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Abstract: Trace amines and their receptors are a family of G protein-coupled receptors widely
distributed in the central nervous system and periphery. The trace amine-associated receptor 1
(TAAR1) plays a significant role as a therapeutic target for schizophrenia, depression, diabetes, and
obesity. In this study, TAAR1 knockout mice and WT groups were tested in conditions of a high-
fructose diet. The consumption of a high-fructose diet may be due to the influence on the metabolism
processes by dopamine in the brain, neuromotor function, and level of anxiety of TAAR1 knockout
mice. During a comparative analysis of behavioral, biochemical, and morphological parameters,
significant differences were found between liver and biochemical parameters, the regulation of
protein metabolism (AST/ALT ratio, creatine kinase activity, urea), and alterations in behavior. An
elevated plus maze analysis showed the influence of fructose and genetic factors on the level of
anxiety. A new marker of the grooming microstructure (depression ratio) was tested, which showed
high efficiency as a marker of depression-like behavioral changes and a possible association with
dopamine-dependent regulation of protein metabolism. These results confirm a possible association
of the TAAR1 gene knockout with an increase in catabolic reaction levels by AST/ALT-dependent
and possible dopamine-mediated protein metabolism regulation and depression-like behavior.

Keywords: trace amine-associated receptor 1; TAAR1; dopamine; depression; high-fructose diet; G
protein-coupled receptors; energy metabolism; catabolism; liver; depression ratio; AST/ALT ratio

1. Introduction

Trace amines (TA) and their receptors are emerging as important regulators of complex
forms of behavioral disorders [1,2]. The term ‘trace amine’ was coined and introduced into
scientific practice in the early 1970s by Alan Boulton [3], who wanted to emphasize the very
low (less than 100 ng/g tissue) concentration of trace amines compared to that of classical
neurotransmitters [4]. The first trace amine-associated receptor (TAAR1) was discovered
in 2001 [5,6], and this led to the understanding of the functional role of a separate group
of endogenous monoamines with their own independent receptor system involved in the
pathogenesis of various diseases [2]. TAAR1 is a G protein-coupled receptor (GPCR) that
plays an important role in the regulation of dopaminergic, serotonergic, and glutamatergic
activity [7–9].

TA, such as β-phenylethylamine, p-tyramine, and p-octopamine, are best known as
the result of amino acid decarboxylation, i.e., the thermal or enzymatic processing of food,
both with the participation of the microflora in the gastrointestinal tract [2,10] and without
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it (meat, fish, cocoa, chocolate, cheese, etc.). They are also produced endogenously in mam-
malian tissues and include also metabolites of endogenous monoamine neurotransmitters,
such as dopamine, serotonin, and norepinephrine [8–10]. The system of trace amines affects
dopamine and other systems regulating the development of psychiatric, neurodegenerative,
and metabolic disorders by affecting signaling, neurogenesis, energy metabolism, and other
physiological processes [2,11–17].

Trace amines are found not only in thermally or enzymatically processed foods but
also in many fresh foods in concentrations in the range of milligrams per kilogram [2,15].
Many biogenic amines, such as tyramine, are present in nanomolar concentrations in blood
plasma and in the central nervous system (mainly in neurons) of healthy people [1]. Over
the past few years, there has been an increase in promising research on the trace amine
system in biomedicine, including the development of preclinical and clinical studies of
drugs, cosmetics, dietary supplements, and specialty foods. Research has also established
the role of TA in the control of behavior, energy metabolism, and cellular immune responses,
including interactions with the microbiota in the biochemical transformations of nutrients
in the body and, therefore, in the pathogenesis of alimentary-dependent diseases [2,17].

There is now a significant amount of scientific information relating to the influence of
dopamine systems on behavioral and metabolic disorders, which has made it possible to
partially discover some of the mechanisms involved in the development of the above patho-
logical conditions, including interaction with reward systems, dopamine signal reception,
mood regulation, and metabolic changes [18–26]. The connection of the trace amine system
with dopamine and other monoamine systems of the brain has been established, but these
studies only began around 20 years ago, i.e., when the discovery of the first trace amine
receptor, TAAR1, and other TAARs (TAAR2-TAAR9) was made [2,5,27]. Drugs based on
TAAR1 receptor agonism are now being developed for the treatment of schizophrenia and
other mental disorders [28–31].

TAAR1 is the receptor that is best studied in the TAAR family [2,17]. Its expression has
been shown in nervous tissue (glial cells [32] and neurons [33]), as well as in other organs
and tissues, for example, in the gut, stomach, and pancreas [34]. The mechanisms of TAAR1
receptor activation are associated with intracellular signaling via cAMP, phosphorylation
protein kinase A, and subsequent signal transduction into the nucleus [34]. In the striatum
of TAAR1 knockout (TAAR1-KO) mice, overexpression of both mRNA and D2-dopamine
receptor protein was found, but no changes were noted in the density of D1 dopamine
receptors. Furthermore, the AKT/GSK3 signaling pathway (not associated with the G
protein-mediated D2 dopamine receptor signaling) was selectively activated, which is
associated with the phosphorylation of AKT and GSK3β [21]. TAAR1 is being studied
as a potential therapeutic target in the treatment of various mental disorders, such as
schizophrenia [2,27,35–46]. Ulotaront (SEP-363856) is a TAAR1 agonist with 5-HT1A
receptor agonist activity, currently being tested in phase III clinical development, with
very promising results from the phase II trials, which led to the FDA designation as a
breakthrough therapy for the treatment of schizophrenia [26–30,40,47–52].

The latest hematological and biochemical studies demonstrate the importance of
the TAAR receptor family in the periphery. It was found that deletion of the TAAR5
receptor gene leads to erythrocyte fragility changes [53]. Furthermore, TAAR9 knockout
rats demonstrated decreased low-density lipoprotein cholesterol levels in comparison to
control rats [54]. However, when biochemical and hematological parameters were analyzed
in TAAR1 knockout (TAAR1-KO) mice, only the creatine kinase levels were found to be
minimally changed in TAAR1-KO male mice [55]. Thus, we speculated that the high
fructose diet may potentially reveal specific metabolism changes in the TAAR1-KO mice.

Expression of TAAR1 in the brain of experimental animals is observed in monoamin-
ergic, in particular dopaminergic, neurons [1,7,21]. In addition, TAAR1 activation by a
selective small molecule agonist increased glucose-dependent insulin secretion in INS1E
cells and human islets and elevated plasma peptide YY (PYY) levels in mice. In diabetic
mice (db/db line), the TAAR1 agonist normalized glucose excursion during an oral glu-
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cose tolerance test, reduced food intake and body weight, and insulin sensitivity was
improved [35]. It was shown, also, that selective TAAR1 agonists induced conditioned taste
aversion [56] and reduced binge eating [23]. TAAR1 activation has separately been reported
to regulate the secretion of the closely related PYY, and ketonuria was associated with a
loss of body fat due to a switch from glucose to lipid metabolism [57,58]. Moreover, the
consumption of fructose significantly modifies the intensity and direction of these effects,
which may presumably be due to the influence of this diet on the processes of dopamine
metabolism in the brain, neuromotor function, and level of anxiety [59].

TAAR1 agonists can play a certain role in alleviating depression-like and anxiety-like
behaviors in animal models [27,28,47,49]. Another report showed that SEP-363856 and
duloxetine could have a significant antidepressant effect in a mouse forced swim test.
The results also indicated that Ulotaront can demonstrate antidepressant-like effects in
mice, according to other behavioral tests (tail suspension and sucrose preference tests) [48].
The specific mechanism of action has yet to be explored. However, many biological
mechanisms of the monoamine systems that influence behavioral and metabolic disorders
are currently unknown or insufficiently studied [2,19]. Therefore, the search for new models
of behavioral and metabolic disorders associated with dopamine systems, trace amines,
and their receptors, is a priority.

Biochemical and integral indicators in the blood are often used to assess metabolic
changes. Among the biochemical indicators, one of the most valuable is protein metabolism,
including total protein, urea, and transaminase activity (AST, ALT, and De Ritis ratio). The
aspartate aminotransferase (AST) activity plays an important role in the regulation of
catabolic reactions of the body, and alanine aminotransferase (ALT)–anabolic reactions,
which prove that these biochemical indicators are not only the result of the cytolysis of
myocardial and liver cells, respectively [55,59].

The level of locomotor activity is usually studied using the open field test. The anxiety
level was assessed using the elevated plus maze (EPM) test, which allows for the assessment
of the severity of the emotional reaction of fear and anxiety, motor activity, the speed of
orienting reactions, and other behavioral changes [18,55,58,59]. One of the important tasks
of the study was the search for new behavioral indicators to assess the depression-like
behavior of TAAP1-KO mice, based on the microstructure of grooming [60,61]. Overall,
the aim of our research work is to study the effect of the TAAR1 gene knockout on the
regulation of energy metabolism and depression-like behavior in mice fed a diet with
excess fructose.

2. Materials and Methods
2.1. Study Design

All the animal studies were carried out according to the guidelines of the Ministry
of Health of the Russian Federation, FELASA, and RusLASA. All the experiments were
approved by the Saint Petersburg State University Ethical Committee for Animal Research
(No. 131-03-1, 16 July 2020). Wild-type (WT) and TAAR1-KO mice were derived by crossing
(over 20 generations) heterozygous TAAR1 C57BL6/129SvJ animals. The experiment was
carried out on TAAR1-KO female knockout mice aged 2–3 months, genotyped before and
after the experiment. The mice (N = 24) were divided into four groups (N = 6): TAAR1-KO
homozygotes and WT, each of which was divided into two more groups, one of which
received a standard control diet (WT and TAAR1-KO), and the other received a control diet
with the addition of a 20% fructose solution instead of water (WTd and TAAR1-KOd) for
62 days.

The body mass of the mice was measured weekly. After decapitation, the relative
masses of the internal organs were determined, blood plasma was taken [55], and the key
biochemical parameters and morphological changes in the liver were evaluated.
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2.2. Behavioral Tests
2.2.1. Open Field Test (OF)

An open field test (OF) was used to measure locomotor and exploratory activity. The
apparatus for the test consisted of a gray plastic round arena (diameter, 60 cm). The mice
were placed at the center of the arena, and spontaneous exploration activity, grooming
microstructure, and locomotor activity were recorded manually for five minutes per mouse.

2.2.2. Elevated Plus Maze Test (EPM)

The animals’ anxiety levels were evaluated using an elevated plus maze (EPM) test,
which was a plus maze raised above the floor with two open (OA) and two closed arms
(CA). The EPM test is based on the natural mice behavior of preferring closed spaces and
avoiding open ones. At the beginning of the experiment, the mice were placed in the center
of the EPM. Their behavioral patterns (the number of grooming/hanging episodes and the
total time in open/closed arms) were counted by an operator for five minutes per mouse,
without any changes in light intensity. The OF and EPM tests were performed on the 56th
and 59th day of the experiment, respectively.

2.2.3. Grooming Microstructure Analysis

A grooming stage analysis was assessed according to the following (head to tail)
system: no grooming (stage 0), paw licking (stage 1), nose and face washing (stage 2), head
washing (stage 3), body grooming (stage 4), scratching the body (stage 5), washing the
hind legs and tail (stage 6), washing the genitals (stage 7). The grooming microstructure
indicators (latency in seconds) at the beginning of grooming (LG), total seconds spent on
grooming (TGT), and the number of grooming acts (NGA) were noted from the video
recording of the OF and EPM [60,61]. The grooming analysis also included the average du-
ration of a single act of grooming (ADSAG) (defined as the ratio of TGT/NGA), the number
of grooming stages (NGS), and the average duration of one stage (ADOSG = TGT/NGS).
Approbation of the diagnostic significance of the new depression ratio (DR)—defined
as the ratio of the total time spent on grooming to the latency of the start of grooming
(TGT/LG)—was carried out by a grooming microstructure analysis (EPM test).

2.3. Measurement of Biochemical Parameters

A TAAR1 biochemical analysis was performed using a Random Access A-25 automatic
analyzer (Biosystems S.A., Barselona, Spain), utilizing the spectrophotometer principle. The
blood serum samples were stored at −20 ◦C before analysis. The following biochemical pa-
rameters were analyzed: alanine aminotransferase (ALT), aspartate aminotransferase (AST),
total protein, urea, triglycerides (TG), lactate dehydrogenase (LDH), and creatine kinase.

2.4. Histological Analysis

Histological wiring and staining of liver preparations were performed with eosin-
hematoxylin, according to Van Gieson (connective tissue), and Sudan black (total lipids),
according to standard methods [62,63].

2.5. Statistical Analysis

A two-way analysis of variance (ANOVA) with a post hoc Tukey HSD test was used to
compare all the biochemical data and behavioral parameters. The analyses were performed
using GraphPad Prism 8 for Windows (GraphPad Software, San Diego, CA, USA). The
values of p < 0.05 were considered to be significant.

3. Results

These experiments were performed to investigate the effect of a high-fructose diet on
TAAR1-KO mice. In the open field test, there were no correlational differences in locomotor
activity between the WT and TAAR1-KO groups on both diets (Figure 1a,b). It also showed
no effect of a high-fructose diet on the average speed and total distance in the OF test. The
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average distance covered by the mice in the TAAR1-KO group in the open arms of the maze
in the EPM test was significantly higher than the WT control group (Figure 1c,d), which
may indicate a decrease in the level of anxiety in the mice with knockout of the TAAR1
gene. These data are also confirmed by the decrease in the values of the ratio CA/OA in all
the studied groups compared with the control group (Figure 1g).
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Figure 1. Open-field and elevated plus maze test results. Comparative analysis of open-field
and elevated plus maze tests demonstrates minimal alterations in behavioral parameters between
TAAR1-KO and WT mice female groups (a–g). 20% fructose diet led to decreased grooming in WT
group ((e), **—p < 0.001), increased rearing in TAAR1-KOd group ((f) *—p < 0.05), and decreased
EPM close/open ratio level of all groups compared to the WT group ((g) *—p < 0.05). Data are
mean ± SEM.
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Interestingly, in the TAAR1-KO group, there was a trend toward an increase in the
number of rearing acts in the EPM test, and, in the TAAR1-KOd group, this difference was
significant in relation to the WT control group (Figure 1f).

In the EPM test, a decrease in the number of grooming acts was recorded in the WTd

group compared to the control group, which presumably indicates the effect of fructose on
the increase in anxiety levels (Figure 1e).

In the open field test, the traditional grooming parameters (latency in seconds) of
the beginning of grooming (LG), total time (in seconds) spent on grooming (TGT), and
the number of grooming acts (NGA) were significantly different in the TAAR1 knockouts
and controls. The grooming latency in the TAAR1-KO mice was almost two times longer
than in the control group (WT: 45 ± 12; TAAR1-KO: 117 ± 25, p = 0.0181). In addition,
this group demonstrated significantly shorter grooming stages (WT: 7.8 ± 2.7; TAAR1-KO:
3.6 ± 1.2, p = 0.0345) and a sharp decrease in frequency (WT: 36 ± 16; TAAR1-KO: 6 ± 1,
p = 0.0128) and duration of grooming (WT: 48 ± 13; TAAR1-KO: 20 ± 6, p = 0.0314). This
result shows the reduced grooming and the intermittent nature of its stages. The values
of the depression ratio (DR) in both groups were significantly different (WT: 0.67 ± 0.22;
TAAR1-KO: 0.14 ± 0.02, p = 0.0297) in contrast to the average number of acts and stages
of grooming in both groups (data not shown). A decrease of the DR value indicates the
development of depressive-like behavior in the TAAR1-KO mice. Thus, the grooming
microstructure of the TAAR1-KO mice correlated with depressive-like behavioral changes,
which is consistent with the current understanding of the phenotype of this knockout line.

A two-fold decrease in total specific energy consumption was found in the TAAR1-KO
knockout mice on the high-fructose diet compared to those on the control diet.

A morphological study of the liver showed no effect of the high-fructose diet and
TAAR1 gene knockout on lipid accumulation in the liver parenchyma (Figure 2).
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At the same time, in the TAAR1-KOd group, the average body mass was lower than in
the WT group (Figure 3b), but the relative mass of the liver was unchanged (Figure 3a).
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The analysis of biochemical parameters revealed a number of changes in the indicators
of the De Ritis ratio, the levels of AST (Figure 4b, p = 0.0286), creatine kinase (Figure 4e,
p = 0.142, WT vs. KO; p = 0.0175, WT vs. WTd) activity, and the concentration of urea
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Figure 4. Comparative analysis of basic biochemical parameters in the blood of TAAR1-KO and WT
female mice fed a 20% fructose diet. (a) Alanine aminotransferase (ALT), (b) aspartate aminotrans-
ferase (AST), (c) De Ritis ratio (AST/ALT), (d) urea, (e) creatine kinase, (f) total protein, (g) lactate
dehydrogenase (LDH), (h) alkaline phosphatase (ALP), (i) glucose, (j) triglycerides. The biochemical
screening reveals significant differences in several demonstrated parameters. Data are mean ± SEM.
n = 5–6. *—p < 0.05.

The De Ritis ratio (AST/ALT) in the TAAR1-KO mice was unchanged regardless of the
diet consumed, and there was a tendency for it to decrease in the WTd mice in comparison
with the WT group (Figure 4c, p = 0.0194). An increase in the AST activity and De Ritis ratio
values in the TAAR1-KO compared with the control group may indicate an activation of
catabolic reactions, as evidenced by high relative levels of creatine kinase in the TAAR1-KO
group on the control diet compared to the WT, and high urea levels in the groups with a
high-fructose diet.

4. Discussion

In this study, we demonstrated a possible association of the TAAR1 function with
the increase in high fructose-induced catabolic reactions via AST/ALT-dependent pro-
cesses and possible dopamine-mediated protein metabolism regulation and depression-
like behavior.

There were no correlational differences in the locomotor activity between the WT and
TAAR1-KO groups in the OF test. Neither was there any effect of the high-fructose diet on
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the average speed and total distance covered by the WT and TAAR1-KO mice in the OF
test, and the number of transitions between the maze zones in the EPM test was shown
in comparison with the control group. The average distance covered by the TAAR1-KO
mice in the open arms of the maze in the EPM test was significantly higher than the WT
control group, which may indicate a decrease in the anxiety of the TAAR1-KO mice. These
data are also confirmed by the decrease in the ratio of CA/OA in all the studied groups in
comparison with the control. The decrease in the number of grooming events in the WTd

group compared to the control group suggests that the fructose was increasing anxiety. It is
interesting to note that the TAAR1-KO mice tended to increase the number of racks in the
EPM test, and, in the fructose-supplemented group, this difference was significant relative
to the WT control group.

The increase in AST activity and the values of the De Ritis coefficient (AST/ALT) in
the blood of the TAAR1-KO mice compared with the WT control group may indicate an
activation of catabolic reactions. These results complement the study on male TAAR1-
KO mice, where the indicators of creatine kinase activity were the opposite, which can
be explained by differences in the metabolism between female and male mice [55]. This
finding is confirmed by the high relative levels of creatine kinase in the TAAR1-KO group
on the control diet compared to the WT, and the high urea levels in groups with the high-
fructose diet. These results confirm the association between the TAAR1 gene and energy
metabolism—particularly protein metabolism.

It was also found that the parameters of the grooming microstructure of the TAAR1-KO
mice were correlated with depressive behavioral changes, which is consistent with modern
ideas about this knockout line. The last studies demonstrated that TAAR1 gene knockout
in male mice leads to significantly decreased self-grooming activity and significant changes
in grooming microstructure [64]. To assess the degree of depression, a depression ratio
(DR) was proposed, and the average values of this decreased for the TAAR1-KO mice in
comparison with the control group.

The average distance covered by the TAAR1-KO mice in the open arms of the maze
in the EPM test was significantly higher than those in the WTd control group, which may
indicate a decrease in anxiety in mice with the TAAR1 gene knockout. These data are also
confirmed by the decrease in the values of the ratio CA/OA in all the studied groups in
comparison with the control.

The decrease in the number of grooming events in the WTd group compared to the
control group suggests that the fructose was increasing their anxiety. It is interesting to
note that, in the TAAR1-KO mice, there was a general increase in the number of racks in
the EPM test and, in the group with a high-fructose diet, this difference was significant in
relation to the WTd control group.

The total specific energy consumption of the TAAR1 knockout mice on a high-fructose
diet was two times lower compared to those on the control diet and did not depend on
the genotype.

A morphological examination of the liver tissue did not reveal any differences between
the TAAR1-KO mice and the WT mice in both the control and high-fructose diets. An
increase in AST activity and the values of the De Ritis ratio (AST/ALT) in the blood of the
TAAR1-KO mice compared with the control group may indicate the activation of catabolic
reactions. This finding is confirmed by the high relative levels of creatine kinase in the
TAAR1-KO group on the control diet compared to the WT, as well as the high urea levels in
groups on a high-fructose diet (Figure 4b,c,e). The absence of changes in the De Ritis ratio
in these groups may be another indirect confirmation of the co-expression of TAAR1 with
the dopamine D2R receptors described previously [9,19]. This result points to a relationship
of AST/ALT in dopamine systems through their important regulatory role in associated
metabolic processes, with the consumption of high-calorie diets described in the author’s
other study [59]. Thus, the increased AST and creatine kinase activity, AST/ALT ratio, and
urea level in blood plasma showed a statistically significant increase in the TAAR1 knockout
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mice in comparison with the wild type, which may be the cause of the dopamine-mediated
protein metabolism regulation and depression-like behavior.

The results confirm our hypothesis of a possible association of the TAAR1 gene knock-
out with the increase in catabolic reaction levels by AST/ALT-dependent and possible
dopamine-mediated protein metabolism regulation and depression-like behavior. The
limitations and strengths are partly discussed in the discussion section. Unfortunately,
the relationship between diet and TAAR1 gene knockout has not been fully discribed.
Therefore, further experiments are required to understand the problem.

5. Conclusions

We demonstrated here that the grooming microstructure in the TAAR1-KO knockout
mice correlates with depressive behavioral changes. To assess the depression level, we
introduced a DR (depression ratio), the average values of which decreased as compared
to the reference group in the case of the TAAR1-KO knockout mice. In this study, the
depression ratio was shown to be a marker of depression-like behavioral changes.

Our results confirm our hypothesis of a possible association of the TAAR1 gene
knockout with an increase in catabolic reaction levels by AST/ALT-dependent and possible
dopamine-mediated protein metabolism regulation.

The results of this study confirm the relationship of the TAAR1 gene with energy
metabolism and, in particular, protein metabolism. The consequences of such studies may
include the identification of new behavioral, biochemical, and other markers of functional
disorders of monoamine systems and metabolic dysfunctions. There may also be a prospect
of transferring the identified molecular markers to the preclinical and clinical treatment of
these diseases, including differential diagnosis and preventive therapy.
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