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Abstract: Background. Pompe disease is a rare, severe, autosomal recessive genetic disorder caused
by GAA gene mutations, which cause α-1,4-glucosidase enzyme deficiency. There are two forms of
Pompe disease based on the age of onset, the infantile and the adult form (LOPD). Cardiac involve-
ment, previously recognized only in infantile cases, is now also reported in adults. Cardiomyopathy
remains an exceptional finding while heart rhythm disorders appear to be more frequent. Meth-
ods. We retrospectively evaluated cardiac involvement in 12 patients with late-onset Pompe disease
(LOPD) followed for an overall period of 143 years (mean 12.7 ± 7.7) using ECG, Holter ECG, and
echocardiography. Results. The mean age of patients (M8:F4) at the first visit was 40.7 ± 16.1 (range
14–63) and 53.7 ± 16.9 (range 21–76) at last visit. Conduction delay was present in three patients; one
patient developed ascending aorta ectasia but had a history of hypertension, and one patient showed
right heart enlargement on echocardiography, probably due to pulmonary hypertension. No patient
died during the FU, nor developed cardiomyopathy. Ectopic supraventricular beats and repeated
episodes of ablation-resistant atrial fibrillation were observed in only one patient (8.3%) who required
PMK implantation. Conclusions. Benefitting from the long follow-up, this study allows us to state
that primary myocardial involvement is rare in patients with LOPD, while rhythm disorders are
more frequent and require monitoring to avoid the risk of possible life-threatening complications.

Keywords: late-onset Pompe disease; heart rhythm disorders; myocardial involvement; risk of
arrhythmias

1. Introduction

Pompe disease (PD), also known as acid maltase deficiency or glycogenosis type II, is
a rare, severe, autosomal recessive, and progressive genetic disorder belonging to the group
of glycogenoses affecting both muscles and heart [1–4]. PD results from the absence or
partial deficiency of the lysosomal acid α-glucosidase (GAA) activity due to mutations in
the GAA gene, localized on chromosome 17. GAA (NM_000152.3) is approximately 18.3 kb
long and contains 20 exons. Its cDNA has 2859 nucleotides of coding sequence, which
encode the immature 952 amino acid enzyme. Currently, more than 560 mutations spread
throughout GAA gene have been reported [5–9].

GAA is synthesized as a membrane-bound, catalytically inactive precursor, which
is sequestered in the endoplasmic reticulum. It undergoes sugar chain modification in
the Golgi complex, followed by transport into the (minor) secretory pathway, or into
lysosomes where it is trimmed in a stepwise process at both the amino- and carboxyl-
termini domains [10–12]. Phosphorylation of mannose residues ensures efficient transport
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of the enzyme to the lysosomes via the mannose 6-phosphate receptor. GAA catalyzes the
hydrolysis of α1→4 glucosidic linkages in glycogen at acid pH. Specificity for the natural
substrate (glycogen) is acquired during its maturation [11].

The deficiency of GAA results in progressive storage and accumulation of glycogen,
initially within the lysosome but subsequently within the cytoplasm and into muscle inter-
fibre free glycogen pools. The initial insult is due to the accumulation of the intra-lysosomal
glycogen which causes glycogen burden in lysosomes and triggers cell malfunctions, es-
pecially in cardiac, smooth and skeletal muscle cells, and motor neurons [1–4]. However,
recent studies showed that multiple other cellular abnormalities occur and that the patho-
physiology of Pompe disease is far more complex than appreciated previously. In particular,
the central role of autophagy is becoming more important [13,14].

1.1. Clinical Features

Two forms of Pompe disease have been described based on age of onset of the disease,
the infantile or early onset (EOPD) form and the adult or late-onset form (LOPD). Classical
Pompe disease at infantile onset (IOPD) is characterized by a more severe clinical course, age
of onset of symptoms ≤ 12 months, rapidly progressive hypertrophic cardiomyopathy, left
ventricular outflow obstruction, and respiratory muscle weakness, leading to respiratory
failure. Untreated patients usually die within the first year of life [11,12].

LOPD, due to partial reduction in GAA enzyme activity, develops in adults, but it
may also occur during childhood or adolescence, and may present with a multisystem in-
volvement [15–21]. A limb-girdle phenotype with axial weakness can be the most common
clinical presentation, although respiratory insufficiency or asymptomatic hyperCKemia
may be the first indication [22,23].

Creatin kinase (CK) is a catalytic enzyme that combines creatine and ATP to form
phosphocreatine and ADP. This reaction is crucial for cellular energy generation and
metabolism. HyperCKemia is a persistent rise in serum creatine kinase l evels of at least
1.5 times the upper reference value, as evidenced by a minimum of two measurements at
30-day intervals. The term “asymptomatic hyperCKemia” is used in clinical practice to
indicate patients presenting high levels of creatine kinase without any symptoms or signs
of neuromuscular impairment [24–26].

In LOPD, respiratory muscle dysfunction may precede limb girdle weakness and
ventilatory support is indicated prior to wheelchair dependence in about one-third of
patients [27–29]. Recent evidence shows that diaphragmatic dysfunction cannot only be
attributed to myopathic changes but also to accumulation of glycogen in cervical ante-
rior horn cells and alterations of both phrenic nerve fibers and neuromuscular junctions,
respectively [30,31].

Cardiac involvement in Pompe disease has long been considered a peculiarity of in-
fantile forms only [15,16]. However, cardiac hypertrophy [32,33], isolated or in association
with cerebral injury [34], heart rhythm disturbances—mainly SVT, episodes of atrial fibrilla-
tion and Wolff–Parkinson–White Syndrome [35–37], and aortic abnormalities [38] are now
also recognized and reported in patients with LOPD. Accumulation of glycogen in smooth
muscle is thought to be responsible for cerebral artery ectasia, aortic aneurysms, and in-
creased aortic stiffness reported in some individuals [33,35]. Cardiomyopathy remains an
exceptional finding, while heart rhythm disorders appear to be more frequent.

Severe cardiac involvement is rare in patients with Pompe disease sharing the common
c.-32-13T>G genotype [39].

1.2. Diagnosis and Treatment

An early diagnosis [40–43], based on the quantitation of the enzyme tested by DBS
assay [44] and confirmed by genetic investigation [5–9,45], is desirable given the possibility
of a replacement treatment.
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Since 2006, GAA deficiency has been treated with enzyme replacement therapy (ERT),
which involves regular infusion of recombinant human alglucosidase alfa that prevents the
accumulation of glycogen in tissues and muscles.

Long-term treatment with alfa-glucosidase has been shown to markedly slow disease
progression and increase life expectancy in children with PD, extending survival as well
as ventilation-free survival [46–50]. The most notable effect of ERT is observed on cardiac
function regardless of the disease severity [51,52]. In contrast, the skeletal muscle response
is variable and less important despite the high dosage in recombinant protein compared to
treatments of other lisosomal storage disorders [46–50]. Very early treatment for infantile-
onset Pompe disease contributes to better outcomes [53,54].

In adults with Pompe disease, the use of ERT demonstrated in all reports an improvement
in the walking distance and a trend toward stabilization of respiratory function [55–57].
Semplicini et al. [58] have recently provided further evidence that ERT improves walking
abilities and likely stabilizes respiratory function in adults with LOPD with a ceiling effect
for the 6MWT in the first 3 years of treatment. These limitations are at least partially due to
insufficient uptake into disease-relevant tissues [59]. This therapy is also ineffective in treating
neurological aspects of the disorder because of enzymes’ inability to cross the blood–brain
barrier. Moreover, severe anaphylactic and immunologic reactions are sometimes observed
upon ERT treatment [60].

The limitations of ERT have stimulated the scientific community to investigate alterna-
tive therapeutic strategies against PD, independent or complementary to ERT. Among the
therapies currently explored, gene therapy, substrate reduction therapy, and pharmacologi-
cal chaperone (PC) therapy should be mentioned [61–64].

The main aim of this study was to investigate the occurrence of cardiac involvement
in a group of LOPD patients followed for an overall period of 143 years (average FU
12.7 ± 7.7), and to compare the results with those reported so far

2. Materials and Methods
2.1. Patients

Patients reported in the study were selected from the Cardiomyology and Medical Ge-
netics of the Luigi Vanvitelli Campania University Hospital internal registry. The inclusion
criteria were diagnosis of late-onset Pompe disease, molecular investigation confirming the
diagnosis, and follow-up of at least 3 years. The period of observation was between 1997
and 2023.

2.2. Methods

Scheduled periodic checks were carried out on all patients, and included myological
and cardiological examination, as well as spirometric tests to evaluate forced vital capac-
ity (FVC). Retrospectively evaluated cardiac follow-up data, including annual ECG, 24 h
Holter monitoring for ECG abnormalities, and echocardiography, were extracted from
medical records. The electrocardiographic parameters studied were heart rate (HR), ectopic
supraventricular beats (ESVB), ectopic ventricular beats (EVB), supraventricular tachy-
cardia (SVT), runs, and episodes of atrial fibrillation (AF), while the echocardiographic
parameters studied were telediastolic volume (TDV) in mL, and left ventricle ejection
fraction (LVEF) in percentage.

Informed consent for data collection and publication for research purposes was ob-
tained by the patients, or tutors when minors in the occasion of the blood collection for the
genetic test as a consolidated hospital practice.

2.3. Review of the Literature, Search and Selection

A systematic analysis of the literature was conducted to document cardiac manifesta-
tions in patients with late-onset Pompe disease. Cardiac involvement was defined as left
ventricle hypertrophy, heart rhythm disorders, atrial fibrillation, atrio-ventricular block,
and pacemaker placement needs.
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The literature search was performed on 20 September 2023 and returned 41 results
in PubMed, 0 in Scopus, and 0 in WoS. The PubMed database was queried for studies
published through September 2023, by using the National Library of Medicine Medical
Subject Heading terms “cardiac involvement”, “cardiac hypertrophy”, “left ventricle hy-
pertrophy”, “rhythm disorders”, “atrio-ventricular block”, “atrial fibrillation” in late-onset
Pompe disease. Articles that did not meet the selection criteria or did not answer the
research question, were excluded. For a comprehensive analysis, relevant case reports were
also included.

3. Results

Demographics and baseline clinical characteristics of the 12 patients included in the
study are shown in Table 1.

All patients are from Campania Region in southern Italy. Six patients are isolated cases,
while the other six belong to two unrelated families, each with three affected individuals.
All patients had a genetically confirmed diagnosis of late-onset Pompe disease. All were
compound heterozygotes, and 11/12 (91.7%) had the common c.-32-13T>G variation on
one of the two alleles. On the second allele, c. 784G>A variant was present in 2/12 (16.7%)
unrelated patients; c.1124 G>T variant was present in 5/12 (41.7%) patients, three of whom
were siblings; c.2237 G>A variation was present in the three affected members of the same
family; c.956-6T>C and c.989G>A variations were present in isolated patients. Variants c.
784G>A and c.2237 G>A are usually reported in classic infantile Pompe disease.

The mean age at onset of symptoms was 35 ± 13.6 (range 16–54 years) while the
average age at the first visit was 40.7 ± 16.1 (range 14–63 years). In the majority of patients
(8/12; 66.7%) the presenting symptoms consisted of muscle weakness of the upper or lower
limbs, and in one patient (8.3%) myalgia. Three patients (25%) sought medical attention due
to increased CK values, ranging from two to five the upper reference limit, in the absence
of signs and symptoms of neuromuscular impairment (asymptomatic hyperCKemia).

The average age at the last control was 53.6 ± 16.8 (range 21–76 years). The mean
period of follow-up was 12.7 ± 7.7 years (range 3–26 years).

Overall, two out of 12 (16.7%) and 3/12 (25%) patients had respiratory insufficiency
(FVC below 50%) at the first and last visit, respectively. Five of them were on noninva-
sive mechanical ventilation. Six patients (50%) agreed to undergo treatment with enzy-
matic replacement therapy (ERT) during the FU. The average period of treatment was
55.8 ± 25.6 months (range 6–84). Four patients (33.3%) were still on treatment at the last
check-up while two had voluntarily suspended it, respectively after 45 and 57 months.

Table 2 shows the cardiologic parameters collected for all patients at baseline, and at
the end of the follow-up.
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Table 1. Patient’s demographics and baseline clinical characteristics.

Patient ID Current Age
(Years)

Family
History

GAA Gene
Mutations

Age at Onset
(Years)

Presentation
Age at First
Control (In

Years)

Age at Last
Control

(In Years)

FU
(In Years)

Forced Vital Capacity
(FVC)

mL %

NA1 41 no

CmHz:ex
2(IVS1-32-13T>G);

ex 4:c.784G>A
(p.Glu262Lys)

Increased CK
values 17 27 10 4120 84

NA2 66 no

CmHz:ex
2(IVS1-32-13T>G);

ex 7: c.1124G>T
(p.Arg375Leu)

54 Muscle
weakness 63 66 3 2620 30

NA3 58 no

CmHz:ex
2(IVS1-32-13T>G);

ex 7: c.1124G>T
(p.Arg375Leu)

30
Post pregnancy

muscle
weakness

38 58 20 1760 45

NA4 42 yes

CmHz:ex
2(IVS1-32-13T>G);

ex 7: c.1124G>T
(p.Arg375Leu)

Increased CK
values 34 41 7 3000 90

NA5 51 yes

CmHz:ex
2(IVS1-32-13T>G);

ex 7: c.1124G>T
(p.Arg375Leu)

18 Muscle
weakness 31 51 20 3420 68

NA6 57 yes

CmHz:ex
2(IVS1-32-13T>G);

ex 7: c.1124G>T
(p.Arg375Leu)

40 Muscle
weakness 49 55 6 3020 100

NA7 64 no

CmHz:ex
2(IVS1-32-13T>G);

ex 6: c.989G>A
(p.W330Stop)

34 Muscle
weakness 38 64 26 3880 93
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Table 1. Cont.

Patient ID Current Age
(Years)

Family
History

GAA Gene
Mutations

Age at Onset
(Years)

Presentation
Age at First
Control (In

Years)

Age at Last
Control

(In Years)

FU
(In Years)

Forced Vital Capacity
(FVC)

mL %

NA8 73 yes

CmHz:ex
2(IVS1-32-13T>G);
ex 16: c.2237G>A

(p.W746Stop)

41 Muscle
weakness 53 73 20 2600 63

NA9 69 yes

CmHz:ex
2(IVS1-32-13T>G);
ex 16: c.2237G>A

(p.W746Stop)

54 Muscle
weakness 54 59 5 1440 36

NA10 56 yes

CmHz:ex
2(IVS1-32-13T>G);
ex 16: c.2237G>A

(p.W746Stop)

30 Muscle
weakness 57 76 19 2680 68

N11 29 no

CmHz:ex
2(IVS1-32-13T>G);
ex 12 c.1670T>G

(p.Ile557Ser)

Increased CK
values 14 21 7 2220 76

N12 53 no

CmHz: ex 4:
c.784G>A

(p.Glu262Lys);
ex 5i c.959-6TC (p?)

16
Myalgia
Exercise

intolerance
43 53 10 4630 92

Mean ± SD 55 ± 12.8 35 ± 13.6 40.9 ± 15.4 53.4 ± 16.9 12.7 ± 7.7 2796.4 ± 944.7 74.8 ± 20.9
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Table 2. Cardiologic parameters collected for all patients at baseline, and at the end of the follow-up.

Cardiac Parameters at Baseline Cardiac Parameters at Last Control Treatment

Patient ID ECG-ECG Holter Echocardiogram ECG-ECG Holter Echocardiogram Pharmacological
Treatment

Supporting
Treatment

HR SVB VB SVT Runs AF VTD
(mm) EF (%) HR SVB VB SVT Runs AF VTD

(mm) EF (%)

NA1 50 0 0 0 0 no 51.1 69.0 75 0 0 0 0 no 51.4 64.7 Magnesium pidolate

NA2 82 0 0 0 0 no 46.0 62.0 72 0 0 0 0 no 50.0 68.0

NA3 62 1870 0 0 1 no 45.4 66.2 55 0 0 0 0 yes 48.0 55.0
Beta-blockers;

dabigatran; sartans;
flecainide;furosemide

PMK
implant at
47 years

NA4 79 0 0 0 0 no 57.1 66.9 68 0 0 0 0 no 53.0 60.0 Ace-inhibitors

NA5 68 0 0 0 0 no 49.2 63.4 80 0 0 0 0 no 47.0 60.0 Magnesium pidolate;
ascorbic acid

NA6 75 0 0 0 0 no 49.2 66.1 80 0 0 0 0 no 50.0 65.0

NA7 60 0 0 0 0 no 45.5 66.9 80 0 0 0 0 no 50.4 55.0 Magnesium pidolate;
ascorbic acid

NA8 71 0 0 0 0 no 57.0 56.0 75 0 0 0 0 no 54.0 62.0 Ace-inhibitors

NA9 75 0 0 0 0 no 53.7 54.5 83 0 0 0 0 no 52.3 57.2 Ace-inhibitors

NA10 88 0 0 0 0 no 48.8 70.0 82 0 0 0 0 no 50.0 56.0 Ace-inhibitors;
metformin

NA11 75 0 0 0 0 no 50.1 70.0 90 0 0 0 0 no 45.6 71.6 Ace-inhibitors

Na12 88 0 0 0 0 no 42.4 67.9 71 0 0 0 0 no

Mean ± SD 72.8 ± 11.4 49.6 ± 4.6 64.9 ± 5.1 75.9 ± 8.9 50.2 ± 2.5 61.3 ± 5.5
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The average heart rate at the first visit was 72.8 ± 11.8 b/m’ (range 50–88) and at the
last visit 75.9 ± 8.9 b/m’ (range 55–90); the differences were not statistically different.

No patient, except one, presented arrhythmias. The patient with arrhythmias (NA3)
had numerous supraventricular ectopic beats and a run of premature beats at the first
Holter ECG check-up (Figure 1). Despite a prompt treatment with beta-blockers and
ACE-inhibitors, she presented during the follow-up several episodes of atrial fibrillation,
resistant to transcatheter ablation. At the age of 47, she had a pacemaker implanted.
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Figure 1. SV-RUN episode recorded on Holter monitoring. The numbers at the top indicate heart
rate and R-R interval, respectively. The letter “S” stands for systole.

No significant changes were observed in heart volumes, the mean value of TDV
varying from 49.6 ± 4.6 mL (range 42.4–57.0) at baseline to 50.2 ± 2.5 (range 45.6–54.0) at
the last visit.

There was a slight decrease in the percentage values of LVEF, which went from a mean
value of 64.9 ± 5.1 (range 54.5–70.0) to 61.3 ± 5.5 (range 55.0–71.6); however, once again,
the differences were not statistically significant. There was no cardiac death during the FU.
No patient developed cardiomyopathy.

4. Discussion

Cardiac involvement in Pompe disease has long been considered a peculiarity of
infantile forms only [15,16]. However, cardiac hypertrophy, heart rhythm disorders, and
aortic abnormalities are now also recognized and reported in patients with LOPD [32–38].

In our cohort of patients, followed for a total of 143 years (mean 12.7 ± 7.7), episodes
of arrhythmias and atrial fibrillation, resistant to transcatheter ablation, occurred in only
one female (8.3%). She required pacemaker implantation at the age of 47. None devel-
oped cardiomyopathy, confirming that cardiomyopathy remains an exceptional finding
in patients with LOPD. Interestingly, all but one patient shared the common c.-32-13T>G
genotype on one of the two alleles, confirming that this allele is associated with absence of
cardiomyopathy [39,65,66].

Review of Literature

Through literature analysis, we identified eight articles by title and abstract screening.
After title and abstract screening, four studies and two clinical cases were eligible for full
article review.

Van der Beek et al. [39] investigated the presence and extent of cardiac involvement
in 22 children and 46 adults with Pompe disease presenting the common IVS1-32-13T>G
variation to determine the usefulness of cardiac screening in these patients with relatively
‘milder’ phenotypes. Cardiac dimensions and function were assessed through echocar-
diography, electrocardiography and Holter monitoring. Among patients with LOPD,
one—severely affected—had a mild hypertrophic cardiomyopathy that did not change
during ERT. Furthermore, four patients (8.7%) showed minor cardiac abnormalities, which
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were attributed to advanced age, hypertension or pre-existing cardiac pathologies. The
authors concluded that cardiac involvement is rare in patients with Pompe disease sharing
the common c.-32-13T>G genotype; nevertheless, they suggested electrocardiographic
evaluation as an appropriate initial screening tool, while reserving a thorough cardiac
screening only in case of ECG abnormalities or history of cardiac disease.

Boentert M et al. [29] performed a comprehensive cardiovascular magnetic reso-
nance (CMR) in a group of 17 patients with genetically proven late-onset Pompe disease
(50 ± 18 years; 11M:6F) and in 18 age- and gender-matched healthy controls (44 ± 10 years;
12M:6F), in order to detect focal and diffuse fibrosis. All patients had normal left ventricular
(LV) and right ventricular (RV) volumes and normal LV and RV ejection fraction. Three
patients (18%) had non-ischemic LGE in the basal infero-lateral wall, and 21% demonstrated
elevated global extracellular volume fraction (ECV) values suggestive of interstitial myocar-
dial fibrosis. Non-specific abnormalities such as left atrial (LA) dilation were present in two
patients, while LV hypertrophy was observed only in one. Two of the three LGE-positive
patients were also hypertensive. After a median follow-up of 25 (11–29) months, only one
cardiovascular event occurred: one of the late gadolinium enhancement (LGE)-positive
patients with a high cardiovascular risk profile suffered an acute coronary syndrome. The
authors concluded that, in contrast to EOPD, mild and rather non-specific cardiac abnor-
malities can be detected by CMR only in a small proportion of patients with LOPD, and that
the observed structural abnormalities seem the result of an interplay between the storage
disease and other comorbidities without affecting short-term to mid-term prognosis.

Herbert et al. [32] in 2018 performed a retrospective review of cardiological parameters
(ECG and Echo) in a large cohort, which included 144 patients with LOPD and 40 patients
with EOPD from the Duke University Pompe disease registry. Among the adult patients,
five (3.5%) presented with arrhythmias: two had atrioventricular blocks of differing degrees,
two had supraventricular tachycardia, and one had a right bundle branch block. Echocar-
diography showed a mild left ventricular hypertrophy (LVH) in 14 patients (9.7%), who had
additional cardiovascular risk factors such as hypertension, restrictive lung disease, chronic
respiratory failure, type 2 diabetes mellitus, or hyperlipidemia. Left atrial enlargement was
seen in four patients (2.8%). Unlike van der Beek et al., the authors concluded that patients
with LOPD sharing the common c.-32-13T>G variant require frequent cardiac follow-up
for the risk of arrhythmias.

In a cohort of 131 French patients with LOPD, Sacconi et al. [34] retrospectively identi-
fied 4 patients (3%) with severe progressive atrio-ventricular blocks requiring pacemaker
implantation, at an average age of 44 years (range 35–57). These patients had no other risk
factors for cardiovascular diseases or cardiomyopathy. In one patient, the atrioventricular
block was found while still asymptomatic. Although A-V blocks are relatively rare in
LOPD and can occur even in the absence of cardiac symptoms or ECG abnormalities, the
authors suggest that cardiac follow-up in patients with LOPD should include periodic
Holter-ECG monitoring, due to the possible life-threatening complications associated with
these conduction defects.

Occasional severe post-partum cardiomyopathy or a syncopal episode revealing an
underlying dilated cardiomyopathy as isolated presenting features of LOPD have been
reported by Mori et al. [35] in a female aged 35 after a pregnancy complicated by primary
hyperparathyroidism, and by Walczak-Galezewska et al. [36] in a 54-year-old Caucasian
sportsman. The endomyocardial biopsy revealed excess glycogen by PAS staining in one
case, while the echo showed multiple storage materials located in the left ventricle with
decreased EF in the other one.

5. Conclusions

We are aware that the study has some limitations, which include the small number
of patients enrolled and use of retrospective data. However, despite these limitations, we
believe that our study, benefitting from the long follow-up, may contribute to reassure
clinicians routinely involved in the management of adult patients with LOPD that primary
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myocardial involvement remains very rare in these patients, while there is a relatively
higher frequency of rhythm disturbances that should be monitored to avoid the risk of
possible life-threatening complications.
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