Effectiveness and Tolerability of Dual Antiviral Therapy in Immunosuppressed Patients with Protracted SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dioverti, V.; Salto-Alejandre, S.; Haidar, G. Immunocompromised Patients with Protracted COVID-19: A Review of “Long Persisters”. Curr. Transplant. Rep. 2022, 9, 209–218. [Google Scholar] [PubMed]
- Carlin, A.F.; Clark, A.E.; Chaillon, A.; Garretson, A.F.; Bray, W.; Porrachia, M.; Santos, A.T.; Rana, T.M.; Smith, D.M. Virologic and Immunologic Characterization of Coronavirus Disease 2019 Recrudescence After Nirmatrelvir/Ritonavir Treatment. Clin. Infect. Dis. 2022, 76, e530–e532. [Google Scholar]
- Martinez, M.A.; Chen, T.Y.; Choi, H.; Hwang, M.; Navarathna, D.; Hao, L.; Gale, M.; Camus, G.; Ramirez, H.E.; Jinadatha, C. Extended Remdesivir Infusion for Persistent Coronavirus Disease 2019 Infection. Open Forum Infect. Dis. 2022, 9, ofac382. [Google Scholar] [PubMed]
- Helleberg, M.; Niemann, C.U.; Moestrup, K.S.; Kirk, O.; Lebech, A.M.; Lane, C.; Lundgren, J. Persistent COVID-19 in an immunocompromised patient temporarily responsive to two courses of remdesivir therapy. J. Infect. Dis. 2020, 222, 1103–1107. [Google Scholar]
- Lee, C.Y.; Shah, M.K.; Hoyos, D.; Solovyov, A.; Douglas, M.; Taur, Y.; Maslak, P.; Babady, N.E.; Greenbaum, B.; Kamboj, M.; et al. Prolonged SARS-CoV-2 Infection in Patients with Lymphoid Malignancies. Cancer Discov. 2022, 12, 62–73. [Google Scholar]
- Aydillo, T.; Gonzalez-Reiche, A.S.; Aslam, S.; van de Guchte, A.; Khan, Z.; Obla, A.; Dutta, J.; van Bakel, H.; Aberg, J.; García-Sastre, A.; et al. Shedding of Viable SARS-CoV-2 after Immunosuppressive Therapy for Cancer. N. Engl. J. Med. 2020, 383, 2586–2588. [Google Scholar]
- Gur, I.; Giladi, A.; Isenberg, Y.N.; Neuberger, A.; Stern, A. COVID-19 in Patients with Hematologic Malignancies: Clinical Manifestations, Persistence, and Immune Response. Acta Haematol. 2022, 145, 297–309. [Google Scholar]
- Cesaro, S.; Ljungman, P.; Mikulska, M.; Hirsch, H.H.; von Lilienfeld-Toal, M.; Cordonnier, C.; Meylan, S.; Mehra, V.; Styczynski, J.; Marchesi, F.; et al. Recommendations for the management of COVID-19 in patients with haematological malignancies or haematopoietic cell transplantation, from the 2021 European Conference on Infections in Leukaemia (ECIL 9). Leukemia 2022, 36, 1467–1480. [Google Scholar]
- Nimgaonkar, I.; Yoke, L.H.; Roychoudhury, P.; Flaherty, P.W.; Oshima, M.U.; Weixler, A.; Gauthier, J.; Greninger, A.L.; Mielcarek, M.; Boeckh, M.; et al. Outcomes in Hematopoietic Cell Transplant and Chimeric Antigen Receptor T Cell Therapy Recipients with Pre-Cellular Therapy SARS-CoV-2 Infection. Clin. Infect. Dis. 2024, 79, 86–95. [Google Scholar]
- Azzi, Y.; Bartash, R.; Scalea, J.; Loarte-Campos, P.; Akalin, E. COVID-19 and Solid Organ Transplantation: A Review Article. Transplantation 2021, 105, 37–55. [Google Scholar]
- Ao, G.; Wang, Y.; Qi, X.; Nasr, B.; Bao, M.; Gao, M.; Sun, Y.; Xie, D. The association between severe or death COVID-19 and solid organ transplantation: A systematic review and meta-analysis. Transplant. Rev. 2021, 35, 100628. [Google Scholar]
- Del Bello, A.; Marion, O.; Sallusto, F.; Delas, A.; Esposito, L.; Doumerc, N.; Kamar, N. Kidney transplantation during the COVID-19 pandemic: Potential long-term consequences of an early post-transplant infection. Transpl. Infect. Dis. 2021, 23, e13446. [Google Scholar] [PubMed]
- Lai, Q.; Spoletini, G.; Bianco, G.; Graceffa, D.; Agnes, S.; Rossi, M.; Lerut, J. SARS-CoV2 and immunosuppression: A double-edged sword. Transplant. Infect. Dis. 2020, 22, e13404. [Google Scholar]
- Candon, S.; Guerrot, D.; Drouot, L.; Lemoine, M.; Lebourg, L.; Hanoy, M.; Boyer, O.; Bertrand, D. T cell and antibody responses to SARS-CoV-2: Experience from a French transplantation and hemodialysis center during the COVID-19 pandemic. Am. J. Transplant. 2021, 21, 854–863. [Google Scholar] [PubMed]
- Bakheit, A.H.; Darwish, H.; Darwish, I.A.; Al-Ghusn, A.I. Remdesivir. Profiles Drug Subst. Excip. Relat. Methodol. 2023, 48, 71–108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saravolatz, L.D.; Depcinski, S.; Sharma, M. Molnupiravir and Nirmatrelvir-Ritonavir: Oral Coronavirus Disease 2019 Antiviral Drugs. Clin. Infect. Dis. 2023, 76, 165–171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peracchi, F.; Merli, M.; Rogati, C.; Ravano, E.; Puoti, M.; Cairoli, R.; Travi, G. Dual antiviral therapy in haematological patients with protracted SARS-CoV-2 infection. Br. J. Haematol. 2023, 201, e62–e65. [Google Scholar]
- Bloch, E.M.; Focosi, D.; Shoham, S.; Senefeld, J.; Tobian, A.A.R.; Baden, L.R.; Tiberghien, P.; Sullivan, D.J.; Cohn, C.; Dioverti, V.; et al. Guidance on the use of convalescent plasma to treat immunocompromised patients with COVID-19. Clin. Infect. Dis. 2023, 76, 2018–2024. [Google Scholar]
- Tzou, P.L.; Tao, K.; Kosakovsky Pond, S.L.; Shafer, R.W. Coronavirus Resistance Database (CoV-RDB): SARS-CoV-2 susceptibility to monoclonal antibodies, convalescent plasma, and plasma from vaccinated persons. PLoS ONE 2022, 17, e0261045. [Google Scholar]
- Schultz, D.C.; Johnson, R.M.; Ayyanathan, K.; Miller, J.; Whig, K.; Kamalia, B.; Dittmar, M.; Weston, S.; Hammond, H.L.; Dillen, C.; et al. Pyrimidine inhibitors synergize with nucleoside analogues to block SARS-CoV-2. Nature 2022, 604, 134–140. [Google Scholar]
- Mikulska, M.; Sepulcri, C.; Dentone, C.; Magne, F.; Balletto, E.; Baldi, F.; Labate, L.; Russo, C.; Mirabella, M.; Magnasco, L.; et al. Triple Combination Therapy with 2 Antivirals and Monoclonal Antibodies for Persistent or Relapsed Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Immunocompromised Patients. Clin. Infect. Dis. 2023, 77, 280–286. [Google Scholar] [PubMed]
- Pasquini, Z.; Toschi, A.; Casadei, B.; Pellegrini, C.; D’Abramo, A.; Vita, S.; Beccacece, A.; Bussini, L.; Chionsini, M.C.; Dentale, N.; et al. Dual combined antiviral treatment with remdesivir and nirmatrelvir/ritonavir in patients with impaired humoral immunity and persistent SARS-CoV-2 infection. Hematol. Oncol. 2023, 41, 904–911. [Google Scholar] [PubMed]
- Fábrega, A.S.; Catalán, I.P.; Alfaro, I.G.; Muñoz, S.G.; Martí, C.R.; Lozano, N.R.; Folgado Escudero, S.; Villanueva, M.V.; Gascón Buj, A.; Torres García, M.; et al. Association of nirmatrelvir/ritonavir and remdesivir as treatment for SARS-CoV-2 infection in immunocompromised patients with hematologic malignancies. Series of four cases. Rev. Esp. Quimioter. 2023, 36, 655–657. [Google Scholar]
- Meijer, S.E.; Halutz, O.; Adler, A.; Levytskyi, K.; Tau, L.; Dekel, M.; Cohen-Poradosu, R.; Katchman, E.; Shasha, D.; Ablin, J.; et al. Dual anti-viral treatment for persistent COVID-19 in immunocompromised hemato-oncological patients is associated with a favorable prognosis and minor side effects. J. Infect. Chemother. 2024, 30, 271–275. [Google Scholar]
- Naimi, A.; Yashmi, I.; Jebeleh, R.; Imani Mofrad, M.; Azimian Abhar, S.; Jannesar, Y.; Heidary, M.; Pakzad, R. Comorbidities and mortality rate in COVID-19 patients with hematological malignancies: A systematic review and meta-analysis. J. Clin. Lab. Anal. 2022, 36, e24387. [Google Scholar]
Follicular NHL | NHL DLBCL | MM | CLL | Other (AML, ALL, Myelofibrosis) | HSCT | KT | Total | |
---|---|---|---|---|---|---|---|---|
Number of patients | 12 | 5 | 4 | 3 | 4 | 3 | 3 | 34 |
Men %, (n) | 50% (6) | 100% (5) | 100% (4) | 100% (3) | 25% (1) | 0% (0) | 67% (2) | 62% (21) |
Age (y), median (IQR) | 69 (65–74) | 68 (73–79) | 75 (72–77) | 76 (72–83) | 65 (63–74) | 37 (26–43) | 54 (53–56) | 66 (60–78) |
Rituximab cycle (>5), % (n) | 100% (12) | 80% (4) | 25% (1) | 0% (0) | 0% (0) | 0% (0) | 0% (0) | 50% (17) |
Cyclosporin A, % (n) | 0% (0) | 0% (0) | 0% (0) | 0% (0) | 0% (0) | 100% (3) | 100% (3) | 18% (6) |
Last rituximab administration (days from treatment), median (IQR) | 112 (45–185) | 109 (24–177) | >400 | / | / | / | / | / |
Previous prophylaxis with Tigaxevimab—Cilgavimab % (n) | 25% (3) | 40% (2) | 0% (0) | 0% (0) | 0% (0) | 0% (0) | 0% (0) | 15% (5) |
Previous antiviral treatments at symptom onset % (n) | 50% (6) | 80% (4) | 50% (2) | 0% (0) | 50% (2) | 67% (2) | 67% (2) | 53% (18) |
Positivity duration (days) median, (IQR) | 40 (24–45) | 105 (15–205) | 16 (2–28) | 14 (6–20) | 8 (7–10) | 23 (15–35) | 44 (21–56) | 40 (10–34) |
Pneumonia %, (n) | 83% (10) | 40% (2) | 75% (3) | 67% (2) | 75% (3) | 67% (2) | 67% (2) | 71% (24) |
Treatment duration, median (IQR) | 12 (10–10) | 10 (10–10) | 15 (10–18) | 10 (10–10) | 10 (10–10) | 10 (10–10) | 19 (9–12) | 11 (10–10) |
Neutropenia | 33% (4) | 20% (1) | 50% (2) | 33% (1) | 75% (3) | 33% (1) | 0% (0) | 35% (12) |
Hypogammaglobulinemia | 75% (9) | 80% (4) | 100% (4) | 100% (3) | 75% (3) | 67% (2) | 0% (0) | 74% (25) |
5th-day negative test (antigen nasal swab) % (n) | 58% (7) | 100% (5) | 25% (1) | 67% (2) | 100% (4) | 67% (2) | 67% (2) | 68% (23) |
10th-day negative nasal swab test % (n) | ||||||||
Antigen test | 58% (7) | 100% (5) | 50% (2) | 100% (3) | 100% (4) | 100% (3) | 100% (3) | 80% (27) |
Rt—PCR test | 58% (7) | 100% (5) | 50% (2) | 67% (2) | 100% (4) | 100% (3) | 33%% (1) | 71% (24) |
Isolated BAL positivity | 33% (4) | / | / | / | / | / | / | 12% (4) |
Follow-up from last day of treatment, median (IQR) | 207 (104–300) | 257 (172–373) | 169 (72–260) | 348 (330–363) | 141 (105–175) | 254 (98–336) | 220 (149–305) | 220 (100–316) |
Death %, (n) | 25% (3) | 20% (1) | 50% (2) | 0% (0) | 0% (0) | 0% (0) | 0% (0) | 18% (6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Travi, G.; Peracchi, F.; Merli, M.; Ravano, E.; Frustaci, A.; Deodato, M.; Fanti, D.; Nava, A.; Colombo, V.; Bana, N.B.; et al. Effectiveness and Tolerability of Dual Antiviral Therapy in Immunosuppressed Patients with Protracted SARS-CoV-2 Infection. Infect. Dis. Rep. 2025, 17, 17. https://doi.org/10.3390/idr17020017
Travi G, Peracchi F, Merli M, Ravano E, Frustaci A, Deodato M, Fanti D, Nava A, Colombo V, Bana NB, et al. Effectiveness and Tolerability of Dual Antiviral Therapy in Immunosuppressed Patients with Protracted SARS-CoV-2 Infection. Infectious Disease Reports. 2025; 17(2):17. https://doi.org/10.3390/idr17020017
Chicago/Turabian StyleTravi, Giovanna, Francesco Peracchi, Marco Merli, Emanuele Ravano, Anna Frustaci, Marina Deodato, Diana Fanti, Alice Nava, Valeriana Colombo, Nicholas Brian Bana, and et al. 2025. "Effectiveness and Tolerability of Dual Antiviral Therapy in Immunosuppressed Patients with Protracted SARS-CoV-2 Infection" Infectious Disease Reports 17, no. 2: 17. https://doi.org/10.3390/idr17020017
APA StyleTravi, G., Peracchi, F., Merli, M., Ravano, E., Frustaci, A., Deodato, M., Fanti, D., Nava, A., Colombo, V., Bana, N. B., Rogati, C., Raimondi, A., Moioli, C., Pazzi, A. M., Vecchi, M., Motta, D., Rossotti, R., Oltolini, C., Crippa, F., ... Puoti, M. (2025). Effectiveness and Tolerability of Dual Antiviral Therapy in Immunosuppressed Patients with Protracted SARS-CoV-2 Infection. Infectious Disease Reports, 17(2), 17. https://doi.org/10.3390/idr17020017