
Citation: Phan, L.N.; Murphy, K.J.;

Pearce, K.L.; Tran, C.D.; Tremellen,

K.P. The Potential Relationship

between Gastric and Small

Intestinal-Derived Endotoxin on

Serum Testosterone in Men.

Gastroenterol. Insights 2023, 14,

394–405. https://doi.org/10.3390/

gastroent14030029

Academic Editor: Chun Gao

Received: 3 July 2023

Revised: 22 August 2023

Accepted: 28 August 2023

Published: 14 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

The Potential Relationship between Gastric and Small
Intestinal-Derived Endotoxin on Serum Testosterone in Men
Laura N. Phan 1,* , Karen J. Murphy 2,3 , Karma L. Pearce 3 , Cuong D. Tran 4 and Kelton P. Tremellen 5,6,*

1 School of Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
2 Alliance for Research in Exercise, Nutrition and Activity, University of South Australia,

Adelaide 5001, Australia; karen.murphy@unisa.edu.au
3 Clinical and Health Sciences, University of South Australia, 108 North Terrace, Adelaide 5001, Australia;

karma.pearce@unisa.edu.au
4 CSIRO Health and Biosecurity, Gate 13, Kintore Ave, Adelaide 5000, Australia; cuong.tran@csiro.au
5 Department of Obstetrics Gynaecology and Reproductive Medicine, Flinders University,

Bedford Park 5042, Australia
6 Repromed, 180 Fullarton Rd., Dulwich 5065, Australia
* Correspondence: lan.phan@mymail.unisa.edu.au (L.N.P.); kelton.tremellen@flinders.edu.au (K.P.T.)

Abstract: The association between H. pylori and small intestinal permeability (IP) on serum testos-
terone levels in men as mediated by metabolic endotoxemia remains unclear. We sought to explore
relationships using correlational analysis between H. pylori IgG class antibody levels and small IP
via dual sugar probe analysis on T levels in 50 male participants of reproductive age. Sleep quality,
physical activity levels, and Irritable Bowel Syndrome (IBS) symptom severity were measured as
potential confounders. Measures for H. pylori (antibodies) increased small IP (lactulose/rhamnose
ratio), and hypogonadism (testosterone) did not exceed diagnostic cut-off values for respective
pathologies. There was no correlation between lactulose/rhamnose e ratio and GI function markers,
zonulin, H. pylori, and IBS questionnaire scores; inflammatory markers, high-sensitivity C-reactive
Protein (hsCRP) and Lipopolysaccharide-Binding Protein (LBP); nor endocrine markers, testosterone,
Luteinizing hormone (LH), and Follicle-stimulating hormone (FSH). There was a moderate inverse
relationship revealed between IBS symptom severity and LBP (r = −0.457, p = 0.004); and hsCRP and
testosterone (r = −0.398, p = 0.004). This was independent of physical activity level and sleep quality,
but not BMI, which supports the existing link between adiposity, inflammation, and hypogonadism
currently present in the literature.

Keywords: endotoxemia; Helicobacter pylori; hypogonadism; intestinal permeability; small intestinal
bacterial overgrowth; inflammation; testosterone deficiency

1. Introduction

In secondary hypogonadism (HG), failure of the testes to synthesise sufficient testos-
terone for spermatogenesis can lower the chances of healthy conception [1]. One clinical
presentation of secondary HG is androgen deficiency, often leading to male infertility [2–5].
Male factor-infertility contributes to 25% of global infertility cases. In Australia, North
America, and Eastern Europe, male-factor infertility rates are reported at 9%, 4–6% and
8–12%, respectively [6]. Secondary HG is associated with lifestyle factors traditionally
associated with inflammation, including excess alcohol consumption and adiposity [7].
Exposure to endotoxins like Gram-negative bacterial lipopolysaccharide (LPS) have also
shown involvement in androgen deficiency. Approximately 14% of male-factor infertil-
ity cases are associated with systemic inflammation [8]. This is supported by Boutagy
et al.’s findings [9] which reveal that inflammatory cytokines present in semen and plasma,
including Interleukin-6 (IL-6), IL-8, IL-10, and IL1-B, have been linked with decreased
T production.
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LPS is a glycolipid forming part of the Gram-negative bacterial wall and is a potent
proinflammatory compound. LPS negatively affects testicular function both directly and
indirectly. Leydig cells of the testis contain LPS-activated toll-like receptor 3 and 4 (TLR-3,
TLR-4) and are, therefore, indicated in the expression of innate immune responses. As such,
gonadal immune activation is consequently indicated in steroidogenesis disruption and
reduction of T in multiple animal models. Isolated Leydig cells of mice and mallard ducks
exposed to LPS injections demonstrated a significant decrease in steroidogenic acute regula-
tory (StAR) protein expression [10]. StAR activity initiates the conversion process between
cholesterol to T from mitochondria, and is a likely mediator of T concentrations [11].

Direct mechanistic effects have also been observed. Male mice administered with
LPS via injection have demonstrated significant decreases in T production and serum
T in comparison to age and diet-controlled control mice [12]. Furthermore, experimen-
tal administration of LPS in animal models has demonstrated substantial suppression
of leutenising hormone (LH) concentrations in sheep, cattle, non-human primates, and
rats through the observed effect of decreased LH pulse frequency, suggesting a level of
hypothalamic-pituitary dysfunction [11,13,14].

Supportive of animal findings, an observational study involving 75 healthy hu-
man males of reproductive age revealed a negative correlation between serum levels
of lipopolysaccharide binding protein (LBP) levels, indicative of LPS exposure, inflam-
mation [15], and T levels [16]. Similar biological effects, as mediated by inflammatory
processes, have been demonstrated in experimental human models. Catheter adminis-
tration of Escherichia coli (E. coli)-derived LPS (0.8 ng/kg body weight) in 17 healthy men
resulted in profound increases in TNF-alpha (TNF-α) and Interleukin-6 (IL-6), and signif-
icant reductions in T 6 h post-injection, in comparison to 16 men healthy men receiving
intravenous placebo endotoxin. This effect was independent of gonadotrophin fluctuations
to LH and follicular stimulating hormone (FSH) [16].

A potential underlying mechanism behind the LPS and T level correlations may be
explained by metabolic endotoxemia (ME). ME is a state of low-grade, systemic inflam-
mation induced by the passage of intestinal bacterial LPS into systemic circulation at
sub-clinical levels (<200 pg/mL), where chronic activation of innate immune cell TLR-4
occurs. It is dissimilar to the relatively high median levels (300 pg/mL; 25–75% interquartile
range, 110–726 pg/mL) found in patients at the onset of severe bacterial sepsis [17]. As
LBP—an acute-phase reactant hepatically-produced in response to Gram-negative bacterial
infections—binds to the Lipid A portion of the LPS molecule, complement is activated.
This produces a pro-inflammatory immune response [9]. Elevations in serum LBP can be
detected even in low LPS conditions, like ME. Therefore it is a suitable marker for ME as
indicated in androgen deficiency [15].

Areas of Gram-negative bacterial colonisation are of concern, as LPS migrates from
colonisation sites into circulation. The intestinal epithelium is a particularly fallible ‘entry
port’ due to its naturally permeable nature, where mediation of epithelial tight junction
regulation assists paracellular absorption and transcellular transport of macromolecules in-
cluding bacterial by-products across intestinal capillaries [18]. Furthermore, the abundance
of Gram-negative bacteria, even in the absence of active GI infection, further contributes
to this dilemma. The average adult human intestinal microbiome—amassing 1.5 kg of
bacteria, 70% of which is Gram-negative—contains the largest source of LPS in the human
body. Approximately 1 g of unbound endotoxin is present in the average intestinal lumen
at homeostasis [19–21].

Intestinal permeability (IP) is characterised by abnormal intestinal epithelial function
which can lead to losses in immunological regulation and subsequent increases in ‘non-
discriminatory’ circulatory migration of LPS. Conditions like Irritable Bowel Syndrome
(IBS), which involve alterations to gut microbiome composition/ecology (dysbiosis), de-
creased immune defense of the mucosal immune system, and physical alteration of the
mucosal barriers, can increase IP [22,23]. Crohn’s Disease, where a degree of IP is expected,
is also associated with poor T levels [24].



Gastroenterol. Insights 2023, 14 396

SIBO has also been shown to increase IP [25] and increase endotoxemia in patients with
liver cirrhosis [26]. SIBO occurs when certain conditions, like proton pump inhibitor (PPI)
use, increase intestinal pH levels. This causes an expansion in the number of pathobionts
where the SI bacterial load exceeds the normal levels of 105 colony-forming units (CFU)/mL
of jejunal fluid [27]. Most bacteria are pH-sensitive and cannot thrive in acidic conditions.
For this reason, relative to the more alkaline colonic environment, the SI has a low bacterial
load (104 CFU/mL) compared to the colon at 1012 CFU/mL [16]. It is unknown whether
SIBO-associated IP is a direct result of bacterial villous injury or an indirect result of
immune activation, however [28]. Nevertheless, this suggests that SIBO is a plausible
factor in inflammation-mediated testicular dysfunction despite current literature not yet
highlighting a direct link between SIBO and testicular function.

Gastric permeability has also been shown to increase LBP. In particular, active CagA+
and VagA+ (cytotoxin-associated gene A [CagA]-and vacuolating cytotoxin A [VacA]-
positive) Helicobacter pylori (H. pylori) virulent strain infections have been positively as-
sociated with serum LBP [29,30]. H. pylori infections cause gastric inflammation and
subsequently gastric permeability, but not small IP, by activation of myosin light-chain
kinase in epithelial cells to phosphorylate myosin light chain, and also by disrupting the
tight-junctional proteins occludin, claudin-4, and claudin-5 [31,32]. H. pylori antibody levels
have also been attributed to significantly decreased androgens and serum androstanediol
glucuronide (3-α-diol-G) (AAG) levels, an androgen biomarker [33].

Due to their involvement in increasing epithelial permeability at gastric and small-
intestinal sites, respectively, and their relationship to increased LBP levels indicative of
systemic inflammation, we believe H. pylori and IP are plausible factors in ME-mediated
androgen deficiency.

2. Materials and Methods

This was a prospective, observational investigation in n = 50 men of reproductive age
to determine whether H. pylori and IP could influence serum T levels through inflammatory
influence. This study was conducted in accordance with the Declaration of Helsinki. Ethics
approval for this study was obtained from the University of South Australia Human
Research Ethics Committee (#202371). All participants provided written, informed consent
prior to the commencement of data collection.

Inclusion criteria were male and between 18 and 50 years of age. Exclusion criteria
were metabolic disorders (e.g., diabetes mellitus, metabolic liver disease), autoimmune dis-
orders (e.g., Ehlers-Danlos syndromes, Graves’ disease), infectious diseases (e.g., Hepatitis
A, Hepatis B, HIV/AIDS), inflammatory bowel disease (IBD), pathological hyperlipidaemia
(and lipid nephrosis or acute pancreatitis if accompanied by hyperlipidaemia), pulmonary
disease, blood coagulation disorders, smokers, narcotic usage, excessive consumption of al-
cohol (>4 standard drinks per day), consumption of GI modulating supplements (e.g., probi-
otics, prebiotics, supplemental fibre), consumption of medication with immunosuppressive
function (e.g., corticosteroids), consumption of antibiotics one month prior to participation,
undertaking male hormone/androgen treatments (e.g., testosterone therapy, aromatase
inhibitors), or following a special diet (e.g., vegetarian, vegan, low-carbohydrate).

Out of 54 potential participants who were screened remotely, 50 were eligible. Eligible
participants attended a clinical trial facility for a single session in an overnight fasted state.
Anthropometric measures were recorded once (height, weight, waist circumference, body
mass index (BMI)). The Baecke Physical Activity Questionnaire (BPAQ), Pittsburgh Sleep
Quality Index (PSQI), and irritable bowel syndrome (IBS) Severity Scoring System (IBS-SSS)
were administered as covariates to control for habitual physical activity, sleep patterns, and
IBS symptom severity, respectively [34–36].

A Lactulose/Rhamnose (L/R) dual sugar solution was used to determine the presence
of IP. Dual sugar probe analyses are the gold standard of IP in current literature. Partici-
pants provided a 20 mL baseline blood sample via venepuncture before ingesting a dual
sugar solution of 100 mL water, 5 g lactulose (Alphapharm, Sydney, Australia) and 1 g of



Gastroenterol. Insights 2023, 14 397

L-Rhamnose (Sigma-Aldrich, Merck, St. Louis, MO, USA). Participants remained at the
clinic in a rested state for 1.5 h following solution ingestion, where one final 20 mL blood
sample was collected. Physical activity and water intake was restricted between blood
samples which were taken between 0730 h and 1230 h. Whole blood was centrifuged within
1 hr of collection and plasma and serum were stored at −80 ◦C until analysis.

Serum H. pylori Immunoglobulin G (IgG) antibodies were determined by a solid phase,
chemiluminescent immunometric assay (CLIA) (Siemens Healthcare Diagnostics, Marburg,
Germany) with a reportable range of 0.4 to 7.0 U/mL and an intermediate precision of 2.4%
at 0.68 U/mL.

A dual sugar lactulose/rhamnose (L/R) ratio test was used as the primary measure
of small IP [37,38] and were analysed using gas chromatography-mass spectrometry (GC-
MS) [39–41] Based on the dose of 5 g lactulose and 0.5 g rhamnose probes administered to
participants and a 1.5 h transit time to the SI, the following formula was used to calculate
sugar probe recovery, expressed as a percentage and plasma sugar ratio [21,39,42]:

(1) Recovery of lactulose (%) = plasma lactulose concentration/5 g of administered
lactulose × 100

(2) Recovery of rhamnose (%) = plasma rhamnose concentration/0.5 g of administered
rhamnose × 100

(3) L/R ratio = plasma concentration of lactulose large probe/plasma concentration of
rhamnose

Zonulin, a commonly used biomarker to reflect small IP, was used as a secondary
measure of IP. This was facilitated by the Adelaide Research Assay Facility using sandwich
ELISA (Cusabio, Wuhan, China) read at 450 nm on a Biotek Synergy H1 plate reader
(Winooski, VT, USA). Intra-assay variation was 9.3% and the lower limit of quantitation
was 2.5 ng/mL. For the interpretation of zonulin results, only 32 readable values out of
50 participants were reported. Recollection of the 18 unreadable samples was unfeasible.

LBP levels as the primary measure of inflammation were determined via sandwich
ELISA (Hycult Biotech, Uden, The Netherlands) with a measurable concentration range
of 4.4–50 µg/mL, intra-assay precision of 2.9% at 5.7 µg/mL, and inter-assay precision of
1.4% at 5.9 µg/mL. Absorbance was read at 450 nm (Thermo Fisher Scientific, Waltham,
MA, USA).

Serum high sensitivity C-reactive protein (hsCRP) levels as a secondary measure of
inflammation were obtained through an immunoturbidimetric assay (ITA) (Roche Diag-
nostics, Rotkreuz, Switzerland) with turbidity read at 546 nm (Ortho Clinical Diagnostics,
Raritan, NJ, USA). The measurable range was 0.15–20.0 mg/mL, with an intra-assay varia-
tion of 4.0% at 3.44 mg/L and an inter-assay variation was 6.8% at 3.06 mg/L concentration.

For endocrine assessment, serum T was determined using ELISA (Roche Diagnostics,
Basel, Switzerland) with a working range of 0.087, 52.0 nmol/L (0.025, 15.0 ng/mL) and
coefficient of variation of 19.1% at 0.31 nmol/L. Serum LH was determined using ELISA
(Roche Diagnostics, Basel, Switzerland) with a re-portable range of 0.100–200 mIU/mL and
an intermediate precision of 2.0% at 5.81 mIU/mL. The analytical measurement range of
the serum FSH ELISA (Roche Diagnostics) was 0.100–200 mIU/mL with an intermediate
precision of 3.6% for 5.33 mIU/mL.

The primary measure of interest was the correlation between H. pylori antibodies and
IP (L/R ratio, zonulin, IBS-SSS) proportional to inflammatory (LBP, hsCRP) hypogonadism
(T). One-way Analysis of Variance (ANOVA) was conducted to compare T tertiles and
H. pylori titers with appropriate dependent variables. Pearson’s correlation coefficients
were used to measure associations between H. pylori antibodies, LBP, hsCRP, L/R ratio
and IBS-SSS scores against hormones. While adjusting for age, BMI, sleep quality, and
physical activity as potential confounders, multivariate analysis was undertaken to examine
associations between zonulin, IP, and T levels.

Statistical analysis was performed using Statistical Package for the Social Sciences
(SPSS) version 26 (IBM, Armonk, New York, NY, USA). Unless stated otherwise, data
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are presented as mean ± standard deviation where p < 0.05 is considered statistically
significant. All data were assessed for normality using Shapiro–Wilk’s test where p ≤ 0.05
was considered skewed. Abnormally distributed data were log-transformed or analysed
using non-parametric tests.

3. Results
3.1. Demographics

The average age of participants was 36 years, where the majority were of normal
weight (46%, 18.5–24.9 kg/m2, 38% were overweight (25.0–29.9 kg/m2), and 16% were
obese (>30.0 kg/m2) (Table 1).

Table 1. Anthropometric, serological, endocrine, and questionnaire data of male participants, includ-
ing clinical reference ranges for serology and endocrine biomarkers (n = 50).

Data Type n Variable Mean ± SD Cohort Range Reference Range

Anthropometric

50 Age (years) 36.2 ± 5.5 18.0–48.0 -

50 Height (cm) 174.6 ± 7.8 139.0–200.0 -

50 Weight (kg) 78.8 ± 15.2 49.0–205.0 -

50 BMI (kg/m2) 25.6 ± 4.5 19.1–40.0 Underweight: 16.0–18.4; Normal weight: 18.5–24.9;
Overweight: 25.0–29.9; Moderately Obese: 30.0–34.9;
Severely Obese: 35.0–39.9; Morbidly Obese: ≥40.0 [43]).

50 Waist
circumference (cm)

85.5 ± 13.5 63.1–130.00 >102 cm in men: increased cardiometabolic risk [44].

50 Physical Activity
(score)

7.84 ± 1.74 4.3–11.9 No published reference range, however,
minimum–maximum scores range between 1–15 [34].

50 Sleep Quality
(score)

4.14 ± 2.18 1.0–12.0 No published reference range, however,
minimum–maximum scores range between 0–21 [35].

50 IBS symptoms
(score)

44.23 ± 24.37 0.9–2.1 75–175 mild; 175–300 moderate; >300 severe cases [36].

Serological

50 H. pylori igG
antibodies (U/mL)

0.98 ± 1.79 0.0–7.40 <0.9 negative; 0.9–1.1 equivocal; >1.1 positive [45].

50 L/R (mmol/L) 1.16 ± 1.66 0.0–7.9 Diagnostic data unpublished.

38 Zonulin (ng/mL) 12.23 ± 10.81 0.37–41.20 40.0 Cusabio Human Zonulin ELISA Kit upper limit of
the standard (CUSABIO TECHNOLOGY LLC,
Wuhan, China).

50 LBP (mcg/mL) 19.90 ± 22.57 0.04–98.4 18.1 control; 40.0–60.0 septic shock [46].

50 hsCRP (mg/L) 1.01 ± 1.08 0.40–5.1 1.00–3.00 slightly increased relative risk of CHD [47,48].

Endocrine

50 T (nmol/L) 19.18 ± 6.69 6.9–36.1 <6.9 hypogonadism; 6.9–11.1 equivocal; >11.1 normal [1]

50 LH (IU/L) 6.43 ± 2.87 2.12–13.17 1.8–8.6 normal [3].

50 FSH (IU/L) 4.54 ± 3.31 0.94–20.13 1.0–5.0 normal [3].

3.2. Questionnaires
3.2.1. Physical Activity

The BPAQ consisted of 16 self-reported items across 3 indexes—the Work Index, the
Sport Index, and Leisure-Time index. Global scores were calculated as per protocol where
yielded scores ranged between the minimum–maximum values of 1–15 [34]. Cohort scores
ranged between 4.3 and 11.9, with a mean of 44.23 (SD = 24.37). Higher scores indicated
greater levels of physical activity relative to lower scores.

3.2.2. Sleep Quality

The PSQI measured self-reported sleep quality over the 1-month interval preceding
administration. Composite scores ranged between 0 and 21 and were obtained as per
protocol across 19 items which formed seven components, sleep quality, latency, duration,
efficiency, disturbances, use of sleeping medication, and daytime [35]. The range of cohort
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scores fell between 1.0 and 12.0, with a mean of 7.84 (SD = 2.18). Higher scores indicate
worse sleep quality relative to lower scores.

3.2.3. Irritable Bowel Syndrome

The IBS-SSS measured self-reported disease-severity as defined by physiological GI
and extraintestinal (psychological/psychosomatic) symptomatology, health-related be-
haviours, and quality of life over the 10-day interval preceding administration. Symptoms
measured included: abdominal pain and distension; stool frequency and consistency and
satisfaction with bowel habits. Minimum and maximum scores of the scale range between
0 and 500 where higher scores indicate greater symptom severity. Scores between 75 and
175 are considered mild cases, whereas scores of 175–300 and >300 indicate moderate and
severe cases [36,49]. While no scores from this cohort exceeded the IBS-SSS cut-off score for
moderate, or severe IBS, a weak inverse relationship between IBS-SSS score and LBP was
revealed (r = −0.457, p = 0.004).

3.3. Serology
3.3.1. hsCRP

The mean level of hsCRP was 1.01 mg/L. This falls below the cut-off value of 1.08 mg/L
used as an incidence predictor of Coronary Heart Disease (CHD) within the general
population; however, is within the range of 1.00–3.00 mg/L for potentially represent-
ing a slightly increased/moderate relative risk of future CHD development [47,48]. See
Table 1. As expected, both inflammatory markers hsCRP and LBP were positively correlated
(r = 0.11, p = 0.01). This was independent of physical activity level and sleep quality. Fur-
thermore, no correlation was revealed between hsCRP and either marker of intestinal
permeability-zonulin or L/R ratio. See Figures 1 and 2. This suggests that the source of
inflammation within this population does not originate from small intestinal pathology,
but rather adiposity.
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3.3.2. LBP

Average cohort LBP levels were normal, at 19.90 ng/mL (Table 1). This is well below
the 20,000 ng/mL upper limit of healthy individuals and the 200,000 ng/mL value seen
in acute phase immune responses like bacterial sepsis [50]. There was no significant
relationship observed between LBP and T, despite wide individual variations (Figure 3).
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Figure 3. Inverse relationship between serum endotoxin (LBP) (ng/mL) and serum T (nmol/L).

3.3.3. H. pylori

As outlined in Table 1, 82% of participants were H. pylori negative (<0.9 U/mL), while
the remaining 18% of participants were equivocal (0.9–1.1 U/mL). No participants in this
cohort were considered H. pylori positive (>1.1 U/mL), that is, the entire study population
was absent of active H. pylori infection [45]. H. pylori class IgG antibodies did not correlate
with any measured variable.

3.3.4. Intestinal Permeability

The mean cohort plasma L/R ratio was 1.16 nmol/mL with a range of 0–7.9 nmol/mL,
indicating no increased small IP (diagnostic cut-off value unpublished). There was no
correlation between L/R ratio and zonulin (p = 0.44, r = −0.14). There was no correlation
between L/R ratio and zonulin (p = 0.44, r = −0.14), nor L/R and other GI function markers,
including H. pylori (p = 0.54, r = 0.89) and IBS-SSS (p = 0.09, r = −0.01). Similarly, no correla-
tion was observed between L/R ratio and inflammatory markers, including hsCRP (p = 0.08,
r = −0.02) and LBP (p = 0.09, r = 0.006). There was also no relationship between L/R ratio
and T (p = 0.017, r = 0.33) (Figure 4) or other endocrine markers, including LH (p = 0.64,
r = 0.06) and FSH (p = 0.52, r = −0.09).
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3.4. Endocrinology

Mean T at 19.19 nmol/L (SD = 6.69) (range 6.90–36.1 nmol/L) fell within the normal
clinical range. Therefore, no participants were considered to have HG (population range
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6.90–36.1 nmol/L) [51]. Mean LH and FSH levels fell within normal clinical ranges, respec-
tively, at 6.43 IU/L (SD = 2.87) and 4.53 IU/L (SD = 3.31) [52]. As expected, LH showed a
significant association with T (r = 0.33, p = 0.01) and FSH (r = 0.46, p = 0.001). A significant
inverse agreement between T and hsCRP (r = −0.398, p = 0.004), independent of physical
activity level and sleep quality, was revealed, as seen in Figure 5.
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4. Discussion

LPS exposure-induced inflammation can impair testicular function. We aimed to
explore the potential relationship between gastric and small intestinal pathology, namely
H. pylori and IP which have both been shown to increase LBP concentrations- and conse-
quentially, ME on testicular function in men.

No participants in this cohort displayed H. pylori infections. In lieu, no correlation
between H. pylori and IP, ME, or T was observed. This may be because H. pylori, despite
its classification as a Gram-negative bacterium, has a markedly lower immunogenic re-
sponse compared to E. coli, for example, due to differences in the molecular structure
of LPS [53,54]. As such, circulatory H. pylori endotoxins may potentially elicit a smaller
systemic inflammatory response compared to cellular damage occurring locally within
the gastric mucosa. Furthermore, compared to other strains, aggressive CagA+ variants
of H. pylori display higher virulence through increased biosynthesis of LPS within the
stomach. This contributes to increased severity of gastric complications including increased
mucosal concentrations of inflammatory cytokines in addition to increased extra-gastric
complication severity, including higher circulatory endotoxin load, compared with other
variants [55,56]. These gastric and extra-gastric conditions were not measured in this
study and may not be entirely reflective of the extent of H. pylori virulence experienced
in this cohort. Additionally, one limitation of this study was the measure of H. pylori
used (CLIA analysis of IgG antibodies) which differed from the gold-standard method of
urea breath testing, and produced results that were not clinically meaningful. Serological
analysis of serum antibody titres is not considered a valid diagnostic method for H. py-
lori determination due to its inability to differentiate between past and present H. pylori
infection [57,58].

Despite no evidence of moderate or severe IBS within this cohort, the inverse relation-
ship between IBS-SSS scores and LBP was expected and in line with literature revealing
persistent, low-grade inflammation at both a systemic, and local, mucosal level observed in
IBS patients [59]. Similarly, our results revealed a significant, inverse relationship between
hsCRP and testosterone (r = −0.398, p = 0.004). Significance was maintained by controlling
for covariates of physical activity level and sleep quality; however, these associations
did not hold true when BMI was controlled for. This reflects existing literature showing
links between increased BMI, inflammation, and androgen deficiency [7,8]. It also must
be noted that one drawback of this study was the lack of controlling for Inflammatory
Bowel Disease (IBD). Both IBD and IBS mucosal biopsies are associated with increased IP,
and both conditions share symptoms typical of IBS. Therefore, this study was unable to
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differentiate IBS symptom presence and severity from IBS or IBD, both indicated decreased
barrier function which precedes ME and subsequent androgen deficiency [59,60].

No evidence of small IP was present within this cohort despite a methodological
approach appropriate for small IP determination. While the vast majority of literature
utilized dual-sugar urinary excretion analysis involving transit times ranging between 5 h
and overnight for IP measurement, serum L/R methodological approaches where sample
collection occurs between 1 and 1.5 h are more appropriate for small IP determination in
addition to boasting higher sensitivity [37,38,61].

While SIBO is known to increase small IP, it was not measured because the collection
of bacterial culture (>104 bacteria per ml of jejunal aspirate) via endoscopy was not feasible
and is, therefore, a limitation of this study.

The lack of significant correlation between T levels and both H. pylori and IP suggests that
a colonic source of circulatory endotoxin responsible for ME-induced reductions in T, if present,
may be more likely. Average healthy men contain a colonic bacterial load exceeding that of
the stomach and SI by 1012 fold, which supports this theory [20,27]. Additionally, findings
of a recently conducted study by Tremellen et al., 2023 [62] highlighted no significant link
between proton pump inhibitor (PPI) and antacid intake to T concentration, despite both
being known risk factors for SIBO and IP–a finding that reinforces the above theory.

There was no correlation between zonulin and LBP, nor zonulin and T levels. These
results are discrepant with a recent publication showing significant positive associations
between zonulin and T levels and LBP, independent of adiposity, suggesting a potential
link between small IP and HG [63]. A limitation and potential reason underlying this intra-
study discrepancy was the use of ELISA-determined zonulin, which is of debatable validity.
Preliminary findings have reported that ELISA-determined serum zonulin levels may in-
correctly reflect non-zonulin immune factors, such as intestinal lumen complement [64,65].
Furthermore, research by Pearce, Hill, and Tremellen [63] included participants with HG,
whereas this cohort had no participants with HG. Additionally, the zonulin concentration
values of 18 participants in this cohort were unintelligible, reducing the statistical power of
this study. Considering that Metformin, a glucose-mediating medication used to manage
type II diabetes, has been shown to augment intestinal microbial composition and T levels
in women with PCOS, differences in the study population mean BMI (30.2 versus 25.6),
and thereby glucose uptake and insulin-sensitivity (unmeasured in both studies), may
further explain this discrepancy [66,67]. Supporting this notion of metabolic stress, namely
inflammatory mechanical and metabolic stress-states occurring with high-intensity exercise
and long periods of exercise, have been shown to increase intestinal permeability (as mea-
sured by zonulin) via alterations to intestinal microflora and reductions of gastrointestinal
blood flow. This can cause mucosal ischemia (decreased blood flow and oxygen within
the intestinal epithelial barrier), which results in villous injury and subsequent losses in
barrier function via decreased expression of tight junction proteins. However, most of
the participants within this cohort were sedentary/recording minimal levels of exercise,
meaning that any analysis of the extent of physical activity levels, H. pylori, and IP would
have been underpowered. This study was unable to determine the extent of confounding
factors in the association between H. pylori, IP, and T levels due to underpowered analysis.
Larger studies are needed to examine the effect of these potential confounders on the
outcome variables.

5. Conclusions

In conclusion, gastric pathology marker H. pylori IgG antibodies, GI pathology marker
IBS symptom severity, and small IP markers zonulin and L/R ratio, were not found to
influence ME or HG in this cohort. This is likely a result of the entire cohort falling within
healthy clinical ranges for H. pylori, IP, and T. It was not possible to observe the influence
of gastric and SI pathologies on testicular function in the absence of gastric/GI/testicular
disorder. Contributing factors of these results include reduced statistical power due to
18 participants with unreadable zonulin values where recollection was unfeasible, poten-
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tially lower immunogenic response of H. pylori strains present in this cohort, questionable
validity of H. pylori and IP determination, absence of colonic pathology/colonic IP, un-
derpowered analysis of confounding variables, and lack of SIBO determination. Future
investigations are required to elucidate more precisely the gastrointestinal, and particularly
colonic factors, contributing to ME-induced HG, ideally utilising diagnostic methodologies
used in clinical practice.
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