Two recent studies found a reduction
in time to optimal antimicrobial therapy, a
reduction in hospital length of stay and a
reduction of hospital costs upon introducing
direct pathogen identification from positive
blood cultures by MALDI-TOF.37,38 The lat-
ter study could even show a reduction in 30-
day mortality, the most meaningful clinical
parameter. Yet, in both studies, direct
MALDI-TOF identification was only one
aspect of an intervention bundle, which also
comprised rapid susceptibility testing from
positive blood cultures and intensified
antimicrobial stewardship measurements.
Thus, the exact contribution of rapid
pathogen identification by MALDI-TOF
remains difficult to assess. However,
MALDI-TOF-based identification of bacte-
rial pathogens directly from positive blood-
culture bottles is comparably labor-inten-
sive and currently few laboratories offer the
service as part of their routine blood culture
workup.

Beyond species identification, mass
spectrometry has also been utilized for
rapid susceptibility testing. The technique
can be used to detect products of beta-lac-
tam hydrolysis in bacterial cultures with
unprecedented sensitivity and specificity. It
has successfully been used to detect ESBL
and carbapenemase production within 30 to

150 minutes.39-41 Other approaches rely on
the detection of changes in the proteomic
profile of cells exposed to antimicrobial
agents and should be applicable to a broader
range of substances.42,43 When made avail-
able for routine testing, these assays could
add to the armamentarium of rapid suscep-
tibility tests needed to reduce time to opti-
mal antimicrobial therapy. Another promis-
ing approach involves direct identification
of resistance determinants or biomarkers
expressed by resistant bacteria by MALDI-
ToF. A recent study could prove high sensi-
tivity and specificity by detecting a protein
specifically present in a subset of MRSA
strains in the mass spectra generated by
MALDI-TOF.44

In selected cases, MALDI-TOF mass
spectrometry might also provide treatment
relevant information via sub-species level
differentiation of microbial pathogens.
Certain lineages with known susceptibility
traits might be identified by characteristic
marker peaks in their MALDI-TOF mass
spectrum. While the achievable phylogenet-
ic resolution varies considerably between
species and is generally lower than with
established typing tools,45 the technique is
much faster and cheaper than MLST or
PFGE. If MALDI-TOF markers can be
established for the trait of interest, clinical
isolates could be monitored with little addi-
tional effort. So far, MALDI-TOF typing
has successfully been used during a large
outbreak of ESBL-EHEC46 and to classify
methicillin-resistant Staphylococcus
aureus.44,47,48 However, neither standardized
workflows nor databases or software tools
are currently available for routine applica-
tion.

The introduction of MALDI-TOF mass
spectrometry into the clinical microbiology
laboratory has considerably reduced time-
to-result for species identification in culture
based diagnostics. However, its impact on
the rational use of antimicrobials critically
depends on the timely translation of test
results into clinical decision making via
policies for empirical treatment based on
local susceptibility data. Application of
MALDI-ToF mass spectrometry for rapid
susceptibility testing or epidemiological
problems is currently hampered by the lack
of standardized protocols, test kits and soft-
ware tools. While the analytical sensitivity
of MALDI-ToF is insufficient for direct
application to clinical samples, the low
cost-per-sample and broad applicability
make it an attractive bridging technology,
which can be well complemented with
nucleic acid based tests and conventional
assays.
Clinical impact of amplification-

based diagnostics
Approaches towards direct
pathogen identification using nucleic
acid amplification techniques

During the last two decades, amplifica-
tion-based approaches towards pathogen
detection have become irreplaceable in the
clinical microbiology laboratory. More
recently, the introduction of commercial
multiplex PCR assays made rapid, sensitive
and specific detection of both bacterial and
viral pathogens from a single specimen
broadly available. These assays can help to
avoid unnecessary antibacterial treatment if
viral pathogens are detected, which is of
particular importance in infections of the
respiratory system.49 Although it is well
known that the majority of respiratory
infections are caused by viral pathogens,
prescription of antibiotics is frequent, pro-
moting the development of antimicrobial
resistance and the occurrence of complica-
tions such as Clostridium difficile
infection.50 Thus, an obvious strategy to
reduce antimicrobial consumption in these
infections is to broadly screen by PCR for
both bacterial and viral pathogens and to
discontinue antimicrobial therapy once evi-
dence for a viral infection is generated.51
Molecular techniques can identify multiple
different viral pathogens in one analysis
with test results being available on the same
working day. Some commercially available
assays additionally detect a number of bac-
terial pathogens implicated in lower respira-
tory tract infections, e.g. pneumococci,
Haemophilus influenzae, Moraxella
catarrhalis, Chlamydophila pneumonia,
Mycoplasma pneumoniae and sometimes
also Staphylococcus aureus thereby facili-
tating empiric treatment choices in case of a
bacterial infection.52 However, surprisingly
few studies are published which analyze
whether this workflow leads to a decrease
in unnecessary antibacterial therapies.
Nevertheless, the published studies high-
light some important problems. Most
importantly, while one would assume that
identification of a single viral pathogen in
respiratory samples results in immediate
discontinuation of antimicrobial treatment,
several studies found that this is not gener-
ally the case.53-57 This phenomenon may in
part be explained by delayed communica-
tion of the test results to the clinician or by
clinical improvement of the patient upon
other therapeutic interventions, e.g.
antipyretics and administration of oxygen,
being erroneously related to the empiric
antimicrobial therapy.

Interpretation of rapid molecular
screening results becomes more complicat-
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ed when bacterial pathogens are targeted by
multiplex PCR. In case of respiratory infec-
tions, typical patient samples include spu-
tum and nasopharyngeal swabs.56 Yet, many
bacterial pathogens causing respiratory tract
infections, particularly pneumococci, H.
influenzae, M. catarrhalis and in part also S.
aureus, all colonize the upper respiratory
tract as commensals of the physiological
flora. Not surprisingly, a study by Gilbert
and co-workers using a combination of cul-
ture-based diagnostics and molecular tests
to screen for viral or bacterial pathogens in
community-acquired pneumonia, found
bacteria as causative agents for respiratory
infections at rates close to the reported col-
onization frequencies and often in conjunc-
tion with viral pathogens.56 Therefore, while
positive results in these assays may reflect
true bacterial or bacterial/viral co-infection,
they may also represent mere contamination
of the sample. In consequence, false-posi-
tive rapid molecular test results may even
trigger antimicrobial therapy when none is
required and thus have a detrimental effect
on antimicrobial stewardship initiatives.

Bloodstream infections present another
category of infections where rapid molecu-
lar diagnostics hold great promise to ration-
alize empiric antimicrobial therapy.58
Molecular assays could not only accelerate
pathogen detection, but may also be of
value in patients in which blood cultures
remain negative.59 This is the case in up to
50% of bacteremic patients and relates to
low numbers of circulating bacteria, pres-
ence of fastidious organisms, delayed trans-
portation and incubation of blood culture
bottles with resultant decreased viability of
bacteria or growth inhibition due to antibi-
otic pre-treatment.60,61 Most available com-
mercial systems are reported to provide
species identification within 3-6 hours and
have a lower limit of detection between 10
and 100 CFU/mL.59 The optimism created
by these excellent technical outlines was
thwarted by ambiguous results when molec-
ular assays were validated in comparison to
standard blood cultures. In fact, various
commercial PCR assays from whole blood
specimens remained negative while bacteria
were recovered using conventional blood
culture bottles, indicating a potential sensi-
tivity issue with molecular sepsis assays.62
These apparently conflicting results may in
part be explained by relatively low blood
volume from which bacterial DNA was iso-
lated (ranging from 1-6 mL), or the pres-
ence of PCR-inhibitors (e.g. iron, heparin,
immunoglobulins) hampering DNA ampli-
fication.59 On the other hand, in some cases
PCR-based methods detected microorgan-
isms that could not be grown using conven-
tional blood cultures, putting forward the

question which gold standard is best for val-
idating test accuracy. The interpretation of
these results and the (necessary) differentia-
tion from probable contaminations during
sampling remains open. Most importantly,
at present no data are available demonstrat-
ing the clinical impact of (cost intensive)
PCR assays for direct pathogen identifica-
tion in whole blood. Although a recent
study found a change in clinical manage-
ment (e.g. change in antimicrobial therapy)
in about a third of the study population as a
consequence of PCR results from directly
drawn blood samples from newborns, dif-
ferentiating false- from true-positive PCR
results was regarded as difficult.63 Nearly
two thirds of PCR-positive samples, often
with CoNS, remained culture-negative.
Thus, at present PCR assays are still waiting
to find their place in sepsis diagnostics. 

Usefulness of nucleic acid amplifica-
tion-based methods for rapid
pathogen characterization from pos-
itive blood cultures

Rapid, amplification-based methods
could help to avoid unjustified broad-spec-
trum pathogen coverage and fast de-escala-
tion of empiric antimicrobial therapy by
immediate identification of molecular
resistance mechanisms as soon as enough
bacterial material becomes available during
culture. Obvious clinical need and the avail-
ability of abundant organisms have made
positive blood cultures a primary target of
tailored commercial assays.58,64,65 A com-
mon feature of these systems [e.g. Verigene
BC-GP/-BN (Luminex), Xpert MRSA/SA
BC assay (Cepheid), FilmArray BCID
(Biomerieux/BioFire)] is the possibility to
differentiate bacteria to the species level.
This already could have important steward-
ship implications, as knowledge on natural-
ly occurring resistance phenotypes and
availability of specific local resistance epi-
demiology could help to optimize antimi-
crobial therapies at an early stage of the
diagnostic work up. Moreover, in certain
scenarios a confirmed species identification
could already help to discard bacteremia as
a diagnosis and thus cease an antibacterial
therapy (e.g. if coagulase-negative staphy-
lococci are encountered).66,67 Today, certain-
ly MALDI-ToF-based direct identification
of bacteria from positive blood culture bot-
tles offers a broader diagnostic precision at
a lower cost as compared to amplification-
based, commercial systems (see above). 

However, a major drawback of every
approach that is restricted to rapid identifi-
cation of bacterial pathogens is the lack of
information on possible acquired resistance
markers. Therefore, inclusion of primer sets
for detection of specific resistance determi-

nants is an obvious extension of PCR-based
assays as long as there is an unambiguous
association with a specific drug-susceptibil-
ity phenotype. Here, due to the tremendous
variability of resistance mechanisms, PCR-
based methods as a basis to extrapolate a
dedicated resistance phenotype are obvious-
ly of limited value in Gram-negative organ-
isms.68 Conversely, in staphylococci deduc-
tion of beta-lactam susceptibility from
genetic information is feasible through
detection of mecA. The almost monocausal
reason for beta-lactam resistance in S.
aureus depending on the expression of
PBP2a has driven the development of vari-
ous in-house as well as commercial systems
for mecA detection.68,69

 Most available in house as well as com-
mercial assays target positive blood cultures
yielding growth of cluster forming Gram-
positive cocci. They allow to differentiate
between coagulase-negative staphylococci
and S. aureus [e.g. Xpert MRSA/SA BC
assays (Cepheid), GeneOHM StaphSR
assay (BD)],70,71 and are able to detect mecA
(and at least in some assays also for mecC). 

Turn-around times for PCR-based
assays are between one to three hours and
can thus significantly accelerate time to
optimal targeted antimicrobial therapies or
discontinuation of a running therapy, e.g. if
evidence for coagulase-negative staphylo-
cocci is provided and contamination is like-
ly.72,73 Interestingly, statistical modeling of
the impact of a rapid (PCR) assay detecting
MRSA in blood cultures indicated that such
a strategy has the potential to reduce mor-
tality in hospital-acquired bacteremia over a
range of MRSA prevalences from 2-80%.
Moreover, data from the same study indi-
cate that rapid MRSA detection is cost
effective, e.g. by lowering cost for broad
range empiric antimicrobial therapy.74
These conclusions were indeed confirmed
in clinical studies. 

In a single center study from the USA
(local MRSA prevalence of 65% in
S.aureus bacteremia) the effect of PCR-
based differentiation of cluster forming
Gram-positive cocci by using the Xpert
MRSA assay in combination with interven-
tion of an infectious disease pharmacist aid-
ing to optimize antimicrobial therapy was
assessed. If possible, the time to switch
from empiric vancomycin therapy to a beta-
lactam was 1.7 days shorter as compared to
the control (no PCR, no ID intervention).
Moreover, the mean length of hospital stay
was 6.3 days shorter and the mean treatment
costs were on average $ 21,387 less in the
intervention group.75

The diagnostic strategy of PCR-based
differentiation of Gram-positive cocci
directly from positive blood cultures includ-
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ing detection of mecA was reinforced by a
later study from Australia investigating 151
S. aureus bacteremia episodes (local MRSA
prevalence of 20% in S. aureus bac-
teremias), Implementation of the Xpert
MRSA/SA BC assay allowed for earlier
appropriate prescription of vancomycin in
54% of patients with MRSA infections. In
25% of all patients, unnecessary van-
comycin was avoided, and in 16% of all
patients, therapy was ceased because no S.
aureus was detected.76

Emonet and co-workers recently ana-
lyzed the effect of an in-house multiplex
real time PCR including specific primers
for S. aureus, S. epidermidis, and mecA on
management of patients with bacteremia
caused by Gram-positive cocci.  PCR was
used to differentiate and preliminary deduce
susceptibility of S. aureus and S. epider-
midis. Introduction of the PCR assay signif-
icantly shortened the time-to-result to detect
methicillin-susceptibility as compared to
the standard workflow from 25.4 hours to
3.9 hours after availability of a Gram stain.
More rapid availability of presumable beta-
lactam susceptibility allowed for a quicker
switch to an appropriate therapy in S.
aureus bacteremia cases (5 hours vs. 25.5
hours). Switching most often occurred in
MSSA bacteremia, in which empiric gly-
copeptide usage was stopped and patients
were treated with a beta-lactam instead.77

A drawback of these studies is that PCR
was performed on all blood cultures yield-
ing growth of Gram-positive cocci, result-
ing in significant costs especially when
commercial systems are in use. A way to
lower these costs is to differentiate between
coagulase-negative staphylococci and S.
aureus, e.g. by direct identification of cul-
tured bacteria using MALDI ToF,78 and to
restrict the use of (commercial) mecA PCRs
to those samples showing growth of S.
aureus.79 In a study from Switzerland this
approach was prospectively analyzed dur-
ing a one year period. In total, MALDI-ToF
identified growth of S. aureus in 197 blood
cultures. 106 samples included in the inter-
vention group in which cultures yielding
growth of Gram-positive cocci were
processed including MALDI-ToF identifi-
cation directly from blood cultures and sub-
sequent Xpert MRSA/SA assay. Ninety-six
samples were assigned to the control group.
Here, direct identification was followed by
conventional susceptibility testing.
Intriguingly, there was less unnecessary
glycopeptide usage in patients with MSSA
bacteremia in the intervention group (8.1%
vs. 26.1%; P<0.01).80

Yet, despite the seemingly straightfor-
ward genotype-phenotype correlation for
beta-lactam susceptibility in S. aureus, lim-

itations of currently used PCRs must be
kept in mind. Rates of false-positive
MRSA-PCR results, for example due to
mecA-negative SCCmec-elements, can
reach significant levels.81 Thus, particularly
in low prevalence regions, care must be
taken, that false-positive PCR-results do not
exaggerate glycopeptide use instead of low-
ering it. Nevertheless, the studies related to
staphylococcal bacteremia highlighted
above demonstrate the significant impact of
direct bacterial species identification and
detection of genetic resistance markers can
have on the clinical management of septic
patients. A similar strategy may also be
applicable to other species, given that a reli-
able association between genotype and phe-
notype exists and that the respective genetic
markers are of low variability. For instance,
this applies for vancomycin resistance in
enterococci carrying vanA or vanB. In the
past, optimal treatment (ampicillin versus
vancomycin) of enterococcal bacteremia
could be readily deduced from species iden-
tification, as resistance to aminopenicillins
is low in E. faecalis and high in E. faecium.
However, due to the emergence of van-
comycin-resistant enterococci (VRE) in
Europe82 and the high VRE prevalence in
specific risk groups,83 empiric administra-
tion of vancomycin may today be inappro-
priate even in E. faecium depending on
local epidemiology. At least one report
found that implementation of a commercial
assay to detect vanA/B in enterococcal iso-
lates from positive blood cultures (Verigene
BC-GP, Luminex) significantly shortened
the time to appropriate therapy in patients
with VRE bacteremia (reduction by 31.1
hours, P<0.0001). In parallel, introduction
of a molecular assay to detect vanA/B was
associated with shorter mean length of stay
and lower mean hospital costs.84 Of note, a
recent study in which the impact of the
FilmArray BCID assay was tested in com-
parison to standard procedures did not find
a clinical impact on patient outcome by
using fast VRE detection in blood cul-
tures.85 As mentioned above, molecular
detection of resistance determinants and
reliable deduction of resistance phenotypes
is much more challenging in Gram-negative
bacteria as compared to Gram-positive
species.86 However, given the raise and
rapid spread of multidrug-resistant Gram-
negative species, availability of rapid
molecular test would be highly desirable,
especially in blood stream infections. Over
the past couple of years several in-house as
well as commercial systems have been
developed, partially in integrated solutions
in which Gram-negative and Gram-positive
bacteria and some of their key resistance
determinants are detected simultaneously

from positive blood culture bottles [e.g.
FilmArray BCID (Biomerieux/Biofire),
Unyvero BCU (Curetis), Verigene BC-GN
assay (Luminex)]. These assays essentially
focus on the detection of mecA and vanA/B
in staphylococci and enterococci, respec-
tively, and various beta-lactamases in gram-
negative rods. Frequently, blaCTX-M as a
marker for an ESBL-phenoptype is targeted
(Verigene BC-GN/-GP, Unyvero BCU), in
combination with common carbapenemases
(e.g. blaKPC, blaNDM, blaOXA, blaVIM;
FilmArray BCID, Verigene BC-GN/-GP,
Unyvero BCU).87-91 The list of resistance
determinants is far from comprehensive,
and completely neglects ESBL enzymes
other than CTX-M and genes that confer
resistance against fluoroquinolones or
aminoglycosides. In addition, resistance
phenotypes involving changes in gene
expression levels or combined effects (e.g.
ESBL-/AmpC-overexpression and porin
loss leading to elevated carbapenem MICs)
are currently undetectable using commer-
cial amplification techniques. As a conse-
quence, rapid reporting of molecular resist-
ance results could potentially lead to wrong
empiric treatment decisions by suggesting
an all-clear to the clinician. Those reports
should therefore generally include a com-
ment on the limitation of the tests, and
advise on considering the clinical context of
the patient (for example results from recent
colonization screenings, epidemiological
background, effectiveness of current
antimicrobial treatment). As previously
noted, rapid phenotypic methods will thus
continue to be of significant importance in
this context.86 Nevertheless, given the
importance of anticipated susceptibilities
based on species identification and the pos-
sibility to exclude the presence of organ-
isms for which multi-resistance phenotypes
are more common (e.g. P. aeruginosa, A.
baumannii), rapid PCR-based analysis of
positive blood cultures growing Gram-neg-
ative rods could be of clinical value.92

Although available commercial assays
have been thoroughly validated in technical
terms,93-95 the impact of using rapid amplifi-
cation based methods on clinical decision-
making and patient outcome is less well
studied. However, such studies would be of
significant importance in order to justify the
increased cost and complexity of the diag-
nostic workflow. 

The clinical impact of performing rapid
identification and detection of resistance
determinants in Gram-negative rods was
tested in a retrospective study by Walker
and co-workers.96 The authors compared
two periods, in which standard procedures
for species identification and susceptibility
testing were in place alone or in combina-
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tion with the Verigene BC-GN assay. The
amplification assay was performed immedi-
ately after the blood culture bottles were
flagged positive, and results were directly
reported. While the implementation had no
effect on earlier appropriate antimicrobial
coverage or de-escalation, length of ICU
stay, 30-day mortality and mortality associ-
ated with multidrug resistant organisms
(e.g. ESBL-producing Enterobacteriaceae)
were lower in the group in which rapid
molecular testing was applied. It should be
noted that in this study, no additional stew-
ardship measures were initiated to flank
implementation of rapid diagnostics.  

A general drawback of most studies
investigating the clinical impact of rapid
pathogen identification in positive blood
cultures is their observational study design
and the use of historic controls. In that
respect, a recent publication by Banaerjee
and co-workers is of special importance.97
In a randomized clinical trial, the authors
compared three approaches to differentiate
organisms in positive blood cultures and
communication of results. While in one
group standard work up was in place, in a
second group the FilmArray BCID assay
was used to differentiate organism immedi-
ately after blood culture bottles were
flagged positive. Results in this group were
communicated by a laboratory technician
during 24 hours every day, accompanied by
templated comments in the electronic med-
ical record to guide antimicrobial therapy.
In a third group, FilmArray BCID results
were communicated 24 hours every day by
a member of the antimicrobial stewardship
team. The authors found that in groups 2
and 3 clinicians were enabled to quickly ini-
tiate pathogen-directed antimicrobial thera-
py. In both groups an increased use of nar-
row spectrum antibiotics was observed, as
was less usage of unnecessary vancomycin,
decreased treatment of blood culture con-
taminants and more timely escalation if
appropriate. The implementation of rapid
molecular testing, however, had no effect
on mortality, length of stay or costs. The
study not only provides evidence that
implementation of rapid PCR testing of
positive blood cultures can optimize patient
treatment, but demonstrates that flanking
stewardship measures are important clues to
translate speed in diagnostic procedures
into clinical action. The importance of
structured communication and stewardship
decision support, especially in Gram-nega-
tive bacteremia, was also reported by oth-
ers.26,92,98 A rather simple but obviously
effective way apparently is to provide real-
time decision support using templated com-
ments in medical records.97 This solution
appears to be especially interesting in set-

tings where antimicrobial stewardship
teams are not available.

In conclusion, PCR-based assays have a
clear place in specific and fast, culture inde-
pendent pathogen detection. The specific
value in infections of the respiratory tract,
especially hospital-acquired pneumonia,
and the bloodstream is currently unclear.
Certainly, PCR is of great value in rapid
pathogen identification and resistance
determinant detection in cultured bacteria.
This is especially true in the work-up of
positive blood cultures – however, the
investment in expensive diagnostic assays
is only justified if results are communicated
to the clinician in a way allowing for imme-
diate clinical action, i.e. adjustment of
antimicrobial therapies. 

Conclusions
Techniques providing rapid information

on bacterial pathogens and their antimicro-
bial susceptibility are of key importance for
the management of infectious diseases
patients. The introduction of MALDI-ToF
into routine diagnostics led to a significant
acceleration of highly specific species iden-
tification and must be regarded as a major
advance in the field of clinical microbiolo-
gy. In addition, rapid molecular tests offer
significant opportunities to further reduce
the time-to-result for pathogen identifica-
tion and information on key resistance
determinants. Moreover, novel approaches
in phenotypic susceptibility testing herald
an era in which medical microbiology can
substantially support also the early stages of
clinical decision making. Information will
be especially useful to limit usage of last
resort antimicrobials to those cases in which
narrow-spectrum antimicrobials are not
appropriate. With next generation sequenc-
ing becoming implemented into routine
diagnostic procedures, additional improve-
ments are on the horizon. 

Most importantly, it has already become
evident that technical improvements result-
ing in a shorter time-to-result only translate
into benefit for the patient if rapid, struc-
tured communication and interpretation of
clinical microbiology results are available
for the responsible clinician. In this regard,
the importance of a close cooperation
between the clinical microbiology laborato-
ry and antimicrobial stewardship teams can-
not be overestimated.
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