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Abstract: As of 2022, the prevalence of Alzheimer’s disease (AD) among individuals aged 65 and older
is estimated to be 6.2 million in the United States. This figure is predicted to grow to 13.8 million by
2060. An accurate assessment of neuropathologic changes represents a critical step in understanding
the underlying mechanisms in AD. The current method for assessing postmortem Alzheimer’s
disease neuropathologic change follows version 11 of the National Alzheimer’s Coordinating Center
(NACC) coding guidebook. Ambiguity regarding steps in the ABC scoring method can lead to
increased time or inaccuracy in staging AD. We present a concise overview of how this postmortem
diagnosis is made and relate it to the evolving understanding of antemortem AD biomarkers.
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1. AD Antemortem Biomarkers

The advent of biomarkers has brought about a new era of improving the antemortem
diagnostic accuracy of AD [1]. Biomarkers can be subdivided into biofluid-based laboratory
tests such as amyloid-β 42 (Aβ42) to amyloid-β 40 (Aβ40) ratio (Aβ42/40), total tau (T-tau),
phosphorylated tau (P-tau), and neurofilament light (NfL) and diagnostic imaging, includ-
ing positron emission tomography (PET) scans targeting glucose metabolism, amyloid-β,
or tau deposition in the brain with unique ligands. Together with structural MRI, these
biomarkers form the framework of the A/T/N system for antemortem AD diagnosis de-
fined by the National Institute on Aging and Alzheimer’s Association (NIA-AA), where
“A” refers to amyloid, “T” refers to tau, and “N” refers to neurodegeneration [2].

The cerebrospinal fluid (CSF) concentration of amyloid-β decreases in patients with
AD and correlates with the formation of neuritic plaques in the brain, making this test an
effective biomarker for AD pathology [3,4]. Subsequent studies demonstrated that the ratio
of Aβ42 to Aβ40 increases the specificity of predicting AD pathology antemortem [5]. Aβ42
to Aβ40 ratio (Aβ42/40) is decreased in AD patients due to intraparenchymal accumula-
tion [5]. PET scans targeting amyloids correlate with the typical progression of amyloid
deposition in different brain regions found at autopsy [6–9]. In one study, amyloid PET
data was used to assess 667 patients, and the study found a regional hierarchy of amyloid
deposition that resembled previously defined neuropathologic findings [10]. It is important
to note that roughly 30% of cognitively normal patients are amyloid-PET-positive, but it is
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unclear if this cohort of patients represents preclinical AD or subjects at increased risk for
AD [11].

CSF P-tau is relatively specific for AD pathology compared to other neurodegenerative
diseases [12] and correlates well with NFT burden [4,13–15]. In general, the density of
NFTs found at autopsy correlates better with cognitive status than the burden of amyloid-β
plaques [16]. In research-oriented clinical practice, the increased levels of CSF T-tau are
sensitive for neurodegenerative tauopathies [17], and it has been shown that phosphory-
lated tau markers such as P-tau181 and P-tau217 are particularly specific for AD pathologic
process [18]. With regards to tau PET imaging, the topographic pattern has been shown to
correlate with clinical AD progression [19–21] and more recently with postmortem Braak
staging [22].

NfL is a non-specific marker of neuro-axonal damage and is elevated in the CSF of
AD patients [23] as well as patients with dementia with Lewy bodies, Parkinson’s disease
dementia, frontotemporal dementia, vascular dementia, Creutzfeldt–Jakob disease, and
amyotrophic lateral sclerosis [24–26]. High CSF levels of NfL have been shown to predict
cognitive decline [27,28] and show a strong correlation with neuro-axonal damage and pos-
sibly cognition when measured in the plasma [29,30]. In a small study involving 26 patients,
p-tau181 and NfL antemortem biomarkers correlated with postmortem-pathology-proven
AD dementia [31]. Successful treatment of neurologic diseases such as multiple sclero-
sis [32] and spinal muscular atrophy [33] has resulted in reduction in NfL back to normal
levels. This provides support for using NfL as a potential future marker of treatment
response in neuro-axonal damage. Scans targeting F-18 fluorodeoxyglucose (FDG) to ex-
amine regional glucose metabolism can be combined with clinical assessment to improve
diagnostic accuracy. Bloudek et al. compiled a meta-analysis including 119 studies and
found FDG PET alone had a sensitivity of 92% (95% CI 84% to 96%) and specificity of 78%
(95% CI 69% to 85%) in discriminating AD from non-AD demented controls [34]. Tripathi
et al. found 93.4% concordance by combining clinical diagnosis with FDG PET results [35].

2. Diagnosis of Alzheimer’s Disease Neuropathologic Change (ADNC)

The hallmark neuropathologic changes seen in AD are neurofibrillary tangles (NFTs)
composed of hyperphosphorylated tau protein aggregates and amyloid-β deposition, most
specifically neuritic plaques (NP). Neuritic plaques have been described as a subset of
senile plaques in which a central core of amyloid-β deposits is surrounded by a cluster of
dystrophic neurites, frequently immunoreactive with phospho-tau antibodies [36,37].

Additional neuropathologic changes include cerebral amyloid angiopathy; neuronal
and synaptic loss; granulovacuolar degeneration, which is usually confined to the hip-
pocampus; and neuroinflammation [16]. The postmortem diagnosis of ADNC involves
assessing amyloid and tau protein deposition that typically progresses in a predictable man-
ner but differ in their chronology and topography. Tau deposition and progression show
the strongest correlation with clinical disease stage [16]. In 2012, postmortem examinations
were refined [36] to incorporate semi-quantitative measures of the pathologic hallmarks
of AD. This framework utilizes a scoring system to inform the probability that ADNC
explains a clinical diagnosis. An ABC scoring system uses four-point scales (0–3) where
“A” correlates with “amyloid” or Thal phase, “B” correlates with tau or “Braak” stage, and
“C” corresponds to neuritic plaque density in the neocortex based on the Consortium to
Establish a Registry for Alzheimer’s Disease (CERAD) score [38,39].

The A-score is derived from 5 Thal phases (Figure 1) [38] and staged from 0 to
3 depending on the distribution of APs [38]. It does not discriminate between amyloid
plaque morphology or density. An A-score of “0” denotes an absence of amyloid in im-
munohistochemistry. Amyloid-β deposition begins in the neocortex (Thal phase 1), most
commonly in the frontal lobe, and progresses posteriorly, involving association cortices in
the temporal, parietal, and occipital lobes. Next, it progresses to the allocortex, including
the entorhinal cortex, hippocampal region, and cingulate gyrus (Thal phase 2). Thal phases
1 and 2 are combined into stage A1. When amyloid-β is present in the striatum and the
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subcortical nuclei, such as the nucleus basalis of Meynert, it is stage “A2” (Thal phase 3).
Finally, if amyloid-β is present in the midbrain, pons (Thal phase 4), or the cerebellum
(Thal phase 5), the score is “A3”.

Figure 1. Cont.
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Figure 1. (a) Topographical map represents areas of Aβ accumulation (in blue) according to Thal
phases and “A” score [38,40,41]. (b) Tabulated representation of the data. A1 (1). Aβ plaques begin
in the frontal lobe and move posteriorly to affect parietal, temporal, and occipital lobes. They initially
accumulate in the basal portion of the frontal and temporal lobes and temporal cortex adjacent
to the hippocampus. In the early phases, Aβ plaques can be prominently observed in the medial
frontal and medial parietal lobes. A1 (2). In the second phase, they involve cingulate gyrus. Medial
temporal regions including entorhinal cortex and hippocampus (CA4 and CA1) are affected as well.
A2 (3). Subcortical areas including hypothalamus, putamen, caudate, amygdaloid nuclei, and nucleus
basalis of Meynert are affected in this stage. Aβ plaques expand further into the frontal, parietal,
temporal, and occipital lobes and affect the insular cortex. A3 (4). Aβ plaques can be observed in
the midbrain central gray, locus coeruleus, and substantia nigra. In this phase, the primary motor
and sensory cortices are affected. A3 (5). The last phase is characterized by Aβ immunoreactivity in
the cerebellum.

The B-score is derived from the Braak staging system (Figure 2) [42,43]. It is also
scored on a 4-point scale of 0–3 and is based on a progression of abnormal tau protein in the
form of NFTs, which are an integral part of AD pathology, and dystrophic neurites found
in the periphery of NPs. As with the A-score, “0” denotes an absence of tau from immuno-
histochemical staining. Subsequent B-scores are based on Braak staging, beginning with
the transentorhinal cortex (Stage I) and expanding to the entorhinal cortex and hippocam-
pus (Stage II). Tau deposition subsequently involves the temporal neocortex, including
occipito-temporal and lingual gyrus (Stage III), and more laterally expands to involve the
middle temporal gyrus (Stage IV). Finally, tau aggregates spread to the remaining cortex
(Stage V–VI), and the basal ganglia can also be involved in some cases. Accordingly, stage
I–II, stage III–IV, and stage V–VI are scored as B1, B2, and B3, respectively [38].
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Figure 2. (a) Topographical map represents areas of tau aggregation (in gold/brown). (b) Tab-
ulated representation of the data. B1 (1). Initial phase of tau aggregation is largely confined to
the transentorhinal cortex in the medial temporal area, although there may be minimal involve-
ment of the entorhinal cortex. B1 (2). Lesions extend into the entorhinal cortex and CA1/CA2
of the hippocampus. B2 (3). Subsequently, tau accumulates in the basal magnocellular complex,
amygdala, and striatum [42] (while not a constant finding) and spreads posteriorly through the
posterior parahippocampal gyrus into lingual gyri and laterally from the medial temporal region
to the occipito-temporal gyrus (fusiform gyrus). B2 (4). Tau propagates further anteriorly into the
frontal lobe and laterally to the inferior and middle temporal cortex. Fascia dentata and CA4 region
of the hippocampus may be affected in this phase. B3 (5). Tau aggregates extend into secondary
cortical areas including motor, sensory, and visual association cortices. From the posterior cingulate
gyrus, they spread posteriorly and affect the precuneus in the medial parietal lobe. Furthermore,
tau encompasses other anatomical areas, including superior temporal cortex and pars compacta
of substantia nigra. B3 (6). In the last phase, tau spreads into primary motor, sensory, and visual
cortices [43].

The final component of the ABC scoring system, the C-score (Figure 3), is based on
the NP density in the neocortex according to the CERAD protocol [39]. Very simply, the
density of NPs is scored as C0, C1, C2, or C3, which denote absent, sparse, moderate, or
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frequent NPs, respectively; templates from CERAD papers can be used as guides for this
assessment [39]. It is important to note that diffuse plaques are not counted in this density
assessment. This last component of the scoring system accounts for the importance of NP
density as both a marker for AD neuropathology and an independent predictor of cognitive
status antemortem [16].

Figure 3. Updated CERAD scoring [38], Scale bars are 100 µm. Examples of senile plaque den-
sity for each CERAD score on immunohistochemistry using mouse anti-human β-amyloid (6F3D)
antibody [44].

The final step is determining the likelihood that the neuropathologic findings explain
the antemortem clinical syndrome based on the assigned ABC score as “not” (i.e., not
AD), “low”, “intermediate”, or “high” according to Montine et al. [38] (Table 1). For
example, the highest score, A3B3C3, corresponds to a “high” likelihood that the Alzheimer’s
disease neuropathologic changes explain the clinical syndrome, whereas a score of A1B2C1
corresponds to a “low” likelihood.

Table 1. ABC Scoring (extracted from Montine et al.) [38].

AD Pathology B; NFT Braak Stage a

A; β-Amyloid b C; CERAD c

Thal Phase > Score Plaque Density 0 or 1 2 3
0 0 Not d Not d Not d

0 or 1 Low Low Low e
1

2 or 3 f Low Intermediate Intermediate e

2 Any C Low g Intermediate Intermediate e

0 or 1 Low g Intermediate Intermediate e
3

2 or 3 Low g Intermediate High
ABC scoring combines different possibilities of AD neuropathologic changes and generates a qualitative score
including “Not” (i.e., not AD), “Low”, “Intermediate”, and “High”. Intermediate or High better justify the AD
diagnosis for clinical dementia [38]. a NFT Braak stage [42,43], b Thal beta-amyloid plaque phase/score [40], and
c CERAD senile plaque score [39] are essential for ABC scoring. d Presence of NFTs in medial temporal regions
without Aβ or senile plaques can be due to aging. It can also be seen in subjects with mild cognitive impairment
or in those whose cognitive impairment is due to other causes rather than AD [45]. e In cases with extensive NFTs
and low level of amyloid plaques, other tauopathies should be considered. f High density of senile plaques with a
low Thal phase warrants reassessment of senile/diffuse plaques, considering the contribution of other diseases to
cognitive impairment or dementia. g In the setting of high Aβ burden with low Braak stage, co-morbidities such
as Lewy body disease, vascular brain injury, or hippocampal sclerosis can be considered. Additional sections
should be studied to evaluate other non-AD pathologies [38].

3. Alzheimer’s Dementia Clinical Subtypes

Historically, AD has been characterized by progressive impairment in episodic mem-
ory, executive function, language, and visuospatial function, with the most prominent
deficits in memory [25,46,47]. Thanks to new PET imaging techniques, it is possible to
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map the spread of tau in different brain regions of living subjects. In vivo observations
in these imaging studies have been shown to have significant compatibility with classic
Braak staging [48–52]. Since the advent of CSF biomarkers, molecular neuroimaging, and
neuropsychological evaluations, four distinct subtypes have emerged: limbic-predominant,
medial temporal lobe (MTL)-sparing, posterior, and lateral temporal [53]. These subtypes
are based on in vivo tau deposition and have a strong correlation between corticolimbic
network involvement and expected clinical presentation and progression. The limbic
subtype most closely resembles the classical amnestic predominant presentation and pro-
gression of AD. On average, patients with the limbic subtype have worse delayed-recall
memory but initially perform better across other cognitive domains compared to other
subtypes. Tau progression in the limbic subtype starts in the entorhinal cortex and follows
the typical pattern noted by the Braak staging scheme. This group is also more likely to
include APOE4 carriers and have an older age of onset. Patients with the MTL-sparing
subtype tend to be younger at onset, with an overall higher tau burden in the frontoparietal
networks and more prominent deficits in executive function and working memory [53].
New reports demonstrate evidence of neuropathologic findings seen in the MTL-sparing
subtype [54] showing a possible different pathway of pTAU pathology that first involves
parietal cortex, followed by limbic structures. The posterior subtype shows prominent
deficits in visuospatial functions and corresponds with the clinical phenotype of posterior
cortical atrophy [47]. Finally, the lateral temporal subtype, particularly when lateralized
to the dominant hemisphere, is characterized by more prominent language involvement
and corresponds with the clinical phenotype of logopenic variant primary progressive
aphasia. Taken together, these subtypes explain much of the heterogeneity seen among AD
patients and have significant implications for patient counseling on prognosis, symptom
progression, and targeted therapy in the future.

4. Discussion

Alzheimer’s disease continues to be the sixth-leading cause of death in the United
States, with total payments to health care, long-term care, and hospice care estimated to
be $355 billion (AD facts and figures 2021) [55]. Therapeutic research efforts have focused
on amyloid-β protein and tau aggregates, emphasizing the importance of an accurate
postmortem neuropathologic diagnosis of Alzheimer’s disease to support antemortem
biomarkers and clinical diagnoses [2,56]. The ability to establish a confident antemortem
diagnosis has significant implications for future research and allows families to make
informed decisions for the future. Furthermore, the addition of Alzheimer’s dementia
clinical phenotypes has put a spotlight on specific patterns of pathological change. It is
hoped that this summary of the ABC scoring system will be a useful reference for AD
scientists, clinicians, neurologists, neuropathologists, and general pathologists and provide
a better understanding of the diagnosis and staging of Alzheimer’s disease with efficiency
and accuracy. Additionally, this work is aimed at assisting scientists working on preclinical
models of AD to ensure that their work can be translated to the clinic.
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