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Abstract: This study investigated scaling trends of commercially available light-duty battery electric
vehicles (BEVs) ranging from model year 2011 to 2018. The motivation of this study is to characterize
the status of BEV technology with respect to BEV performance parameters to better understand the
limitations and potentials of BEV. The raw data was extracted from three main sources: INL (Idaho
National Laboratory) website, EPA (Environmental Protection Agency) Fuel Economy website, and
the websites BEV manufacturers and internet in general. Excellent scaling trends were found between
the EPA driving range per full charge of a battery and the battery capacity normalized by vehicle
weight. In addition, a relatively strong correlation was found between EPA city fuel economy and
vehicle curb weight, while a weak correlation was found between EPA highway fuel economy and
vehicle curb weight. An inverse power correlation was found between 0–60 mph acceleration time
and peak power output from battery divided by vehicle curb weight for 10 BEVs investigated at INL.
Tests done on the environmentally controlled chamber chassis dynamometer at INL show that fuel
economy drops by 19 ± 5% for the summer driving condition with air conditioner on and 47 ± 7%
for the winter driving condition.
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1. Introduction

The Earth is currently undergoing climate change due to the increase of anthropogenic emissions
of greenhouse gases such as CO2 [1]. Thus, many nations around the globe are making efforts to
reduce their carbon footprint [2]. The U.S. Energy Information Administration (EIA) estimates that
motor vehicles contribute to about 30% of total U.S energy-related CO2 emissions [3]. Hence, over the
years, the U.S. has attempted to reduce the amount of CO2 emitted by Internal Combustion Engines
(ICEs). ICE vehicles (ICEVs) are also a major source of air pollution in many urban areas. Many “green”
methods of propulsion have been developed and improved over the past 20 years such as hydrogen
fuel cell and electric vehicles [4]. In an effort to reduce air pollution and emissions of greenhouse
gases, the California Air Resources Board aims to increase the sales of Zero Emission Vehicles (ZEVs)
significantly by 2050 [5].

Original Equipment Manufacturers (OEMs) have chosen Battery Electric Vehicles (BEVs) over
hydrogen fuel cell technology for light duty vehicles in recent years considering the former has been
more widely commercialized than fuel cell models. This phenomenon is intriguing because besides
very luxurious models such as Tesla model X and S, selling other battery-powered vehicles is not
very economically profitable for OEMs at the current volume of sales and prices. True vehicle costs
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over a 20-year lifetime for a 2015 mid-sized ICEV and BEV are estimated to be $19,000 and $38,000
respectively. The majority of the BEVs cost results from the battery fabrication process [6] which
utilizes lithium, a scarce resource. At current lithium extraction levels, the production of BEV at
significant annual vehicle sales market share is not likely [7]. In the U.S. over 1 million vehicles were
sold in 2017 and approximately 12,000 of those vehicles were BEVs [8]. This means that less than 1% of
vehicles sold in the U.S. were BEVs and yet, OEMs have produced and sold more BEVs in the past few
years than at any time in history.

Mass production of battery for vehicle use will lead to price reduction due to the increased scale,
cost saving, and improved manufacturing technologies. The Joint Agency Draft Technical Assessment
Report [9] predicts an increase in battery content and associated costs even with the reduced battery
prices for a BEV equivalent to an ICE vehicle. Battery technologies have improved and will continue to
do so. However, there is no quantum leap yet in the energy density of the battery. The batteries OEMS
use in their BEVs are all based on lithium ion battery technologies and there is no sign of big change
for the commercially available and mass-produced batteries for now. The California Air Resource
Board’s midterm review report on ZEV [5] states “while there are lots of promising advancements
happening in research labs around the world every day, there is unlikely to be a ‘silver bullet’ that will
suddenly meet the goals [10] for energy storage technology”.

While there are many BEVs commercially available, there is no standard which can regulate and
promote high energy efficiency of BEV. The motivation of this study is to characterize the status of
BEV technology with respect to BEV performance parameters so that the public and regulators can
understand limitations and potentials of BEV. Components such as vehicle curb weight and battery
capacity are important to determine a vehicle’s energy efficiency. An and Santini [11] compared the
relationship between vehicle mass (or weight) and fuel economy for conventional vehicles (CV) and
hybrid electric vehicles (HEV). They reported that fuel economy of HEVs is significantly improved with
little or no change in vehicle mass (or weight) compared to CV. Once a switch to hybrid powertrain is
made, then mass reduction in improving fuel economy is diminished relative to conventional vehicles.
In a similar context, the vehicle mass vs. fuel economy relationship may be different for BEV compared
to CV and HEV. This is an important topic to be investigated but there is no literature reporting on
the impact of vehicle mass (or weight) to fuel economy for BEVs using data from multiple vehicles.
The closest comparisons available in the literature were found to be: impact of vehicle weight on
energy efficiency (which can be translated to fuel economy) at constant vehicle speeds for EV during
1994 Department of Energy (DOE) EV competition [12], and impact of two EV masses on energy
consumption over different driving cycles [13].

Though BEVs themselves produce no emissions, they do consume electrical energy for charging
and the battery fabrication process. This electricity is generated from power plants which burn fossil
fuels. As such, BEVs are considered to be efficient as they compensate for this usage of electrical energy
to minimize their impact on global warming. Regardless, there is no fuel economy standard for BEVs
worldwide. Analysis of vehicle performance parameters with respect to fuel economy can be essential
information if agencies are to consider legislating fuel economy standards for BEVs.

This paper investigates BEVs based on vehicle specification, fuel economy, and experimental
testing data available to fill this gap in literature knowledge. The paper aims to find general
relationships between vehicle performance parameters such as driving range, fuel economy, and vehicle
parameters such as vehicle weight and battery capacity. As BEV manufacturers are not required to
provide key vehicle parameters publicly, they often keep from disclosing them for marketing purposes,
claiming them to be proprietary information. Hence, it has been challenging to collect data necessary
for analysis. Vehicles of investigation in this study are all light duty passenger BEVs. The analysis is
limited to commercially available BEVs due to the availability of the data. The results of this study
will help the public to understand the current capabilities and limitations of the BEV technology and
regulators to legislate fuel economy standards for BEVs.
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2. Vehicle Data Collection

For the driving range per full charge and fuel economy investigation, commercially available
light duty vehicles in the U.S. from 12 auto manufacturers with model years ranging from 2011 to 2018
were used (Table A1). Currently, there is a lack of information on the specification of BEVs, and BEV
manufacturers should disclose more of the aforementioned in the near future for better analysis and
studies. The data collected depended on the availability to the public. The raw data was extracted
from three main sources: INL (Idaho National Laboratory) website, EPA Fuel Economy website, and
the websites of BEV manufacturers and internet in general. INL had most of the vehicle specification
data for the cars because of their advanced vehicle testing activity. EPA-rated vehicle performance
data was obtained from the fuel economy website. Curb weight and other data were obtained from
internet sources such as “vehicle history” or directly from the manufacturers’ websites. A small subset
of data was also found from Argonne National Laboratory (ANL) website and the majority of their
data overlapped with our existing data set in Table A1 and so the ANL data was not referred to in
this analysis.

Peak battery power vs. 0–60 mph acceleration time (Table A2) and the influence of weather
conditions on fuel economy (Table A3) used the data obtained from INL. The car models are from
various manufacturers commercially available in the U.S. like Chevrolet, Kia, Mercedes, Volkswagen,
BMW, Ford, Nissan, and Mitsubishi. The model years ranged from 2011 to 2015. Battery weight vs.
battery capacity data were collected all above three sources and the raw data is provided in Table A4.

3. Results

3.1. Scaling Trend of Driving Range

Driving range per full charge is one of the most important performance parameters which
determines BEV sales and ownership. BEV owners charge their vehicles whenever and wherever
possible, explaining anxiety over BEV’s driving range. First, Correlations (data not shown) were found
between the EPA driving range per full charge of a battery (a.k.a. MMPC, Max Miles Per Charge) and
battery capacity. Better correlations (R2 > 0.73) were found with MMPC when the battery capacity
normalized by vehicle weight (i.e., battery capacity divided by vehicle curb weight), which makes
sense intuitively, and was used as shown in Figure 1. It is noteworthy that two different trends were
observed depending on the driving range of the vehicle. Three linear regression lines are presented:
the solid line is fit to all data, the dotted line is fit to vehicles with a long driving range (>150 miles),
and the dot-and-dash line is fit to vehicles with a short driving range (<150 miles). In addition,
blue markers represent Tesla vehicles while red markers represent non-Tesla vehicles. Due to the
abundance of data available over a range of vehicle weights, Tesla vehicles were separately categorized
in the Figure. Circles represents short-range BEVs, and triangles represent long-range BEVs. All of
Tesla vehicles, 2017 Chevy Bolt, and 2016 and 2017 BYD e6 belonged to the long-driving-range BEV
while the rest of the BEVs investigated in the current study belonged to the short-driving-range BEV.
Short-driving-range BEVs have a slope of 5002 miles/(kWh/kg) with R2 = 0.73; long-driving-range
BEVs have a slope of 6074 miles/(kWh/kg) with R2 = 0.91. The regression line drawn for all vehicles
had a slope of 8356 miles/(kWh/kg) with R2 = 0.96.

Jiménez-Palacios [14] first defined vehicle-specific power (VSP) as the instantaneous power
per unit mass of the vehicle. Many studies [15,16] used VSP to relate emissions to vehicle driving
conditions. If accurate values are known for input variables of VSP then one can obtain both driving
range and fuel economy by modeling. Sripad and Viswanathan [17] used a standard dynamic model
equation which is essentially a similar version of VSP to assess the battery power required for battery
electric semi-truck. Figure 1 contains valuable data to model driving range of light duty BEVs. Simple,
intuitive correlations can be extremely useful to develop and design a BEV. The data is also helpful to
understand characteristics of BEVs, as no comparable graph or data was found in the literature search.
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Figure 1. Scaling trend of EPA driving range (miles) per charge vs. battery capacity/vehicle curb 
weight (kWh/kg). Blue represents Tesla vehicles, red represents non-Tesla vehicles, circle represents 
short-range BEVs, and triangle represents long-range BEVs. 

3.2. Scaling Trend of Fuel Economy 

Many interesting trends were found for BEV fuel economy. EPA city, highway, and combined 
fuel economy data were reported in the MPGe unit. A relatively strong correlation was found 
between EPA city fuel economy (MPGe) and vehicle curb weight with a slope of −0.04 MPGe/kg and 
R2 = 0.73 as shown in Figure 2. Tesla Model 3 and Chevy Bolt showed the highest city fuel economy 
(131 and 128 MPGe) among the long range BEVs due to relatively lighter vehicle weights (1730 and 
1616 kg). On the other hand, 2015 and 2017 Mercedes B250e showed relatively lower fuel economy 
(85 MPGe) among short-range BEVs. 2016 and 2017 BYD e6 ranked as the lowest city fuel economy 
(73 MPGe) while 2017 Hyundai Ionic Electric ranked as the highest city fuel economy (150 MPGe) 
among all the BEVs investigated in this study. EPA city driving cycle represents urban driving, in 
which a vehicle is typically started in the morning (after being parked all night) and driven in stop-
and-go rush hour traffic. Barring Tesla Model 3, most of the Tesla vehicles were heavier than the 
other BEVs (>2027 kg in weight) and, therefore, not ideal to get the best city-fuel-economy for stop-
and-go driving conditions. 

Figure 1. Scaling trend of EPA driving range (miles) per charge vs. battery capacity/vehicle curb
weight (kWh/kg). Blue represents Tesla vehicles, red represents non-Tesla vehicles, circle represents
short-range BEVs, and triangle represents long-range BEVs.

3.2. Scaling Trend of Fuel Economy

Many interesting trends were found for BEV fuel economy. EPA city, highway, and combined fuel
economy data were reported in the MPGe unit. A relatively strong correlation was found between
EPA city fuel economy (MPGe) and vehicle curb weight with a slope of −0.04 MPGe/kg and R2 = 0.73
as shown in Figure 2. Tesla Model 3 and Chevy Bolt showed the highest city fuel economy (131 and
128 MPGe) among the long range BEVs due to relatively lighter vehicle weights (1730 and 1616 kg).
On the other hand, 2015 and 2017 Mercedes B250e showed relatively lower fuel economy (85 MPGe)
among short-range BEVs. 2016 and 2017 BYD e6 ranked as the lowest city fuel economy (73 MPGe)
while 2017 Hyundai Ionic Electric ranked as the highest city fuel economy (150 MPGe) among all the
BEVs investigated in this study. EPA city driving cycle represents urban driving, in which a vehicle is
typically started in the morning (after being parked all night) and driven in stop-and-go rush hour
traffic. Barring Tesla Model 3, most of the Tesla vehicles were heavier than the other BEVs (>2027 kg in
weight) and, therefore, not ideal to get the best city-fuel-economy for stop-and-go driving conditions.
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highway fuel economy was four times smaller than that of the city fuel economy, indicating highway 
fuel economy is less dependent on vehicle weight compared to city fuel economy. The 2017 Hyundai 
Ioniq and Tesla Model 3 showed the highest highway fuel economy among all BEVs with 122 and 
120 MPGe, respectively. The 2016 and 2017 BYD e6 showed the lowest highway fuel economy (71 
MPGe) followed by 2015 and 2017 Mercedes-Benz B250e (82 MPGe). The majority of BEVs had 
highway fuel economy in the range from 90 to 110 MPGe. The EPA highway fuel economy driving 
cycle represents a mixture of rural and interstate highway driving in a warmed-up vehicle, typical 
for longer trips in free-flowing traffic. Figures 2 and 3 show that long-range BEVs, which tend to be 
heavy due to battery weight, were more efficient for highway fuel economy than for city fuel 
economy. 

Figure 2. Scaling trend of EPA city (MPGe) fuel economy with vehicle curb weight (kg). Blue represents
Tesla vehicles, red represents non-Tesla vehicles, circle represents short-range BEVs, and triangle
represents long-range BEVs.

A weak correlation was found between EPA highway fuel economy (MPGe) and vehicle curb
weight with a slope of −0.01 MPGe/kg and R2 = 0.16 as shown in Figure 3. The negative slope
for highway fuel economy was four times smaller than that of the city fuel economy, indicating
highway fuel economy is less dependent on vehicle weight compared to city fuel economy. The 2017
Hyundai Ioniq and Tesla Model 3 showed the highest highway fuel economy among all BEVs with 122
and 120 MPGe, respectively. The 2016 and 2017 BYD e6 showed the lowest highway fuel economy
(71 MPGe) followed by 2015 and 2017 Mercedes-Benz B250e (82 MPGe). The majority of BEVs had
highway fuel economy in the range from 90 to 110 MPGe. The EPA highway fuel economy driving
cycle represents a mixture of rural and interstate highway driving in a warmed-up vehicle, typical for
longer trips in free-flowing traffic. Figures 2 and 3 show that long-range BEVs, which tend to be heavy
due to battery weight, were more efficient for highway fuel economy than for city fuel economy.
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Figure 3. Scaling trend of EPA highway fuel economy (MPGe) with vehicle curb weight (kg). Blue
represents Tesla vehicles, red represents non-Tesla vehicles, circle represents short-range BEV, and
triangle represents long-range BEV.

EPA combined fuel economy represents a combination of city and highway driving fuel economy
at 55 and 45% weightings. A negative linear relationship was found between EPA combined fuel
economy (MPGe) and vehicle curb weight with a slope of −0.025 MPGe/kg and R2 = 0.57 as shown in
Figure 4. The 2017 Hyundai Ioniq showed the best combined fuel economy (136 MPGe) followed by
the 2017 Tesla model 3 with a long-range package (126 MPGe) while 2016 and 2017 BYD e6 showed the
least combined fuel economy (72 MPGe) followed by 2015 and 2017 Mercedez Benz B250e (84 MPGe).
Apart from these, the long range BEVs (mainly Tesla and Chevrolet Bolt EV) had combined fuel
economy ranging from 86 to 104 MPGe while short range BEVs had combined fuel economy ranging
from 105 to 124 MPGe.
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Figure 4. Scaling trend of EPA combined fuel economy (MPGe) with vehicle curb weight (kg). Blue
represents Tesla vehicles, red represents non-Tesla vehicles, circle represents short-range BEV, and
triangle represents long-range BEV.

Vehicle weight vs. fuel economy relationship was extracted for conventional gasoline engine
powered vehicles from the latest EPA report on fuel economy [18] for comparison. Their Figure 3.9
shows unadjusted laboratory fuel consumption vs. vehicle weight for model year (MY) 1975 and
2016. Their data showed good linearity for gasoline-powered vehicles and it can be expressed in the
following equations.

y = −0.018x + 71.7 for MY 2016 (1)

y = −0.011x + 40.3 for MY 1975 (2)

where y is fuel economy in MPG and x is vehicle weight in kg.
The following equation from our analysis is the relationship between vehicle weight and fuel

economy for BEVs:
y = −0.025x + 150 for BEV (3)

where y is MPGe and x is vehicle weight in kg. It can be observed that the slopes are steeper in the
order of BEV, 2016 MY gasoline vehicles, and 1975 MY gasoline vehicles.

Vehicle weight vs. fuel economy relationship was also extracted for BEVs from 1994 DOE
competition [12] for comparison. The BEVs in this competition used DC-drive systems with lead-acid
batteries. They were tested at three different constant vehicle speeds of 88, 64 and 40 km/h in a
closed track for a fixed distance of 8 km. Their data is quite scattered and showed −0.16, −0.10 and
−0.10 MPGe/kg at 88, 64 and 40 km/h, respectively. While direct comparison is difficult between fuel
economy over a transient driving cycle and constant speeds, it can be inferred that fuel economy of
BEVs in 1994 DOE competition was much more dependent on vehicle weight compared to BEVs of
these days.
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Unique trends were found when EPA city fuel economy was plotted against EPA highway fuel
economy in Figure 5. Separate trend lines were found between Tesla and non-Tesla vehicles for
correlations between city and highway fuel economy. Non-Tesla vehicles showed better city fuel
economy for the vehicles with the same highway fuel economy as Tesla vehicles. This is because the
majority of non-Tesla vehicles are lighter in weight (except BYD e6) and therefore yield better city fuel
economy. On the other hand, Tesla vehicles are heavier (except model 3) with higher battery capacity
and therefore longer driving range with emphasis on highway fuel economy. City fuel economy
can also be related to the vehicle’s capability of recovering brake energy via regenerative braking in
addition to the vehicle weight. This energy recovery capability for each EV was not readily available
in the literature search; this parameter was neither tested by a standard method by any research
organization nor specified by the manufacturer. More research is needed to establish the correlation
between recovering brake energy and city fuel economy.
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Figure 5. Correlation between EPA city mileage and EPA highway mileage for light duty BEVs.

Acceleration performance is important for drivability and safety. Figure 6 shows that an inverse
power correlation was found between 0–60 mph acceleration time and peak power output from
battery/vehicle curb weight for 10 BEVs investigated in INL. Peak power output is another important
measure of the battery performance.

A relationship between battery capacity and battery weight was graphed in Figure 7. Assuming
a linear relationship, the slope was determined to be 0.18 kWh/kg. The value of the x-intercept was
124 kg, which is the average weight of inactive materials such as battery housing. Note, BEV makers
are striving to increase the energy density of their batteries. More data from the latest BEVs might
change the relationship in Figure 7 to be nonlinear. The linear line plotted in Figure 7 is merely a
reference with the existing data set available.

INL determined BEV fuel economy under different weather conditions such as summer driving
conditions at 95 F with solar load and AC on and winter driving at 20 F over UDDS (Urban Driving
Dynamometer Schedule) cycle on an environmentally-controlled chamber chassis dynamometer.
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This data was further analyzed in this study. Fuel economy data was normalized against that of a
normal temperature of 72 F with no AC on in Figure 8. On average, fuel economy drops by 19 ± 5%
for the summer driving condition and 47 ± 7% for the winter driving condition. Southern states
with short or no winters have huge advantages for BEV capacity compared to northern states with
harsher winters.
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4. Discussion and Conclusions

The results from this study can be used in many ways. BEV manufacturers can use the scaling
relationships for preliminary designs of new BEVs. The public (and/or engineers and scientists) can
use them to understand limitations and possibilities of current technologies and required improvement
of BEV parts for the future, especially in terms of battery weight, power density, and power output
for required and/or desired BEV performance. For instance, consider designing a BEV which has
400 miles driving range. Table 1 shows a sample calculation using regression lines in Figures 1–7
with assumed vehicle weights. It provides required battery weights and capacities with expected
fuel economies for different hypothetical vehicle weights. As expected, the results show that high
power density of battery and low curb weight of the vehicle are key parameters for the increasing
BEV efficiency. It is recommended to investigate other important aspects of BEV batteries especially in
terms of charging and discharging abilities in the future research.

Table 1. Hypothetical calculation to design 400 miles driving range BEV.

Vehicle
Weight (kg)

Highway Fuel
Economy (MPGe)

City Fuel
Economy (MPGe)

Battery
Capacity (kWh)

Battery
Weight (kg)

1000 108 141 54 437
1500 103 121 81 593
2000 98 101 108 749
2500 93 81 135 905
3000 88 61 162 1061
3500 83 41 189 1217
4000 78 21 217 1373
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More models of electric vehicles are available in recent years and it is important for engineers,
the public, and manufacturers to know the limitations and capabilities of the current technology.
This study provided these answers by looking into scaling trends of electric vehicle performance
parameters from model year 2011 to 2018. Excellent correlations were found between the EPA driving
range per full charge of a battery and the battery capacity normalized by vehicle weight (i.e., battery
capacity divided by vehicle curb weight). Short-driving-range BEVs (driving range < 150 miles)
have a slope of 5002 miles/(kWh/kg) with R2 = 0.73 while long-driving-range BEVs (driving range
> 150 miles) have a slope of 6074 miles/(kWh/kg) with R2 = 0.91. When a regression line was drawn
for all vehicles, the slope was found to be 8356 miles/(kWh/kg) with R2 = 0.96. A relatively strong
correlation was found between EPA city fuel economy (MPGe) and vehicle curb weight with a slope
of −0.04 MPGe/kg and R2 = 0.73 while a weak correlation was found between EPA highway fuel
economy (MPGe) and vehicle curb weight with a slope of −0.01 MPGe/kg and R2 = 0.16. Unique
separate trend lines existed between Tesla and non-Tesla vehicles for correlations between city and
highway fuel economy. Non-Tesla vehicles showed better city fuel economy for the vehicles with
the same highway fuel economy as Tesla vehicles. An inverse power correlation was found between
0–60 mph acceleration time and peak power output from battery/vehicle curb weight for 10 BEVs
investigated in Idaho National Laboratory. For a linear relationship, 0.18 kWh/kg, between battery
capacity and battery weight, the value of the x-intercept was 124 kg, which is the average weight of
inactive materials such as battery housing. Fuel economy data over the UDDS cycle was normalized
against that of a normal temperature of 72 F with no AC on. On average, fuel economy drops by
19 ± 5% for the summer driving condition with AC on and 47 ± 7% for the winter driving condition.

A lot of researchers want to improve vehicle parameters such as range and fuel economy but do
not have available material to refer to and draw assumptions from. With the graphs available from this
study, researchers can focus on developing one parameter using expected results of other parameters.
Battery technology varies with manufacturers and Tesla cars had the highest ranges. However, they had
lower city fuel economy owing to higher vehicle curb weight. While most of the lighter cars were not
as efficient as Tesla, there were some new vehicles like 2017 Hyundai Ioniq and 2017 Chevy Bolt EV
that had better fuel economy with lower curb weight than Tesla. Battery technology used for these
outlier cars can be investigated for future research. Improving battery technology and enabling a longer
driving range has an effect on Li-ion extraction rates and might require technology beyond Li-ion.
For this purpose, trends between current rates of Li-ion extraction, battery cost and capacity are all
factors that need to be further analyzed. The results of this study follow our intuition with specific
parameters and linear correlations. This study proposes key BEV specifications and performance test
results to be made publicly available and required by regulations in the future to promote research and
development of BEV technologies and to facilitate analysis like this study for the benefit of the public.
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Appendix A

Table A1. Vehicle data for fuel economy and driving range analysis (Figures 1–5).

Data
Source MY Make Model

Batt.
Capacity

(kWh)

EPA
Range
(miles)

EPA
City

(MPGe)

EPA
Highway
(MPGe)

EPA
Combined

(MPGe)

Battery
Type

INL 2014 BMW i3 18.8 81 137 111 124 Li-ion 2850
Internet 2014 BMW i3 22 81 137 111 124 Li-ion 2635
Internet 2015 BMW i3 22 81 137 111 124 Li-ion 2932
Internet 2016 BMW i3 22 81 137 111 124 Li-ion 2799

FE 2017 BMW i3 (60 A-hr) 22 81 137 111 124 Li-ion 2886
FE 2017 BMW i3 (94 A-hr) 33 114 129 106 118 Li-ion 2961
FE 2016 BYD e6 61.4 187 73 71 72 Li-ion 5247
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Table A1. Cont.

Data
Source MY Make Model

Batt.
Capacity

(kWh)

EPA
Range
(miles)

EPA
City

(MPGe)

EPA
Highway
(MPGe)

EPA
Combined

(MPGe)

Battery
Type

FE 2017 BYD e6 61.4 187 73 71 72 Li-ion 5247
INL 2015 Chevrolet Spark EV 18.4 82 128 109 119 Li-ion 2821
FE 2016 Chevrolet Sprark EV 19 82 128 109 119 Li-ion 2866
FE 2017 Chevrolet Bolt EV 60 238 128 110 119 Li-ion 3563

INL 2013 Ford Focus Electric 23 76 110 99 105 Li-ion 3616
Internet 2014 Ford Focus Electric 23 76 110 99 105 Li-ion 2995
Internet 2015 Ford Focus Electric 23 76 110 99 105 Li-ion 3624

FE 2016 Ford Focus Electric 23 76 110 99 105 Li-ion 3622
FE 2018 Ford Focus Electric 35 115 118 96 107 Li-ion 3640
FE 2017 Ford Focus Electric 33.5 115 118 96 107 Li-ion 3640

Internet 2014 Fiat 500e 24 87 122 108 116 Li-ion 2980
Internet 2016 Fiat 500e 24 84 121 103 112 Li-ion 2980

FE 2017 Fiat 500e 24 84 121 103 112 Li-ion 2980
FE 2017 Hyundai Ioniq Electric 28 124 150 122 136 Li-ion 3164

INL 2015 Kia Soul Electric 32.5 93 120 92 105 Li-ion 3334
FE 2016 Kia Soul Electric 27 93 120 92 105 Li-ion 3289
FE 2017 Kia Soul Electric 27 93 120 92 105 Li-ion 3289

INL 2015 Mercedes B-Class 35 87 85 82 84 Li-ion 3916
FE 2016 Mercedes B250e 28 87 85 82 84 Li-ion 3924

Internet 2017 Mercedes B250e 28 87 85 85 84 Li-ion 3924
INL 2012 Mitsubishi I-MIEV 16 62 126 99 112 Li-ion 2574
FE 2016 Mitsubishi i-MiEV 16 62 126 99 112 Li-ion 2579
FE 2017 Mitsubishi i-MiEV 16 59 121 102 112 Li-ion 2579

INL 2011 Nissan Leaf 24 73 106 92 Li-ion 3595
INL 2013 Nissan Leaf 24 75 129 102 115 Li-ion 3302

Internet 2014 Nissan Leaf 24 84 126 101 114 Li-ion 3298
Internet 2015 Nissan Leaf 24 84 126 101 114 Li-ion 3298
Internet 2016 Nissan Leaf (24 kwh) 24 84 126 101 114 Li-ion 3324

FE 2016 Nissan Leaf (30 kWh) 30 107 124 101 112 Li-ion 3323
FE 2017 Nissan Leaf 30 107 124 101 112 Li-ion 3323

INL 2015 VW e-Golf 24.2 83 126 105 116 Li-ion 3412
Internet 2015 VW e-Golf 24.2 83 126 105 116 Li-ion 3380

FE 2017 VW e-Golf 35.8 125 126 111 119 Li-ion 3455
FE 2016 VW e-Golf 24.2 83 126 105 116 Li-ion 3380

INL 2014 Tesla S 85 265 94 97 95 Li-ion 4514
FE 2016 Tesla S AWD-60D 60 218 101 107 104 Li-ion 4861
FE 2016 Tesla S AWD-75D 75 259 102 105 103 Li-ion 4861
FE 2016 Tesla S AWD-90D 90 294 101 107 103 Li-ion 4936
FE 2016 Tesla S AWD-70D 70 240 101 102 101 Li-ion 4861
FE 2016 Tesla S (60 kWh) 60 210 98 101 99 Li-ion 4656
FE 2016 Tesla S (70 kWh) 70 234 88 90 89 Li-ion 4656
FE 2016 Tesla S (75 kWh) 75 249 97 100 98 Li-ion 4656
FE 2016 Tesla S AWD-P90D 90 270 91 100 95 Li-ion 4936
FE 2016 Tesla X AWD-75D 75 238 91 95 93 Li-ion 5269
FE 2016 Tesla X AWD-90D 90 257 90 94 92 Li-ion 5269
FE 2016 Tesla X AWD-P90D 90 250 89 90 89 Li-ion 5379
FE 2016 Tesla X AWD-P100D 100 289 81 92 86 Li-ion 5269
FE 2017 Tesla S AWD-90D 90 294 102 107 104 Li-ion 4736
FE 2017 Tesla S AWD-60D 60 218 101 107 104 Li-ion 4647
FE 2017 Tesla S AWD-75D 75 259 102 105 103 Li-ion 4647
FE 2017 Tesla S AWD-100D 100 335 101 102 102 Li-ion 4736
FE 2017 Tesla S (60 kWh) 60 210 98 101 99 Li-ion 4469
FE 2017 Tesla S (75 kWh) 75 249 97 100 98 Li-ion 4469
FE 2017 Tesla S AWD-P100D 100 315 92 105 98 Li-ion 4941
FE 2017 Tesla X AWD-90D 90 257 90 94 92 Li-ion 5267
FE 2017 Tesla X AWD-P100D 100 289 81 92 86 Li-ion 5377
FE 2017 Tesla 3 (long range) 74 310 131 120 126 Li-ion 3814

Table A2. Vehicle data for acceleration time vs. peak battery power (Figure 6).

Model Year Make Model Acceleration (0–60 mph) (s) Peak Power from Battery (kW)

2015 Chevrolet Spark EV 7.9 133.3
2015 Kia Soul EV 10.5 89.8
2015 Mercedes B-Class 7.5 156.4
2015 Volkswagen E-Golf 12.2 94.8
2014 BMW i3 7.2 139.4
2014 Tesla Model S 5.5 274.6
2013 Ford Focus Electric 10.9 117.2
2013 Nissan Leaf 10.6 87.1
2012 Mitsubishi I-MIEV 14.9 53.4
2011 Nissan Leaf 10.5 85.6
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Table A3. Vehicle data for weather conditions vs. fuel economy (Figure 8).

Model Year Make Model MPGe @72F MPGe @95F with Solar Load MPGe @20F

2015 Chevrolet Spark EV 1 0.82 0.5
2015 Kia Soul EV 1 0.79 0.62
2015 Mercedes B-Class 1 0.87 0.51
2015 Volkswagen E-Golf 1 0.79 0.64
2014 BMW i3 1 0.84 0.48
2013 Ford Focus Electric 1 0.78 0.49
2013 Nissan Leaf 1 0.73 0.55
2012 Mitsubishi I-MIEV 1 0.89 0.45

Average 1 0.81 0.53
Standard
deviation 0.05 0.07

Table A4. Vehicle data for battery capacity vs. battery weight (Figure 7).

Model Year Make Model Battery Capacity (kWh) Battery Weight (kg) Battery Type

2017 Kia Soul Electric 27 277 Li-ion
2015 Kia Soul EV 32.5 203 Li-ion
2015 Chevrolet Spark EV 18.4 215 Li-ion
2015 Mercedes B250e 35 290 Li-ion
2015 Volkswagen E-Golf 24.2 313 Li-ion
2015 Nissan Leaf 24 295 Li-ion
2014 Nissan Leaf 24 300 Li-ion
2014 BMW i3 18.8 235 Li-ion
2014 Tesla Model S 85 545 Li-ion
2013 Ford Focus Electric 23 303 Li-ion
2013 Nissan Leaf 24 290 Li-ion
2012 Mitsubishi I-MIEV 16 227 Li-ion
2011 Nissan Leaf 24 294 Li-ion
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