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Abstract: Migraine is a common primary headache disorder with both environmental and genetic
inputs. Cumulative evidence indicates an association between vitamin D and headache. Unravelling
the precise role of vitamin D and its receptor in the pathophysiology of migraine can eventually
contribute to more efficient prevention and management of this headache disorder. The aim of the
study was to investigate the relation of the three most studied VDR variants, i.e., FokI (rs2228570),
TaqI (rs731236) and BsmI (rs1544410), with migraine susceptibility and distinct clinical phenotypes
in a Southeastern European case-control population residing in Greece. DNA was extracted from
191 unrelated patients diagnosed with migraine and 265 headache-free controls and genotyped
using real-time PCR (LightSNiP assays) followed by melting curve analysis. Genotype frequency
distribution analysis of the TaqI and BsmI variants showed a statistically significant difference between
migraine cases and controls. In addition, subgroup analyses revealed a significant association between
all three studied VDR variants, particularly with a migraine without aura subtype. Therefore, the
current study provides supporting evidence for a possible association of VDR variants with migraines,
particularly migraine without aura susceptibility in Southeastern Europeans residing in Greece,
further reinforcing the emerging role of vitamin D and its receptor in migraines.

Keywords: VDR; precision medicine; single nucleotide variants (SNVs); primary headaches; migraine
genetics; FokI; TaqI; BsmI

1. Introduction

Migraine is a common primary headache disorder with a high disability burden and
considerable detrimental effects on public health [1]. According to the Global Burden of
Disease Study 2019 (GBD2019), migraine ranks second among the causes of global years
lived with disability (YLDs), being responsible for 4.8% (0.8–10.1) of total YLDs and com-
prising 88.2% (60.7–97.7) of the burden of headache disorders in 2019. The highest burden,
i.e., 7.3% (1.1–15.1), was observed in the age group 15–49 years, the most productive years
of life in both genders [2]. Although the pathophysiology of the disease has not been fully
elucidated, among the proposed mechanisms being implicated are the activation of the
trigeminovascular system, cortical spreading depression, inflammation and vascular dys-
function [3]. Besides environmental factors, migraine is largely affected by genetic factors,
with several genetic variants, each having a minor effect contributing to its liability [4–6].

In the last decades, vitamin D, a fat-soluble hormone belonging to the secosteroid
family, has received enormous attention due to its large spectrum of musculoskeletal
and non-skeletal biological functions, including regulation of cellular proliferation and
differentiation, hormone secretion, control of immune function and metabolism [7]. A
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two-step sequentially metabolism of vitamin D occurs to attain its biological effects; the
first step is the metabolism in the liver by the enzyme D-25-hydroxylase (CYP2R1) into
25-hydroxyvitamin D (25(OH)D), the major circulating form, followed by hydroxylation
into 1α,25-dihydroxyvitamin D (1,25(OH)2D) by 1-alpha-hydroxylase (CYP27B1) located
in target organs, e.g., the kidney, skin, brain, lungs, eyes, and breasts. 1,25(OH)2D, the
biologically active metabolite of vitamin D, exerts its responses through the vitamin D
receptor (VDR) via genomic and non-genomic functions [8–10]. VDR occurs ubiquitously
in almost all cells and tissues, and approximately 3% of the human genome is regulated
by VDR-1,25(OH)2D [11]. The activity of VDR and its ligand do not fully overlap. VDR
can also bind its low-affinity nutritional ligands, such as curcumin and polyunsaturated
fatty acids, while alternative molecules, e.g., resveratrol, can promote the nuclear VDR
signalling [12,13]. Single nucleotide variants (SNVs) in the VDR gene, which is located in
chromosome 12 (12q13.11), can likely modify VDR expression and function [14,15]. Among
the most studied VDR SNPs are FokI (rs2228570), TaqI (rs731236) and BsmI (rs1544410). The
Fokl (rs2228570) polymorphic variant is a T (or f allele) to C (or F allele) substitution at
the VDR translation start site. The presence of the C allele eliminates the translation start
site in exon 2, resulting in a shortened protein by three amino acids, which exerts higher
transcriptional activity [14,16–18]. In a longitudinal population-based study, the T allele
was associated with a higher 25(OH)D level [16]. The BsmI (rs1544410) variant, a G (or b
allele) to A (or B allele) substitution in intron 8 and the TaqI (rs731236) variant, a T (or T
allele) to C (or t allele) substitution in exon 9, both located at the 3′ end of the VDR, may
modify transcript stability [14,19,20].

A review by Prakash et al. provided evidence for a positive association between
prevalence rates of both migraine and tension-type headache (TTH) and higher latitudes.
In addition, the review pointed out that headache attacks are more frequent during autumn
and winter and less prevalent during summer. Since the aforementioned observations
are in accordance with regional and seasonal alterations in serum vitamin D levels, the
increasing prevalence of these headache disorders seems to be related to vitamin D defi-
ciency [21]. Likewise, a study by Mitsikostas et al. in Greece indicated that daily headache
prevalence might be affected by both latitude and low mean temperature [22]. Several
published scientific articles addressed the relationship between vitamin D and headache,
with most of them indicating an inverse association between migraine and serum vitamin D
levels [23–40]. In addition, serum VDR levels were found to be lower in migraine patients
compared to controls [35]. Further to the wide expression of vitamin D receptor (VDR)
and vitamin D key metabolic enzymes, including 25-hydroxylase, 1-alpha-hydroxylase
(CYP27B1) and CYP24A1 in Central Nervous System (CNS) regions, vitamin D seems to
be involved in various physiological brain processes, i.e., brain development, synaptic
plasticity, neurotransmission, and cell death prevention [25,41–43]. SNVs in the vitamin D
pathway genes, including VDR, CYP2R1, CYP24A1 and CYP27B1, were associated with
vitamin D serum levels [44–46]. Although the exact role of vitamin D in migraine remains
obscure, vitamin D might be implicated via a variety of proposed mechanisms in the
complex pathways involved in the pathophysiology of migraine [47–50].

While several prophylactic medications and pharmacological treatments alleviating
migraine acute attacks are available [51], the quality of life of a great percentage of migraine
patients is still declining due to improper diagnosis and/or therapeutic treatment. Thus,
new diagnostic and therapeutic treatment strategies are needed to establish precision-
medicine approaches, prevent migraine progression, attenuate disabilities related to the
disorder and improve patient’s quality of life. Since VDR has a central role in exerting the
majority of 1,25(OH)2D biological responses, and it occurs in various CNS regions, VDR
could represent a candidate gene for migraine. The implication of VDR genetic variants in
migraine pathogenesis has not been previously investigated in the Southeastern European
population residing in Greece, although a study in an Iranian population provided evidence
for an association between VDR polymorphisms and migraine susceptibility [52]. Hence,
the aim of the current study was to investigate the possible association of three variants in
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the gene encoding for vitamin D receptor (VDR), namely rs2228570 (FokI), rs731236 (TaqI)
and rs1544410 (BsmI), with migraine susceptibility and clinical phenotypes, in a South-
eastern European case-control population residing in Greece. The findings of the current
study may eventually shed more light on the relationship between vitamin D and migraine
and contribute to the identification of molecules involved in disease pathophysiology, the
discovery of new therapeutic targets, the establishment of migraine-specific biomarkers for
precision medicine strategies, and to overcome the barriers in the treatment of migraine.

2. Subjects and Methods
2.1. Study Population

A total of 191 migraine subjects (33 males and 158 females) aged between 18 to 72 years
(mean ± standard deviation 42.0 ± 11.5 years) were prospectively recruited in specialised
headache clinics located in Glyfada and Thessaloniki, Greece, from September 2019 to
July 2021 as a case group. The migraine diagnosis was made by experienced headache
specialists according to the International Classification of Headache Disorders 3rd edition
(ICHD-3) guidelines. Key inclusion criteria included age ≥ 18 years; clinically diagnosed
migraine [1.1 migraine without aura (MwoA); 1.2 migraine with aura (MwA); or 1.3 chronic
migraine (CM)]; and Southeastern European origin. A group of 265 headache-free subjects
(133 males and 132 females), aged between 21 to 85 years (mean ± standard deviation
57.7 ± 12.8 years), was recruited from the Neurology Department, University Hospital of
Larissa, Greece and served as a control group.

A written informed consent was provided by all study subjects. The study was
approved by the appropriate Ethics Committees (Mediterraneo Hospital, Glyfada, Greece,
and University Hospital of Larissa) and conducted according to the principles outlined in
the Declaration of Helsinki.

2.2. DNA Extraction and Genotyping

Epithelial cell samples were collected from the oral cavity of each subject. Sterile
buccal swabs were used for the collection. For the DNA extraction, a commercial nucleic
acid isolation kit (Nucleospin Tissue; Macherey-Nagel GmbH & Co., KG, Düren, Germany)
was used, according to the manufacturer’s protocol. All extracted DNA samples were
stored at −20 ◦C until further analysis. Genotyping of the three investigated VDR variants
i.e., FokI (rs2228570), TaqI (rs731236), and BsmI (rs1544410), was carried out by real-time
Polymerase Chain Reaction (LightCycler® 480; Roche) using simple probes for each SNP
(LightSNiP Assays; TIBMOLBIOL, Berlin, Germany) according to the manufacturer’s
instructions. DNA samples (50 ng) were amplified using the respective LightSNiP Assay
and LightCycler FastStart DNA Master HybProbe Mix (Roche, Germany). The following
PCR protocol was applied: initial denaturation at 95 ◦C for 10 min, followed by 45 cycles of
denaturation at 95 ◦C for 10 s, annealing at 60 ◦C for 10 s and elongation at 72 ◦C for 15 s.
Melting curve analysis was performed to determine homozygosity for the wild-type alleles,
heterozygosity, and homozygosity for the variant alleles.

2.3. Statistical Analysis

Categorical data are presented as frequencies (n) and percentages (%), and continuous
data as mean ± standard deviation (SD). Differences in genotypic and allelic frequency
distribution between case and control subjects and between case subgroups were evaluated
using chi-square (χ2) (Pearson or Fischer’s exact) tests. Crude odds ratios (OR) with
their corresponding 95% confidence intervals (95% CI) were calculated to investigate the
association of the selected VDR variants with migraine susceptibility and clinical aspects
under co-dominant, dominant, recessive, over-dominant genotypic and allelic inheritance
models. To exclude any bias introduced by the differences in age and sex ratio between
the study groups, adjustment for potential confounding factors, including age and sex,
as well as Body Mass Index (BMI) and smoking status, was performed using logistic
regression analysis. Kolmogorov–Smirnov and Shapiro–Wilks tests were used to examine
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the distribution of the continuous variables. Non-parametric test. i.e., Kruskal–Wallis was
used to investigate the association of the three VDR variants with disease-specific clinical
characteristics in the case subjects (disease age at onset and frequency of migraine attacks),
while chi-square test and logistic regression analysis were used to assess the association
of the variants with typical duration of migraine attacks (≤24 h vs. >24 h). All statistical
tests were two-sided, and a p-value less than 0.05 was considered statistically significant.
Statistical analyses were carried out using IBM SPSS Statistics software (version 28.0 for
Windows). The consistency with Hardy–Weinberg Equilibrium (HWE) for FokI (rs2228570),
TaqI (rs731236) and BsmI (rs1544410) variants in the control group was verified (p > 0.05)
using the web-based Online Encyclopedia for Genetic Epidemiology studies software [53].
Haplotype analysis was performed using the SHEsis web-based platform (http://analysis.
bio-x.cn/myAnalysis.php, accessed on 4 June 2023) [54,55]. An a posteriori power analysis
was performed using G-Power software [56], which resulted in a 0.999 power for the chi-
square test (degrees of freedom = 2). Thus, it confirms that the study results/conclusions
were reliable and robust.

3. Results
3.1. Demographic and Clinical Characteristics

The population of the current prospective, case-control study consisted of 456 non-
related subjects (191 migraine patients and 265 headache-free controls) of Southeast Eu-
ropean origin residing in the geographical area of Greece. Detailed information on demo-
graphics and clinical disease-specific characteristics was obtained for each case subject via
predesigned questionnaires. One hundred and nine (109) case subjects met the diagnostic
criteria for MwoA (57.1%), 24 for MwA (12.6%) and 58 for CM (30.4%). The mean ± SD
age of disease onset was 20.0 ± 8.4 years, ranging from 5 to 52 years. Positive family
history was reported for 137 migraine patients (71.7%). Data collected from control subjects
included only age and sex (Table 1).

Table 1. Demographic and clinical characteristics of the study population.

Migraine Patients
(N = 191)

Headache-Free Controls
(N = 265)

Age (years) * 42.0 ± 11.5 ranged from 18 to 72 57.7 ± 12.8 ranged from 21 to 85

Sex, n (%)

Male 33 (17.3) 133 (50.2)
Female 158 (82.7) 132 (49.8)

BMI (kg/m2) * 24.6 ± 4.2 -

Smoking, n (%)

Never 116 (60.7) -
Former 23 (12.1) -
Ever 52 (27.2) -

Age of onset (years) * 20.0 ± 8.4 ranged from 5 to 52 -

Positive family
history, n (%) 137 (71.7) -

Type of Migraine, n (%)

1.1 MwoA 109 (57.1) -
1.2 MwA 24 (12.6) -
1.3 CM 58 (30.4) -

* Values are presented as mean ± SD, BMI, body mass index; MwoA, Migraine without Aura; MwA, Migraine
with Aura; CM, Chronic Migraine.

http://analysis.bio-x.cn/myAnalysis.php
http://analysis.bio-x.cn/myAnalysis.php
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3.2. Associations between VDR SNVs and Migraine Phenotypes

As presented in Table 2, the genotype frequency distribution for the TaqI (rs731236) and
BsmI (rs1544410) variants differed significantly between migraine and control subjects. Het-
erozygosity for both TaqI [TC vs. TT + CC: ORadj (95%CI) = 1.697 (1.053–2.733), padj = 0.030]
and BsmI [GA vs. GG + AA: ORadj (95%CI) = 1.611 (1.002–2.592), padj = 0.049] variants
was significantly more prevalent in migraine subjects compared to controls and remained
significant after adjustment for age and sex. Regarding the FokI variant, no statistically
significant differences were observed between case and control subjects in any of the genetic
inheritance models assessed (p > 0.05) (Table 2).

Table 2. Genotypic and allelic frequency distribution analysis of the VDR SNPs between migraine
cases and controls.

Migraine Cases (N = 191) Controls (N = 265)
OR (95%CI) p ORadj (95%CI) * padj *

n (%) n (%)

FokIrs2228570

CC 80 (41.9) 123 (46.4) 1.0 (reference) - - -
CT 95 (49.7) 110 (41.5) 0.753 (0.508–1.116) 0.157 0.891 (0.540–1.470) 0.651
TT 16 (8.4) 32 (12.1) 1.301 (0.670–2.524) 0.436 0.988 (0.400–2.443) 0.980

CT + TT 111 (58.1) 142 (53.6) 0.832 (0.572–1.211) 0.337 0.899 (0.559–1.445) 0.659

TT 16 (8.4) 32 (12.1) 1.0 (reference) - - -
CT 95 (49.7) 110 (41.5) 0.579 (0.299–1.120) 0.102 0.839 (0.362–1.942) 0.682

CT + CC 175 (91.6) 233 (87.9) 0.666 (0.354–1.252) 0.204 0.934 (0.404–2.157) 0.872

CT 95 (49.7) 110 (41.5) 1.0 (reference) - - -
TT + CC 96 (50.3) 155 (58.5) 1.394 (0.959–2.028) 0.081 1.138 (0.707–1.832) 0.593

C 255 (66.8) 356 (67.2) 1.0 (reference) - - -
T 127 (33.2) 174 (32.8) 0.981 (0.742–1.298) 0.895 - -

TaqIrs731236

TT 65 (34.0) 102 (38.5) 1.0 (reference) - - -
TC 102 (53.4) 113 (42.6) 0.706 (0.468–1.064) 0.096 0.645 (0.381–1.094) 0.104
CC 24 (12.6) 50 (18.9) 1.328 (0.745–2.366) 0.336 1.356 (0.647–2.839) 0.420

TC + CC 126 (66.0) 163 (61.5) 0.824 (0.559–1.216) 0.329 0.778 (0.475–1.274) 0.319

CC 24 (12.6) 50 (18.9) 1.0 (reference) - - -
TC 102 (53.4) 113 (42.6) 0.532 (0.305–0.927) 0.025 0.481 (0.241–0.959) 0.038

TC + TT 167 (87.4) 215 (81.1) 0.618 (0.365–1.047) 0.072 0.570 (0.293–1.107) 0.097

TC 102 (53.4) 113 (42.6) 1.0 (reference) - - -
CC + TT 89 (46.6) 152 (57.4) 1.542 (1.060–2.241) 0.023 1.697 (1.053–2.733) 0.030

T 232 (60.7) 317 (59.8) 1.0 (reference) - - -
C 150 (39.3) 213 (40.2) 1.039 (0.794–1.360) 0.779 - -

BsmI rs1544410

GG 59 (30.9) 90 (34.0) 1.0 (reference) - - -
GA 109 (57.1) 119 (44.9) 0.716 (0.471–1.088) 0.117 0.713 (0.418–1.218) 0.216
AA 23 (12.0) 56 (21.1) 1.596 (0.888–2.868) 0.117 1.481 (0.705–3.115) 0.300

GA + AA 132 (69.1) 175 (66.0) 0.869 (0.583–1.295) 0.490 0.851 (0.513–1.411) 0.531

AA 23 (12.0) 56 (21.1) 1.0 (reference) - - -
GA 109 (57.1) 119 (44.9) 0.448 (0.259–0.778) 0.004 0.473 (0.239–0.936) 0.032

GA + GG 168 (88.0) 209 (78.9) 0.511 (0.302–0.865) 0.011 0.536 (0.277–1.036) 0.064

GA 109 (57.1) 119 (44.9) 1.0 (reference) - - -
AA + GG 82 (42.9) 146 (55.1) 1.631 (1.121–2.373) 0.010 1.611 (1.002–2.592) 0.049

G 227 (59.4) 299 (56.4) 1.0 (reference) - - -
A 155 (40.6) 231 (43.6) 1.131 (0.866–1.477) 0.364 - -

OR, Odds Ratio; CI, Confidence Interval * Adjusted for age and sex. Bold values indicate statistical significance.

Genotype frequency distribution analysis between migraine subtypes and control
subjects revealed significant associations for all three investigated VDR variants with MwoA
susceptibility. Homozygosity for the less common alleles of the TaqI [CC vs. TC + TT: ORadj
(95%CI) = 0.427 (0.183–0.997), padj = 0.049; CC vs. TC: ORadj (95%CI) = 0.378 (0.157–0.908),
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padj = 0.030] and BsmI [AA vs. GA + GG: ORadj (95%CI) = 0.399 (0.170–0.934), padj = 0.034;
AA vs. GA: ORadj (95%CI) = 0.374 (0.156–0.898), padj = 0.028] variants was significantly
less prevalent in MwoA case subjects compared to control subjects after adjusting for age
and sex. Concerning the FokI variant, χ2 test showed a significant difference between
MwoA and controls [CT vs. CC + TT: OR (95%CI) = 1.663 (1.061–2.605), p = 0.026; CC
vs. CT: OR (95%CI) = 0.621 (0.387–0.999), p = 0.049], and the significance remained after
adjusting for sex, while disappeared when adjusting for both age and sex (Table 3). No
significant differences in the genotype and allele frequency distributions were observed
between MwA patients versus controls, CM patients versus controls or MwoA versus MwA
patients (p > 0.05).

Table 3. Genotypic and allelic frequency distribution analysis of the VDR SNPs between Migraine
without Aura (MwoA) cases and controls.

MwoA (N = 109) Controls (N = 265)
OR (95%CI) p ORadj (95%CI) * padj *

n (%) n (%)

FokIrs2228570

CC 41 (37.6) 123 (46.4) 1.0 (reference) - - -
CT 59 (54.1) 110 (41.5) 0.621 (0.387–0.999) 0.049 0.894 (0.491–1.627) 0.714
TT 9 (8.3) 32 (12.1) 1.185 (0.522–2.690) 0.684 1.291 (0.436–3.822) 0.645

CT + TT 68 (62.4) 142 (53.6) 0.696 (0.441–1.099) 0.119 0.929 (0.523–1.648) 0.800

TT 9 (8.3) 32 (12.1) 1.0 (reference) - - -
CT 59 (54.1) 110 (41.5) 0.524 (0.235–1.172) 0.112 0.683 (0.238–1.963) 0.479

CT + CC 100 (91.7) 233 (87.9) 0.655 (0.302–1.423) 0.283 0.718 (0.256–2.018) 0.530

CT 59 (54.1) 110 (41.5) 1.0 (reference) - - -
TT + CC 50 (45.9) 155 (58.5) 1.663 (1.061–2.605) 0.026 1.193 (0.676–2.105) 0.543

C 141 (64.7) 356 (67.2) 1.0 (reference) - - -
T 77 (35.3) 174 (32.8) 0.895 (0.642–1.247) 0.512 - -

TaqIrs731236

TT 39 (35.8) 102 (38.5) 1.0 (reference) - - -
TC 59 (54.1) 113 (42.6) 0.732 (0.451–1.189) 0.207 0.731 (0.395–1.354) 0.319
CC 11 (10.1) 50 (18.9) 1.738 (0.821–3.679) 0.146 1.935 (0.759–4.932) 0.167

TC + CC 70 (64.2) 163 (61.5) 0.890 (0.560–1.415) 0.623 0.916 (0.513–1.635) 0.767

CC 11 (10.1) 50 (18.9) 1.0 (reference) - - -
TC 59 (54.1) 113 (42.6) 0.421 (0.204–0.870) 0.017 0.378 (0.157–0.908) 0.030

TC + TT 98 (89.9) 215 (81.1) 0.483 (0.241–0.967) 0.037 0.427 (0.183–0.997) 0.049

TC 59 (54.1) 113 (42.6) 1.0 (reference) - - -
CC + TT 50 (45.9) 152 (57.4) 1.587 (1.014–2.486) 0.043 1.652 (0.938–2.907) 0.082

T 137 (62.8) 317 (59.8) 1.0 (reference) - - -
C 81 (37.2) 213 (40.2) 1.136 (0.821–1.573) 0.440 - -

BsmI rs1544410

GG 37 (33.9) 90 (34.0) 1.0 (reference) - - -
GA 62 (56.9) 119 (44.9) 0.789 (0.483–1.289) 0.344 0.853 (0.457–1.591) 0.617
AA 10 (9.2) 56 (21.1) 2.302 (1.062–4.993) 0.032 2.154 (0.836–5.555) 0.112

GA + AA 72 (66.1) 175 (66.0) 0.999 (0.624–1.600) 0.997 1.049 (0.581–1.893) 0.874

AA 10 (9.2) 56 (21.1) 1.0 (reference) - - -
GA 62 (56.9) 119 (44.9) 0.343 (0.164–0.718) 0.003 0.374 (0.156–0.898) 0.028

GA + GG 99 (90.8) 209 (78.9) 0.377 (0.185–0.770) 0.006 0.399 (0.170–0.934) 0.034

GA 62 (56.9) 119 (44.9) 1.0 (reference) - - -
AA + GG 47 (43.1) 146 (55.1) 1.618 (1.032–2.538) 0.035 1.511 (0.860–2.654) 0.151

G 136 (62.4) 299 (56.4) 1.0 (reference) - - -
A 82 (37.6) 231 (43.6) 1.281 (0.927–1.771) 0.133 - -

OR, Odds Ratio; CI, Confidence Interval * Adjusted for age and sex. Bold values indicate statistical significance.
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The frequency distribution analysis of the VDR haplotypes in migraine patients versus
the control group (Table 4) and MwoA patients versus controls (Table 5) did not reveal any
significant associations.

Furthermore, frequency distribution analysis of the three investigated variants in
subsets of migraineurs according to migraine attack duration (≤24 h vs. >24 h) indicated
no significant differences. Finally, no significant association was shown for any of the
VDR variants studied with disease-specific clinical features, i.e., age at onset and attack
frequency in the study cohort (p > 0.05) (Table 6).

Table 4. Frequency distribution analysis of the 3 VDR SNPs haplotypes in migraine patients
and controls.

Haplotypes Case Frequency
n (%)

Control Frequency
n (%) OR (95% CI) p-Value

FokI TaqI BsmI

H1 C T G 151.29 (0.396) 216.90 (0.409) 0.929 (0.708–1.218) 0.592
H2 C C A 94.70 (0.248) 131.74 (0.249) 0.982 (0.723–1.334) 0.909
H3 T T G 73.68 (0.193) 82.10 (0.155) 1.289 (0.911–1.825) 0.151
H4 T C A 53.26 (0.139) 81.26 (0.153) 0.883 (0.607–1.285) 0.516

Table 5. Frequency distribution analysis of the 3 VDR SNPs haplotypes in migraine without aura
(MwoA) patients and controls.

Haplotypes MwoA Frequency
n (%)

Control Frequency
n (%) OR (95% CI) p-Value

FokI TaqI BsmI

H1 C T G 90.05 (0.413) 216.90 (0.409) 0.997 (0.721–1.378) 0.985
H2 C C A 45.90 (0.211) 131.74 (0.249) 0.793 (0.541–1.162) 0.234
H3 T T G 43.92 (0.201) 82.10 (0.155) 1.361 (0.906–2.045) 0.137
H4 T C A 33.07 (0.152) 81.26 (0.153) 0.975 (0.628–1.513) 0.909

Table 6. Analysis of the association of the three VDR variants with clinical features in migraineurs.

FokI rs2228570 CC CT TT p

Migraineurs subjects (N = 191) 80 95 16 -

Age at onset (years) 20.73 ± 8.85
19 (7–52)

19.34 ± 8.40
17 (5–47)

20.19 ± 5.37
20 (5–29) 0.179

Attack frequency (days/month) 11.09 ± 8.60
8 (0.25–30)

10.81 ± 9.02
8 (1–30)

12.18 ± 8.89
10 (0.25–25) 0.773

TaqI rs731236 TT TC CC p

Migraineurs subjects (N = 191) 65 102 24 -

Age at onset (years) 21.12 ± 9.27
19 (9–52)

19.34 ± 7.68
18 (5–47)

19.67 ± 8.73
18 (6–40) 0.698

Attack frequency (days/month) 11.32 ± 9.31
7 (1–30)

10.47 ± 8.33
8 (0.25–30)

12.71 ± 9.41
11 (1–30) 0.598

BsmI rs1544410 GG GA AA p

Migraineurs subjects (N = 191) 59 109 23 -

Age at onset (years) 22.25 ± 9.94
19 (12–52)

18.78 ± 7.10
17 (5–45)

19.91 ± 8.84
18 (6–40) 0.200

Attack frequency (days/month) 10.81 ± 8.95
7 (1–30)

10.92 ± 8.68
8 (0.25–30)

12.17 ± 9.24
10 (1–30) 0.766

Data are presented as mean ± SD and median (min–max).
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4. Discussion

To the best of the author’s knowledge, the current case-control study is the first
investigating the association of the three most intensively studied SNVs in VDR, namely
FokI (rs222857, also known as rs10735810), TaqI (rs731236), and BsmI (rs1544410), with
the susceptibility to develop migraine and diverse clinical phenotypes and features in a
Southeastern European population residing in Greece. According to the genotypic and
allelic frequency distribution analysis, although no significant association for the FokI
variant with the occurrence and development of migraine was revealed in the study cohort,
heterozygous TC (padj = 0.030) and GA (padj = 0.049) genotypes for the TaqI and BsmI
variants, respectively, were significantly more prevalent in migraine cases compared to
control subjects. Additionally, subgroup analysis revealed an association between all
studied VDR variants and the MwoA subtype. Consequently, variability in the VDR
gene may serve as a genetic susceptibility factor for migraine and MwoA subtype in
Southeastern Europeans.

Scientific data point toward a key role of vitamin D in brain health maintenance. VDR
and vitamin D metabolising enzymes are present in various brain regions, indicating the
distinctive functioning of vitamin D and particularly VDR in the CNS. In addition, evidence
indicates that vitamin D plays a crucial role in brain development, acts as a neuroprotective
factor by controlling neurotrophic factor production, influences the release of several
neurotransmitters, such as serotonin and dopamine, and serves as a potent antioxidant
agent [50]. Migraine is a complex brain disorder with metabolic, hormonal, and genetic
components. While multiple lines of evidence highlight a link between migraine headaches
and vitamin D, with various studies denoting vitamin D deficiency or insufficiency in a
great percentage of migraine sufferers, the precise relation between migraine and vitamin
D deficiency remains enigmatic [38,57].

Variability in the VDR gene may modify VDR expression, structure, or function and,
therefore, influence vitamin D signalling pathways [58]. To date, only two studies have
investigated the association between VDR SNVs and migraine susceptibility in diverse
populations. A previous study by Motaghi et al. indicated an association of TaqI and FokI
SNVs with MwoA in an Iranian case-control population. Heterozygous genotypes for both
FokI (33.9% vs. 15%, p = 0.001) and TaqI (50.4% vs. 36%, p = 0.018) variants were statistically
more prevalent in MwoA patients compared to control subjects [52]. In accordance, the
heterozygosity for FokI (54.1% vs. 41.5%, p = 0.026) and TaqI (54.1% vs. 42.6%, p = 0.043)
SNVs were also more frequent in MwoA patients compared to headache-free controls in
the population of the current study. On the contrary, a study by Schürks et al. investigating
the relationship between 77 SNVs and migraine in a Caucasian female population with
self-reported migraine found no significant association of the VDR FokI and BsmI variants
with migraine [59]. A major difference between the current study and the study by Schürks
et al. is the population selection; Schürks et al. included only female U.S. Caucasian
health professionals aged ≥ 45 years participating in the Women’s Health Study with
self-reported migraine and migraine aura status, whereas the current study included both
male and female migraine patients residing in Greece, diagnosed by experienced headache
specialists according to the International Classification of Headache Disorders 3rd edition
(ICHD-3) guidelines.

The study has certain potential limitations that should be considered when interpreting
the current findings. Firstly, a limitation of the study is the relatively small sample size,
which has insufficient power to detect associations with small effect size genetic variants;
migraine is mainly a polygenic disorder with several genetic variants, each having a small
effect size. Hence, genetic variants with small effect sizes do occur. Although adjustment
for sex, age and other confounding factors was performed, the difference in sex ratio
between cases and controls and the small number of male subjects in the case group due to
the female preponderance of the disorder may serve as a potential limitation of the study.
Moreover, investigation of other variants in the VDR gene and in further genes encoding
for proteins implicated in vitamin D signalling systems, such as CYP2R1, CYP27B1, and
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CYP24A1, was not conducted, restricting the acquisition of additional genetic information.
Finally, other confounding factors, including gene–gene or gene–environment interactions,
were not assessed. Therefore, larger-scale studies from diverse ethnic populations are
required to obtain more definite results.

5. Conclusions

In conclusion, the findings of the current study further support a possible association
of SNVs in VDR with the susceptibility to develop migraine and MwoA subtype. Heterozy-
gosity for the VDR TaqI (TC) and BsmI (GA) variants may serve as a risk factor for migraine
and MwoA susceptibility in the studied Southeastern European population. Despite the
abovementioned limitations, the current study provides a reference for further investiga-
tions among the Southeastern European population to translate genetically derived data
into clinical applications for the precision management of migraines.
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