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Abstract

Background: Amino acid biomarkers have a crucial influence on our understanding of brain
injury mechanisms, and their plasma concentrations may indicate neurological damage
and recovery patterns. Pediatric mild traumatic brain injury (mTBI) assessment particularly
benefits from such molecular indicators, as clinical presentations can be subtle and variable.
However, current diagnostic and prognostic tools lack reliable biochemical markers that
can track the temporal evolution of injuries and recovery. Methods: We conducted a
prospective longitudinal cohort study involving 36 pediatric mTBI patients and 44 controls
to characterize the temporal evolution of key amino acids and their derived indices. Blood
samples were collected at 3, 6, 12, and 24 h and at 7, 14, and 28 days post-injury, with amino
acids quantified using high-performance liquid chromatography. Results: Our analysis
revealed significant temporal changes in glutamate, glutamine, and glycine concentrations,
with glutamate peaking at day 7 before declining, while glutamine showed steady increases
throughout. The GLN/GLU ratio demonstrated an early excitatory imbalance followed by
astrocytic compensation, and the GLX ratio indicated progressive recovery. Conclusions:
These patterns represent continuous neurochemical processes involving excitotoxicity
and glial regulation, suggesting potential utility as biomarkers for mTBI diagnosis and
monitoring. While further validation using larger cohorts is needed, these findings provide
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compelling evidence of the efficacy of using amino acid profiles to track pediatric mTBI
progression and recovery.

Keywords: mild traumatic brain injury; pediatric; amino acids; glutamate; aspartate;
glutamine; glycine

1. Introduction

A traumatic brain injury (TBI) is a functional disturbance of the central nervous
system caused by a sudden transfer of mechanical energy, which can result in temporary or
permanent neurological impairment [1-3]. It is classified according to the Glasgow Coma
Scale (GCS) as mild (13-15), moderate (9-12), or severe (3-8). Despite its limitations, the
GCS remains widely used [4,5]. The American Congress of Rehabilitation Medicine and
the World Health Organization define a mild TBI (mTBI) as a loss of consciousness for less
than 30 min, post-traumatic amnesia for less than 24 h, acute changes in mental status, or
transient neurological deficits [6].

TBIs are a significant global health concern because of their high morbidity and
mortality rates, particularly among young individuals [7-9]. Every year, it is estimated that
69 million people sustain a TBI, with 55.9 million of these cases being categorized as mTBIs.
When non-hospitalized cases are considered, the incidence rates surge to between 700 and
800 per 100,000 members of a population [6]. Despite their high prevalence, mTBIs are
frequently underestimated, especially among children and adolescents. These individuals
are more neurologically vulnerable, require longer recovery periods, and have an increased
risk of experiencing cumulative effects from repeated injuries [10,11].

Globally, the leading causes of TBIs are traffic accidents, falls, injuries due to con-
tact sports, and interpersonal violence. The most affected populations are young males
(15-35 years) followed by older adults and children aged 0 to 4 [6,11,12]. Pediatric patients
with a mild TBI often exhibit enduring symptoms such as headaches, cognitive defects,
emotional disturbances, and sleep disorders [11].

TBIs are characterized by a primary, irreversible injury that occurs at the moment of impact
and a potentially reversible secondary injury involving neuroinflammation, apoptosis, and
synaptic dysfunction [1,13-17]. Early diagnosis, especially in the case of an mTBI, remains a
challenge because of the lack of sensitive clinical tools that can predict functional outcomes [18].

Recent studies have shown that, after an mTBI, there is an acute increase in the
permeability of the blood-brain barrier (BBB), which allows the release of neuronal and glial
biomarkers into peripheral fluids such as blood, saliva, or urine. This phenomenon provides
significant clinical opportunities for the early detection and longitudinal monitoring of
TBIs, depending on the timing, severity, and progression of the pathological process [19].
However, these studies are conducted on the adult population, leaving a gap in information
on what happens in the pediatric population.

Conventional clinical tools, such as neurological assessments, computed tomography
(CT), and magnetic resonance imaging (MRI), have limitations in terms of detecting alter-
ations in cases of mTBIs, particularly in pediatric populations [20-22]. Despite advances
in biomarkers, such as GFAP and UCH-L1, there are still no validated tools available for
routine clinical application to children [18,19,22-26]. Following trauma, levels of central
nervous system (CNS)-derived biomarkers initially increase in cerebrospinal fluid and
may become detectable in blood and other body fluids over time [27]. This phenomenon
provides early diagnostic and prognostic opportunities, which can lead to clinical and
therapeutic management in the pediatric population.
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Although proteins such as GFAP, UCH-L1, NSE, and especially SB100 have been
analyzed in regard to pediatric TBIs, they have been mainly been proposed to be biomark-
ers of damage in adults with moderate or severe injuries [22,24-26,28-49]. Their clinical
application to pediatric patients is limited by methodological challenges and a lack of
evidence [50]. In this context, the study of brain amino acids is a promising approach. Glu-
tamate, the principal excitatory neurotransmitter involved in post-traumatic excitotoxicity,
has been linked with worse clinical outcomes when accumulated [51-57]. In contrast, levels
of inhibitory amino acids like GABA might increase as a compensatory response [58-61].
Investigations involving patients with severe TBIs have reported elevated plasma levels of
glutamate, GABA, aspartate, glutamine, and cysteine, indicating that the amino acid profile
may mirror specific neurochemical responses to trauma [62]. These findings underline
amino acids’ potential as non-invasive biomarkers for assessing the progression of brain
damage, especially in the pediatric population, where longitudinal monitoring is vital for
immediate intervention and prognostic evaluation and where it is a priority to determine
the damage sustained after a TBI with its different degrees of severity.

The clinical utility of amino acids as biomarkers in regard to pediatric mTBIs is not
yet clearly established. This study evaluates the plasma levels of glutamate, aspartate,
glutamine, and glycine; the ratio of glutamine to glutamate; and GLX in children with mild
TBIs over a period of 30 days. The aim is to characterize their temporal fluctuations to sup-
port the identification of relevant biomarkers for clinical monitoring and risk stratification
in relation to the pediatric population suffering from mild TBIs.

2. Materials and Methods

This observational, prospective, longitudinal, and analytical cohort study was con-
ducted according to the Declaration of Helsinki and the General Health Law on Research for
Health in Mexico. The study protocol (NIP 035/2015) was approved by the Research and
Ethics Committees of the National Institute of Pediatrics (IRBO0008065 and IRB00008064),
both of which are registered with the U.S. Office for Human Research Protections (OHRP).

Patient Selection: Pediatric patients aged 1 to 18 years, diagnosed with mTBI, and
without prior neurological conditions or other diseases requiring pharmacological treat-
ment were included in this study if they had arrived at the National Institute of Pediatrics’
emergency department within 3 h post-injury and provided informed consent. The control
group included healthy children who were recruited during the same time of day (morning)
as the TBI population, had demographic characteristics similar to those of the pediatric
patients with mTBIs, had been diagnosed as healthy children, and agreed to participate in
this study through an informed consent letter. They also participated after giving informed
consent. Cases involving incomplete medical records, changed diagnoses, discontinued
treatments, preexisting neurological conditions, consumption of foods that modify plasma
levels of amino acids, or withdrawn consent were excluded from this study.

Sample Collection and Processing: Blood samples (2 mL) were collected from mTBI
patients at 3, 6, 12, and 24 h as well as at 7, 14, and 28 days post-injury. Peripheral venous
access was employed, and phlebotomy was standardized to a maximum of two attempts,
under topical anesthesia (Aztra Zeneca, Mexico City, Mexico).

Samples were gathered in EDTA-treated tubes (BD Vacutainer® Becton Dickinson CTR
Scientific, Mexico City, Mexico), maintained at 4 °C, and centrifuged, and the plasma was
preserved at —70 °C until analysis.

Amino Acid Quantification (HPLC): Plasma concentrations of glutamate, aspartate,
glutamine, and glycine were measured using high-performance liquid chromatography
(HPLC) with fluorometric detection (Agilent Technologies mod. 1100, Santa Clara, CA,
USA). Every 100 pL plasma aliquot was mixed with 0.1 M perchloric acid, neutralized
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with potassium carbonate, centrifugated (14,000 rpm form 10 minutes) and finally added
with orthophthaldehyde (SIGMA, Missouri, USA) in equal parts before injection to induce
fluorescence. The detection was conducted at 360 nm excitation and 450 nm emission
wavelengths. A C18 reverse-phase column (Zorbax C18, Agilent Technologies, Santa Clara,
CA, USA) 115 was employed under a sodium acetate-and-methanol gradient (buffer A and
buffer B), starting with a flow rate of 0.5 mL/min at 25 °C.

The sample run time lasted 15 min. Amino acids were quantified using the external
standard method, where peak areas are compared to calibration curves specific to each analyte.

Statistical Analysis: Descriptive statistics were utilized based on the type of variable:
categorical data are presented as frequencies and percentages, while continuous data
are shown as means =+ standard deviations (SDs). Normality was assessed using the
Kolmogorov-Smirnov test. Our primary analysis centered on the temporal variation in
amino acid concentrations, employing paired t-tests for each time point in comparison to
day 28, following a K—1 model. Differences in means, 95% confidence intervals (CIs), and
p-values (with figures below 0.05 signifying significance) are reported.

Effect sizes were calculated using Cohen’s d and interpreted as follows: small
(0.2-0.49), moderate (0.5-0.79), large (0.8-1.29), and very large (>1.3). The assessment
of effect size is crucial for evaluating the clinical relevance of biochemical alterations, guid-
ing future research, and making clinical decisions. All analyses were conducted using SPSS
version 22 (IBM Corp., Armonk, NY, USA).

3. Results

Data from 36 pediatric patients with mTBIs and 44 controls without TBIs were an-
alyzed. This analysis incorporated various factors, including clinical and demographic
variables, as well as plasma amino acid profiles. The profiles comprised concentrations
of glutamate, aspartate, glutamine, and glycine; glutamine/glutamate ratios; and the GLX
index (glutamate + glutamine). There was a male predominance in both groups. The most
common locations where TBI-related accidents occurred included the patient’s home (52.78%),
the street (27.7%), and school (11.11%). Falls were identified as the predominant mechanism of
injury (80.56%), followed by bicycle accidents (13.89%) and blunt head trauma due to objects
(2.78%). For a thorough overview of the demographic characteristics, refer to Table 1.

Table 1. Demographic and anthropometric characteristics. The percentages of the different demo-
graphic and anthropometric characteristics of the two populations analyzed are shown: the controls,
or those without a TBI, with 44 individuals representing 100%, and the population of patients with
mild TBIs, with 36 individuals representing 100%.

Variable Without TBI (n = 44) % Mild TBI (n = 36) %
Gender

Male/Female 54.5/45.5 69.4/30.6
Age (years)

0-2 (neonate and infant) 6.8 33.3

3-5 (preschool) 11.4 27.8

6-11 (school-age) 45.4 27.8
12-18 (adolescent) 36.4 11.1
Body Mass Index (kg/m?)

Underweight 13.6 20.7
Normal 70.5 58.6
Overweight 11.4 6.9

Obesity 45 13.8
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Among pediatric patients with mTBlIs, the most commonly observed clinical variables
included abnormal findings on cranial CT for 53.6% of the 28 patients who were subjected
to this imaging technique; none of these instances necessitated surgical intervention or
changed the initial diagnosis determined using the GCS. In addition, 75% of the patients
exhibited subgaleal hematomas, and 55.6% reported instances of vomiting. Detailed results
regarding these clinical variables are presented in Table 2.

Table 2. Clinical variables of patients with mild TBI.

Clinical Variable Frequency (%)
Abnormal CT scan 28 (53.6%)
Post-traumatic headache 27 (75%)
Subgaleal hematoma 27 (75%)
Vomiting 20 (55.6%)
Loss of alertness 8 (22.2%)
Mental alteration 6 (16.7%)
Seizures 4 (11.1%)
Post-traumatic amnesia 2 (5.6%)
Abnormal neurological examination 2 (5.6%)

3.1. Amino Acid Profiles of Pediatric Patients with mTBlIs

We analyzed plasma concentrations of glutamate, aspartate, glutamine, and glycine in
pediatric patients with mTBIs at multiple intervals post-injury (3h, 6 h,and 12hand 1, 7,
14, and 28 days afterwards). These measurements were compared to those for the control
group. Table 3 presents the mean concentrations (¥), SDs, and 95% Cls in micromolar (uM),
providing a detailed overview of the changes in amino acid levels over time following the
traumatic event.

Table 3. Evolution of plasma levels of amino acids in pediatric patients over time. The X & SD of the
plasma concentrations (in uM) of the different amino acids analyzed are shown as well as the 95%
confidence interval at the various times analyzed after the mTBI.

CONTROL mTBI3 h¥ mTBI6h¥ mTBI12h % mTBI1D ¥ mTBI7 D ¥ mTBI14 D ¥ mTBI28 D ¥
Amino Acids ~ ¥(uM)£SD  (uM) £+ SD (uM) + SD (uM) + SD (uM) + SD (uM) + SD (uM) + SD (uM) + SD
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)
Glutamate 30.81 +9.57 2356 +9.6 25.44 +10.91 25.44 +11.89 25.76 +12.52 40.94 + 28.63 32.15+16.8 25.19 +12.28
(27.8-33.8) (19.7-27.4) (21.5-29.4) (21.3-29.6) (21.4-30.1) (30.4-51.5) (25.6-38.7) (20.4-29.9)
Aspartate 452 +0.68 376 +1.71 4134149 427 +161 4714239 497 +2.12 596 +3.15 440+1.63
3 (4.3-4.7) (3.1-4.5) (3.6-4.7) (3.7-4.8) (3.9-5.5) (4.1-5.8) (4.7-7.2) (3.8-5.0)
Glutamine 1428243449  27877+87.42 3047148411  31034-:99.97  32293+102.04 32536+89.83  410.66+135.02  411.83 + 11836
(131.5-154.2) (243.6-314.1) (274.9-335.0) (275.5-345.2) (287.9-358.0) (289.8-360.9) (359.3-462.0) (366.8-456.9)
Glveine 152.82 4+ 57.9 1011342057 12158 +£3426  127.614+30.62 1453443318  159.19+4285 1949147626 19525+ 8588
Y (134.8-170.8) (92.4-109.8) (109.2-133.9) (116.9-138.3) (133.8-156.9) (142.6-175.8) (166.4-223.4) (163.2-227.3)

Following the TBI, there was an initial decrease in plasma glutamate levels, which
dropped to 76.5% of that for the control group at 3 h post-injury. From 6 h to day 1, these
levels remained relatively stable. However, a significant increase was observed at 7 days,
with levels rising to 132.9%. After this peak, glutamate levels gradually declined, ultimately
stabilizing at 81.8% by day 28 (Table 3).

Plasma levels of aspartate significantly decreased, reaching 83.2% of the levels for the
control group 3 h post-TBIL. Although modest recovery occurred in the following hours,
the concentrations remained below the control values. Fourteen days post-injury, levels



Neurol. Int. 2025, 17,145

6 of 14

notably increased to 131.9% but then declined to 97.3% by day 28, approaching baseline
levels (Table 3).

Following the TBI, plasma glutamine concentrations progressively increased, starting
from 3 h post-injury. They initially rose to 170.6% relative to the control group and continued
to climb overtime, reaching a peak value of 288% at 28 days post-trauma (Table 3).

An initial decrease in plasma glycine levels was observed, with levels dropping to
66.2% of those in the control group at 3 h post-TBI. This reduction persisted throughout the
first 12 h. From day 7 post-injury onward, consistent and progressive recovery occurred,
culminating in an average concentration of 127.8% by day 28 (Table 3).

3.2. Analysis of the Glutamine/Glutamate Index and the GLX Index (Glutamate + Glutamine) in
Patients with mTBls

In the TBI patient group, the glutamine/glutamate ratio increased by 291.7% at 3 h
post-injury relative to the control group. This upward trend continued until day 1, reaching
361.3%, primarily driven by elevated levels of both amino acids, with a more pronounced
increase in glutamine. However, by day 7, the ratio showed a relative decline due to a rise

in glutamate levels. From day 14 onward, the ratio began to increase again, peaking at
442.7% by day 28 (Table 4).

Table 4. Evolution of the glutamine/glutamate ratio and GLX ratio in the plasma of the pediatric
patients studied. The X + SD of the glutamine/glutamate ratio and the GLX index are shown as well
as the 95% confidence interval at the different times analyzed after the mTBI

CONTROL  mTBI3h mTBI 6 h mTBI 12 h ‘ZIZTI‘BI 1D mTBI7 D mTBI 14 D mTBI 28 D
Study Indices F(M)£SD  F(UM)ESD XM ESD  I(MESD MM F(M)ESD  F(uM)£SD ¥ (M) SD

(95% CI) (95% CI) (95% CI) (95% CI) (95‘3/ cD (95% CI) (95% CI) (95% CI)
Glutamine/ 5.06 + 1.68 1476 +£895  15.26+8.69 1639+12.86  1828+1541  1488+1496  1736+1516  22.4+1877
Glutamate Ratio  (4.5-5.6) (11.1-18.4) (12.1-18.5) (11.9-20.9) (12.9-23.7) (9.0-20.8) (11.7-23.4) (15.1-29.7)
%ijgﬁ:;‘e . 1673143525 3023348820 3301548359  33578+99.81 3507310419 3632141024  432.8+143.63 44016+ 122.49
it (1554-179.2)  (266.7-338) (300-360.3) (301-370.6) (3144-387.1)  (322.7-4037)  (376-489.6) (392.7-487.7)

In the TBI group, the GLX index increased to 180.7% at 3 h post-injury relative to the
control group, indicating an early accumulation of glutamate and glutamine. This elevated
level persisted until day 14, reaching 258.7%, and then slightly stabilized at 263.1% by day
28 (Table 4).

3.3. Amino Acid Kinetics over Time in Patients with mTBIs: Analysis of the Magnitude of Change
in Pairwise Comparison with the 28-Day Post-Injury Baseline

On day 7, glutamate levels exhibited a brief spike, marked by a statistically significant
difference (p = 0.030) and a moderate-to-high effect size (d = 0.70). The negative mean
difference (—13.37 uM) indicates that glutamate concentrations were considerably higher
on day 7 in comparison to day 28. Although the difference on day 14 was not statistically
significant, the moderate effect size (d = 0.47) suggests persistently high plasma levels
(Figure 1A).

In the case of aspartate, no statistically significant differences were observed at the
early post-injury time points (3 h to 7 days), with effect sizes ranging from —0.38 to 0.31.
These results suggest there were no clinically relevant changes. However, by day 14, a
trend towards a moderate effect was noted (d = 0.62; p = 0.103), indicating that, by day 28,
aspartate levels decreased, approaching the baseline concentrations (Figure 1B).
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GLNGLU28D-14D 1223 (23) 0.234 -0.29 GLX28D-14D 1020 (23) 0318 -006

Figure 1. Kinetics of plasma amino acids over time in pediatric patients with mTBIs. Each point was
compared to the 28-day value to determine the magnitude of change (Cohen’s d). The Y-axis shows
concentration differences (M) with 95% confidence intervals (Cls). Negative values indicate higher
concentrations on day 28; positive values indicate reductions on day 28 relative to earlier time points.

Glutamine levels were significantly lower during the initial 3 h up to day 7 compared
to day 28 (p < 0.001 for all comparisons). The effect sizes ranged from large to very
large (d = —0.81 to —1.27), indicating a steady and consistent increase over time. By
day 14, however, no significant differences were observed (p = 0.284, d = —0.01), as the
concentrations approached those observed on day 28 (Figure 1C).

Glycine concentrations consistently increased at all the measured time points. Between
3 and 12 h post-injury, effect sizes ranged from —1.08 to —1.44, indicating a very large
effect. Although the effect size decreased slightly by 24 h, it remained significant (d = —0.79;
p = 0.016). By day 7, the effect size was further reduced to a moderate level (d = —0.53;
p = 0.149). The highest glycine concentrations were observed on the 14th and 28th days
(Figure 1D).
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Regarding the GLN/GLU ratio, significant variations were observed, showing an
overall upward trend. Statistically significant differences were noted compared to day 28
during the initial 12 h, with small-to-moderate effect sizes driven by increased glutamine
levels. A decrease in the ratio occurred on day 7 (d = —0.44; p = 0.064), coinciding with the
peak in glutamate levels and the initial dramatic rise in glutamine levels (Figure 1E).

The GLX index, measuring the combined concentration of glutamate and glutamine,
exhibited a high and statistically significant effect size within the first 12 h post-injury. By
day 7, the effect size diminished to a moderate level (d = —0.68; p = 0.003). These findings
indicate a progressive and clinically meaningful increase in the levels of both amino acids,
with statistical significance persisting until day 7. Thereafter, no significant differences
were detected (d = —0.06; p = 0.318) (Figure 1F).

4. Discussion

The demographic and clinical characteristics of the pediatric population with mTBIs
in our study align with those observed in other international cohorts: there is a male
predominance, falls are the most common cause of injury, and the most frequent clinical
manifestations are headaches, vomiting, altered consciousness levels, temporary mental
status changes like confusion or disorientation, and transient neurological deficits like focal
signs or seizures [1,3].

This study presents evidence of dynamic and longitudinal changes in the plasma pro-
files of excitatory and inhibitory amino acids (glutamate, glutamine, glycine, and aspartate),
along with the GLN/GLU (glutamine/glutamate) and GLX (the aggregate of glutamate
and glutamine) indices. These parameters are vital for assessing glutamatergic metabolic
stability as they illustrate the equilibrium between excitotoxicity—mainly mediated by
glutamate—and astrocytic regulatory mechanisms accountable for glutamate’s conversion
into glutamine. Our discoveries enhance our understanding of the neurochemical patho-
physiology of TBIs and provide support for the prospective use of these substances as
diagnostic, monitoring, and prognostic biomarkers.

Glutamate, the primary excitatory neurotransmitter in the central nervous system,
plays a crucial role in synaptogenesis, neuronal plasticity, memory, and learning. It is
widely associated with excitotoxic mechanisms in TBIs [63,64]. In our pediatric cohort,
plasma glutamate levels initially fell and then rose steadily to a significant peak on day
7. Preclinical studies have reported a swift surge in extracellular cerebral glutamate post-
injury; this surge is tied to intense neuronal discharges and potentially linked to long-term
brain damage [65].

It is important to note that these findings originate from cerebral microdialysis studies
obtained using moderate-to-severe TBI models, while our study centers on the quantifi-
cation of peripheral plasma in pediatric mTBI patients. Thus, the observed increases
could reflect secondary and time-dependent pathological processes. The gradual rise in
glutamate levels may be due to impaired astrocytic reuptake mechanisms—governed by
GLT-1 and GLAST—and increased BBB permeability. This would explain the significant
rise observed during the subacute phase (day 7), a phenomenon previously tied to glial
dysfunction and secondary inflammation in both animal models and human studies of
moderate-to-severe TBIs or stroke [64,66—-69]. Timofeev and colleagues documented persis-
tently high extracellular glutamate levels during the first week following severe TBIs in
patients with fatal outcomes [57]. In our cohort, the decrease observed on day 14 suggests
a partial recovery of glutamatergic metabolism, whereas the sustained elevation on day
28 may signal prolonged dysfunction. These findings underscore glutamate’s potential
as a subacute biomarker of post-traumatic neurochemical disruption. Glutamine, often
viewed as a neurochemical buffer against excessive extracellular glutamate levels, serves
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as a metabolic reservoir. Astrocytic synthesis of glutamine is pivotal in the mitigation of
excitotoxicity and the prevention of progressive neuronal damage [64,70]. The relationship
between these amino acids can be evaluated using the GLN/GLU and GLX indices, which
reflect the astrocytic conversion of glutamate into glutamine and the overall metabolic
statuses of excitatory substances, respectively [71,72]. In our study sample, glutamine
levels progressively and consistently increased throughout the study. This finding could
be linked with the surge in intracerebral glutamate levels detailed by Katayama et al.
and the peak recorded in our study on the seventh day. Initially, the GLN/GLU index
showed glutamine predominance, with a temporary inversion on day seven; this coincided
with a rise in plasma glutamate levels, possibly resulting from glial neuroinflammation
or energy reprogramming instigated by the TBI [65,73,74]. The following sustained in-
crease in glutamine levels may indicate a glial detoxification strategy [64]. This notion is
corroborated by studies that show increased glutamine synthesis in response to astrocyte
activation [75]. The continued rise in the GLN/GLU index until day 28 might indicate
ongoing glial activation or subclinical inflammation, potentially affecting synaptic plasticity
and functional prognosis, as Richards and colleagues found in regard to pediatric TBI
patients [76]. A steep decrease in this index may serve as an early warning of excitotoxicity,
while sustained elevation might signal ongoing compensatory mechanisms. Thus, the GLX
index—which integrates both excitotoxicity and glial responses—has been found to be a
promising potential biomarker for early monitoring and functional risk stratification.

Glycine, an inhibitory neurotransmitter and NMDA receptor co-agonist, modulates
neuronal excitability in the presence of glutamate [77]. In the acute phase, a significant
elevation was observed, likely reflecting an inhibitory response to increased glutamate
levels [65]. Previous work has shown that glycine modulates NMDA receptor channel
opening, regulates calcium influx, and interferes with intracellular signaling cascades
linked to cell death [78]. Its decrease from day 7 and stabilization by day 14 suggest there
is a transient compensatory mechanism that counteracts heightened excitability [79].

Levels of aspartate, which participates in both excitatory neurotransmission and
intracellular metabolic pathways, showed a slight decline during the acute phase. This
decrease may act as a compensatory mechanism for avoiding excitotoxicity. This reaction
was followed by a modest increase, though it did not meet the control levels, peaking
on day 14 and then decreasing by day 28. Despite the lack of statistical significance,
these variations could indicate post-traumatic neuronal plasticity or metabolic changes.
Considering aspartate’s role in mitochondrial modulation after a brain injury [68,80,81], it
might serve as more of a transitional biomarker as opposed to a primary one.

Finally, it is worth noting that the circulating amino acids analyzed in this study do not
originate exclusively from the CNS, even in conditions where the BBB may be compromised.
Plasma amino acid levels are influenced by multiple peripheral physiological processes,
including intestinal absorption after food intake; muscle protein synthesis and degradation;
hepatic metabolism, especially in the urea cycle and transamination; renal filtration and
reabsorption; and, to a lesser extent, bidirectional transport regulated across the BBB by
specific transporters.

These mechanisms allow for a relatively stable degree of plasma homeostasis, even
in the presence of dietary variations or moderate fasting, as documented in previous
studies [82]. Therefore, plasma concentrations of glutamate, glutamine, and glycine reflect
not only brain metabolism but also the dynamic balance of these multiple compartments.

Nevertheless, the use of peripheral blood as a biological matrix was a methodological
decision based on feasibility, clinical ethics, and the future applicability of biomarkers in real-
life pediatric care settings. While we recognize that it does not directly discern the cerebral
origin of amino acids, the longitudinal changes observed after a TBI reflect a systemic
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response that may be influenced by mechanisms occurring after the traumatic event.
Furthermore, the control group—comprising healthy children without TBIs or neurological
or metabolic diseases—was essential for establishing a representative baseline of plasma
amino acid concentrations in the Mexican pediatric population. This group was evaluated
under controlled conditions, including morning collection and without prolonged fasting,
to minimize the effect of diurnal or dietary variations. It is worth mentioning that the
specialized literature indicates that, in the absence of severe malnutrition or hepatorenal
diseases, diet alone does not induce significant changes in plasma levels of individual
amino acids, especially those such as glutamate and glutamine that have a tightly regulated
metabolism [83].

5. Conclusions

Our findings indicate that mTBIs in members of the pediatric population correlate
with dynamic and sustained changes in plasma amino acid levels, particularly glutamate,
glutamine, and glycine. These changes signal ongoing neurochemical processes involved
in excitotoxicity, astrocytic regulation, and secondary inflammation. The chronological
progression of these profiles, along with the GLN/GLU and GLX indices, provides a
comprehensive view of post-traumatic glutamatergic metabolism and underscores their
potential as diagnostic and prognostic tools.

This study is one of the first to confirm the biological reliability of using plasma amino
acids as biomarkers for pediatric mTBIs, thereby setting the stage for the development of
more sensitive, specific, and personalized monitoring strategies. However, further research
involving larger cohorts is required in order to validate these findings and explore their
connection with long-term clinical and neurocognitive outcomes. Incorporating these
biomarkers into pediatric clinical practice and comparing them with traditional biomarkers,
such as NSE or SB100, could enable earlier detection of neurochemical dysfunction and
expedite therapeutic interventions.
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SD Standard deviation

TBI Traumatic brain injury
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