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Abstract: In developing the U.S. 2017–2025 Light-Duty Vehicle Greenhouse Gas Emissions Standards,
the U.S. Environmental Protection Agency (EPA) modeled lithium-ion battery packs for future
electrified vehicles to estimate their direct manufacturing costs through 2025. As part of the
2016 Midterm Evaluation of the standards for model years (MY) 2022 to 2025, the analysis was revised
to account for developments in battery design since the 2012 rulemaking. This paper describes the
methodology that was used for estimating battery capacity, power, and cost, and compares the
projected cost estimates to other sources. An empirical equation is derived for specifying motor
power as a function of target acceleration time, and suggested factors for converting cell-level costs
to pack-level costs are developed.
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1. Introduction

The 2017–2025 Light-Duty Vehicle Greenhouse Gas Emissions Standards [1] were finalized in
2012 and represent a significant action to reduce greenhouse gas emissions. The rulemaking process
included an accounting of the cost of meeting the standards. EPA studied the incremental cost
of many advanced automotive technologies, including plug-in electric vehicles (PEVs), a category
that includes battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs [2–4].
Because much of the cost of a PEV is in the cost of the battery, it was necessary to develop a robust
and transparent methodology for projecting battery costs for these vehicles. Battery costs have many
drivers, and regardless of the methodology, future projections are subject to uncertainty. It is, therefore,
important to consider the methodology and assumptions when assessing the validity of cost projections
as conditions evolve over time.

At the time of the EPA final rulemaking (FRM) in 2012, the task of specifying plug-in vehicle
batteries for arbitrary combinations of vehicle size, power, and range was a difficult task. At the
time, few production vehicles were available either to establish the current state of technology or to
suggest the rate of its future advancement. Accordingly, our methodology employed a wide variety of
simplifying assumptions and estimation methods to conduct the effort in a practical way while using
calculation tools that are easily accessible to external reviewers [3]. This paper details the methodology
by which we projected future battery performance specifications and costs for MY 2025, including key
input assumptions derived from ongoing study of the emerging industry from 2012 through 2016.
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2. Materials and Methods

2.1. Structure of Analysis

The battery cost analysis described here was only one component of a much broader analysis
that modeled the cost and effectiveness of many efficiency-improving technologies, including not only
electrification but also advanced internal combustion engine, transmission, and road load reduction
technologies, among others. Potential penetrations of these technologies were projected across 29 different
vehicle types (as described at page 1–37 of [3]) to demonstrate how a cost-minimizing compliant fleet
could be achieved at various points in the timeframe of the rule and at what cost. The technology packages
considered included several types of PEVs having various targets for range, power, and mass reduction.
The battery cost analysis was one step in assigning cost to these vehicles through MY 2025.

As shown in Figure 1, the battery cost analysis began by defining an array of PEVs for which
lithium-ion battery packs would be specified and costs determined. This included five PEV types of
various ranges (75-mile BEV75, 100-mile BEV100, 200-mile BEV200, 20-mile PHEV20, and 40-mile
PHEV40), six baseline vehicle classes having different power and curb weight targets, and five levels
of target curb weight reduction (0, 2, 7.5, 10, and 20 percent). This resulted in a total of 150 PEV
instances [3]. A battery sizing spreadsheet converted each vehicle’s range target and mass-reduced
curb weight to a target battery and motor power (kW) and a target gross battery capacity (kWh).
The sizing spreadsheet was dynamically linked to the Battery Performance and Cost (BatPaC) model
developed by Argonne National Laboratory (ANL) [5], which provided specific energy (kWh/kg)
estimates for use by the sizing algorithm and direct manufacturing costs for each battery pack. For more
detail on the sizing algorithm see pp. 2–359 of [3].
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2.2. Calculation Method

The battery cost analysis is a spreadsheet-based methodology. An important first step in the
analysis is to estimate battery energy capacities and power requirements for the vehicles to be modeled.
Because capacity and power requirements are strongly influenced by vehicle weight, and battery
weight is both a function of and a contributor to vehicle weight, sizing the battery requires an iterative
solution. This problem is well suited to the iteration function available in common spreadsheet
software [3]. The use of a spreadsheet also makes the analysis easily accessible to public inspection.
To this end, further detail on the choice of inputs to this analysis [3] and access to spreadsheets used in
the analysis [6] are available.

BatPaC [5] is a spreadsheet-based lithium-ion battery costing model developed by ANL.
It employs a rigorous, bottom-up, bill-of-materials approach to battery cost analysis. User inputs
to BatPaC include performance goals (power and energy capacity), choice of battery chemistry (for
example, Lithium Manganese oxide (LMO) or several varieties of Nickel Manganese Cobalt oxide
(NMC)), the vehicle type for which the battery is intended (e.g. PHEV or BEV), the desired number of
cells and modules and their layout in the pack, and the volume of production. BatPaC then designs the
electrodes, cells, modules, and pack, and provides a complete, itemized cost breakdown [3]. From this
perspective, the main task in specifying a PEV battery pack is to determine the energy storage capacity
(kWh) and power capability (kW) that are needed to provide a desired driving range and level of
acceleration performance [3].

The battery cost model upon which BatPaC was based was described in a paper presented at
EVS-24 [7]. ANL later extended the model to include detailed analysis of manufacturing costs for
many types of PEVs [8]. EPA arranged for an independent peer review of the BatPaC model in 2011 [9].
We used Version 3.0 of BatPaC, provided to EPA on 17 December 2015. EPA continues to work closely
with ANL to test new versions of BatPaC and to guide the development of new features [3].

BatPaC models stiff-pouch, laminated prismatic format cells, placed in double-seamed, rigid
modules. The model supports liquid- and air-cooling, accounting for the resultant structure, volume,
cost, and heat rejection capacity. It takes into consideration the cost of capital equipment, plant
area and labor for each step in the manufacturing process and places relevant limits on electrode
coating thickness and other limits applicable to current and near-term manufacturing processes. It also
considers annual pack production volume and economies of scale for high-volume production [3].

2.3. Basis of Battery and Motor Power Specification

An initial step was to assign targets for peak powertrain power based on desired acceleration
performance. A commonly cited metric for acceleration performance is the time needed for a vehicle to
accelerate from zero to 60 miles per hour, also known as “0–60” time. At the time of the FRM in 2012,
EPA’s annual Trends Report [10] had customarily used an equation by Malliaris et al. [11] to estimate
0–60 time as a function of the ratio of rated engine power to equivalent test weight (ETW). Because this
relationship was derived from the behavior of internal combustion powertrains, we investigated its
applicability to the torque-delivering behavior of electric drive by surveying the peak motor power
ratings and acceleration performance of electrified vehicles present in the market between 2012 and
2017 and capable of pure electric 0–60 acceleration. As shown in Figure 2, comparing the empirical
data for PEVs (shown by the thin orange line) to the Malliaris equation (heavy black line) showed that
use of the Malliaris equation would have resulted in much higher power specification than necessary,
and would have led to overestimation of the cost of the motor and the battery pack.
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Figure 2. Relationship between peak-power-to-ETW ratio and acceleration performance for MY
2012–17 PEVs capable of pure electric acceleration.

We used an empirical fit of the PEV data plotted in Figure 2 to derive a new Equation (1) to relate
more accurately the ETW and rated peak power of an electric powertrain (kW) to 0–60 time (t, in sec).
While the exact relationship of rated power to acceleration would also depend on the gear ratio of the
final drive, the basis of the equation on empirical data suggests that suitable ratios exist and could be
chosen accordingly by the manufacturer.

t = 1.1321
(

kW
kg ETW

)−0.733
(1)

Motor power for each vehicle was assigned using this equation, beginning with the baseline ETW and
a target 0–60 time between 8.35 and 11 s depending on vehicle class. Because the needed power of the
motor and battery interacts with battery and vehicle weight, the power calculation must be performed
iteratively by the spreadsheet as part of the overall battery sizing process [3]. Because PHEV20 was
modeled as a blended architecture with engine assist, the motor power for these vehicles was set to half
of the total required power to represent the availability of engine assist, although we acknowledge that
vehicle designs may vary in this regard. Battery power was derived from motor power as described
later in Section 2.5.1.

2.4. Basis of Battery Energy Capacity Assignment

The next step was the specification of battery capacity needed for a given driving range. Range was
modeled as a real-world, EPA-label, 5-cycle fuel economy range by applying a derating factor to
an estimated EPA 2-cycle range. For BEVs, range was considered a beginning-of-life criterion,
in accordance with EPA range labeling practice. For PHEVs, however, manufacturers are likely
to consider mitigating loss of electric range because it will affect the utility factor, a component in the
calculation of CO2 emissions over useful life. The PHEV sizing algorithm therefore reserves a buffer to
be used as the battery ages, as described later in Section 2.5.1.

Battery capacity also depends on the vehicle energy consumption rate. This depends largely
on vehicle weight, road load, component efficiencies, and other factors. The process for estimating
energy consumption for each PEV was as follows. First its curb weight was estimated as equal to the
curb weight CWbase of the corresponding baseline conventional vehicle, modified by any applicable
curb weight reduction WRtarget (representing a curb weight reduction of 0, 2, 7.5, 10, or 20 percent),
and further modified by deletion of the weight of conventional powertrain components (for BEVs) and
addition of electric content (for BEVs and PHEVs), as shown in Equations (2) through (5) [3].

WRtarget = %WR ∗ CWbase (2)
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CWbase_reduced = CWbase − WRtarget (3)

CWBEV = CWbase_reduced − WICE_powertrain + Welectric_content (4)

CWPHEV = CWbase_reduced + Welectric_content (5)

The curb weights CWbase of conventional baseline vehicles were assigned based on average
weights for each of the six vehicle classes defined in the EPA baseline fleet that was generated for
the broader analysis. The divisions among the classes, being based in part on power-to-weight ratio,
are referred to here as “P2W class”. The P2W classes thereby establish target baseline curb weights
and power requirements as inputs.

The weight of conventional powertrain components that would not exist on a battery electric
vehicle (called “weight delete”, or WICE_powertrain) were estimated for each of the six vehicle classes,
as an approximate function of power. The weight of electric components (Welectric_content) included
an estimated weight for the electric drive (motor and power electronics) as well as the weight of the
battery. The weight of this content is computed iteratively by the spreadsheet, because it is strongly
influenced by the total weight of the vehicle as well as several other factors. Electric drive weight was
based on the targets established by US DRIVE [12] for the specific power of traction motors and power
electronics in the 2020–2025 timeframe, at 1.4 kW/kg combined. An additional weight of 50 pounds
was added to BEVs to account for the gearbox.

Battery weight was computed from an estimated battery specific energy (kWh/kg). Specific energy
is not a fixed value but will vary depending on the power-to-energy (P/E) ratio of the battery and
its gross capacity. Specific energy was provided by a dynamic link to ANL BatPaC, which computes
specific energy as one of its outputs.

The “raw” PEV curb weights represented by Equations (4) and (5) are typically significantly larger
than the curb weights of the conventional baseline vehicles on which they are based, because the added
weight of the battery is typically greater than the weight delete. However, the potential battery cost savings
may make PEV mass reduction more cost effective than that represented in the conventional baseline
vehicle [13]. As an approximate but straightforward way to directionally account for this effect, we further
constrained the iteration process by forcing CWBEV or CWPHEV for each vehicle to match the curb weight
of the corresponding baseline vehicle (CWbase_reduced) [3]. To do so, we solved for the percentage of mass
reduction that must be applied to the glider (a vehicle exclusive of powertrain) to offset the additional curb
weight. In cases where more than 20 percent glider mass reduction would be needed to fully offset the
difference, it was capped at 20 percent and only in these cases was the curb weight of the PEV allowed to
be larger than that of its baseline counterpart [3]. The degree of applied mass reduction is tracked for each
vehicle and its cost is included when estimating the total vehicle cost.

In theory, a similar result might have been attained by applying each mass reduction percentage to the
glider itself and allowing the resulting total curb weights to be unconstrained. A different set of data points
would have resulted, skewed toward cases with little or no mass reduction applied. However, because
we expect that mass reduction in PEVs is attractive to manufacturers for its potential to reduce battery
cost, data points representing little or no mass reduction are of limited interest. Generating a greater
density of points at greater percentages of mass reduction would therefore align better with expected
industry practice.

After determining the PEV curb weight (constrained in most cases to match the baseline curb weight,
but with a specific degree of applied mass reduction to do so), the method then computes the loaded
vehicle weight (also known as inertia weight or ETW) by adding 300 pounds to the curb weight [3]:

ETWPEV(lb) = CWPEV(lb) + 300 (6)

The method then uses this test weight to develop an energy consumption estimate.
First, it estimates the fuel economy (mi/gal) for a conventional light-duty vehicle of that test weight by
a regression formula derived from the relationship between 2-cycle fuel economy and inertia weight.
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Compiled data on fuel economy vs. test weight from the EPA Trends Report [10] provided the primary
data source. From this data, we derived a polynomial regression formula for fuel economy (mi/gal) as
a function of ETW, as shown in Equation (7) [3].

FEconv(mi/gal) = 0.0000005308 × ETWPEV2 − 0.0122335420 × ETWPEV (7)

An estimate of gross Wh/mile was then computed, assuming 33,700 Wh of energy per gallon of
gasoline, as shown in Equation (8):

Egross_FTP(Wh/mi) = (
1

FEconv
)× 33, 700 (8)

A series of adjustments was then applied representing assumed differences in energy losses
between conventional vehicles and electrified vehicles (this effectively brings the figure into electrified
vehicle space) [3]. Several powertrain efficiencies were estimated to assist in this conversion, including
battery discharge efficiency, inverter and motor efficiency, transmission efficiency and other losses
(such as wheel bearing, axle, and brake drag losses), and the percentage of energy delivered to the
wheels that is used to overcome road loads (that is, the portion of wheel energy that is not later lost
to friction braking) [3]. These efficiencies were selected based on engineering judgement and then
optimized in a model calibration step to yield battery capacity estimates in line with the capacities
seen in production PEVs of similar specifications.

Estimated road loads appropriate for PEVs were derived from those for conventional vehicles
by accounting for reductions in aerodynamic drag and rolling resistance. It was assumed that PEVs
would support drag and rolling resistance reductions of 20 percent relative model year 2008 baseline
conventional vehicles. Based on simulation models used in the broader analysis, we estimated that
a 20 percent reduction in each would reduce PEV road loads to approximately 90.5 percent of the
baseline. The effect of reductions in curb weight were inherently represented by use of the ETW
regression formula to convert curb weights into base energy consumption estimates [3].

The combined effect of these steps means that the estimated energy consumption of each PEV is
derived from the energy consumption of a corresponding baseline conventional vehicle by applying a
ratio of the road loads of the PEV (%RoadloadP/EV) to those of the baseline vehicle (%Roadloadconv = 1)
and a ratio of the assumed efficiencies (η) of the respective powertrains, as shown in Equation (9) [3].

EP/EV_FTP(Wh/mi) = Egross_FTP ∗ (
%RoadloadP/EV
%Roadloadconv

∗
ηvehicle_conv

ηvehicle_P/EV
) (9)

Equation (9) yields an unadjusted (laboratory), weighted, combined two-cycle (55% FTP, 45%
HFET) estimate of energy consumption. To convert this to an estimated real-world energy consumption
figure, the analysis applies a derating factor. Derating factors are discussed in a later section. As seen
in Equation (10), where the derating factor is illustrated with a value of 70 percent as an example,
applying the derating factor results in the PEV on-road energy consumption estimate that the method
uses to determine the required battery pack capacity for the vehicle [3].

Eonroad(Wh/mi) = EP/EV_FTP ∗ ( 1
0.70

) (10)

Finally, as shown by Equation (11), the required battery energy capacity (BEC) is calculated as the
on-road energy consumption (Wh/mile) multiplied by the desired range (mi), divided by the usable
battery capacity (the usable state-of-charge (SOC) design window). As discussed later, the assumed
SOC design window (SOC%) varied appropriately between BEVs and PHEVs [3].

BEC(Wh) =
Eonroad(

wh
mi )× range(mi)

soc%
(11)
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The iterative nature of the battery sizing problem means that all the preceding calculations are
constructed in a spreadsheet as circular references and performed iteratively by the spreadsheet
software until the estimated weights, sizes, and energy consumption figures converge [3].

2.5. Selection of Primary Inputs

Figure 1 (left of Figure) depicts the role of battery sizing assumptions and battery design
assumptions in the model. Battery sizing assumptions include parameters that determine necessary
battery power and capacity, such as vehicle weight, energy efficiency, usable capacity, specific energy,
mass of motor and power electronics, motor power, allowances for power and capacity fade, and similar
factors. Battery design assumptions include factors such as cell capacity, pack topology, cells per
module, thermal medium, electrode aspect ratio and coating thickness, and manufacturing volume.
These assumptions are reviewed in detail here.

2.5.1. Inputs Influencing Battery Sizing

One important input to the battery sizing process is the usable SOC design window. Based on
observation of existing vehicles, we chose 90 percent for BEV200 and 85 percent for other BEVs.
For PHEVs, a smaller window was assigned to beginning-of-life (BOL) and a somewhat larger window
to end-of-life (EOL). Battery capacity was specified using the BOL figure, which effectively provides
a buffer that can be used as the vehicle ages. The BOL SOC window for PHEV20 was placed at
approximately 65 percent while the EOL window was placed at 75 percent. For PHEV40, the BOL
window was 67 percent and the EOL window 77 percent. These figures were chosen by engineering
judgement and by considering their effect on the ability of the sizing method to reproduce battery
capacities of production PHEVs [3].

Another important input to the battery sizing process is the required power capability of the
battery. Target battery power (10 s pulse) was set to 32 percent greater than the peak motor power,
to account for losses in the motor (10%) and EOL power fade (20%). In the case of BEVs and many
longer-range PHEVs, target capacity drove the design more than target power, such that the battery is
sufficiently large that its natural power capability exceeds the target power. These batteries therefore
would have enough power capability to support moderate levels of fast charging and provide a buffer
against power fade [3].

In the analysis, PHEV40 was assumed to operate as a range-extended electric vehicle, which
meant that the motor and battery would be sized to provide all-electric operation in all driving
situations, and hence the PHEV40 range is all-electric. The battery and motor for PHEV20 were sized
for blended-operation where it was assumed the engine could assist the motor during the charge
depletion phase. All PHEVs were configured with a single propulsion motor, in contrast to some
production PHEV designs that split the total power rating between two motors. While we acknowledge
that most PHEVs include a second motor used primarily as a generator, the analysis did not assign
a separate weight to this component but considered it as part of the weight of the conventional
powertrain [3]. Although a PHEV application may allow some downsizing of the conventional portion
of the powertrain, the analysis did not consider potential weight reductions from this source.

The derating factor also plays a role in determining battery size. The EPA range labeling rule
allows manufacturers to determine the label range value either by applying a default 70 percent
derating factor to a 2-cycle range test result, or to derive a custom derating factor by an optional
process. According to EPA vehicle certification records for MY 2012–2016 BEVs, the vast majority of
BEV models used the default 70 percent derating factor. The same data shows that Tesla Motors has
elected the optional process for its BEV200+ vehicles resulting in a factor of nearly 80 percent for the
standard Model S (60 to 90 kWh), and from 73 to 76 percent for higher-performance and all-wheel-drive
versions of the S and X. We therefore adopted a derating factor of 75 percent for BEV200 and 70 percent
for all other PEVs.
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2.5.2. Inputs Influencing Battery Design

User inputs to BatPaC were chosen as follows. For performance, battery power and energy
requirements were derived from the battery sizing analysis described previously. Other considerations
were battery chemistry, cell and module layout, and production volumes. The pack voltages, electrode
dimensions, cooling capacity, and cell capacities that were output from BatPaC were confirmed to ensure
consistency with current and expected industry practice. Because the overall analysis accounted for
warranty costs separately, the warranty costs computed by BatPaC were deducted from the output costs.

For chemistry, we selected NMC622 cathode for BEV and PHEV40 packs, and a blended cathode
(25 percent NMC333 and 75 percent LMO, the BatPaC default value) for PHEV20 packs, both with
graphite anode. These selections were based on the known characteristics of the chemistries and their
representation in current and near-term production vehicles.

Pack topology was optimized by choosing values for cells per module and number of modules to
target a preferred cell capacity (in Ampere-hours). Since the number of modules per pack must be a
whole number, varying the number of cells per module allows the number of cells per pack and their
capacities to be better targeted. The number of cells per module were varied between 20 and 36 as
needed to achieve target pack voltages and maximum cell capacities [2].

BEV cells were limited to a maximum capacity of 90 A-hr. Most were significantly smaller as only the
larger BEV packs approached this limit. The BMW i3 94 Ah provides an example suggesting this can be an
effective cell capacity in a BEV application. PHEV cells were limited to 60 A-hr. Electrode coating thickness
was limited to 100 microns, which again was only approached by the largest BEV batteries. All packs were
modeled with liquid glycol-water cooling. Pack voltages were limited to the approximate range of 300 V
to 400 V. Electrode aspect ratio was 3:1, supported by recent developments in pack design that suggest a
movement toward low-profile packs that are mounted in the floor. BatPaC computed costs for a range of
manufacturing volumes from 50,000 to 450,000 packs per year.

3. Results

Battery Sizing and Cost Projections for Model Year 2025

Table 1 shows projected curb weight and gross battery capacity for MY 2025 vehicles for the various
PEV types and P2W classes. P2W classes are distinguished by relative power and weight, with Class
1 representing the smallest, least powerful vehicles. The two figures reported for each class represent
the extremes of the range of values resulting from 0 to 20% target weight reduction. In comparing these
figures to current production vehicles, it should be noted that these future vehicles in many cases reflect
improvements in road load and efficiency that may not be present in some current vehicles.

Table 1. Projected gross battery capacity for MY 2025 by vehicle type, power-to-weight class, and range.

PHEV20 (25%
NMC, 75% LMO)

PHEV40
(NMC622)

BEV75
(NMC622)

BEV100
(NMC622)

BEV200
(NMC622)

Curb wt.
(lb)

Gross
kWh

Curb wt.
(lb)

Gross
kWh

Curb wt.
(lb)

Gross
kWh

Curb wt.
(lb)

Gross
kWh

Curb wt.
(lb)

Gross
kWh

Class 1 2571
2868

6.2
6.6

2688
2868

12.4
12.9

2295
2868

16.4
18.6

2322
2868

22.0
24.8

2506
2868

37.9
41.0

Class 2 2987
3340

6.8
7.4

3137
3340

13.7
14.3

2672
3340

17.8
20.7

2703
3340

23.9
27.6

2903
3340

41.4
45.7

Class 3 3231
3613

7.2
7.8

3391
3613

14.5
15.3

2891
3613

18.7
22.1

2928
3613

25.1
29.4

3138
3613

43.6
48.7

Class 4
3644
4062

7.9
8.8

3851
4048

16.2
16.9

3249
4062

20.3
24.6

3292
4062

27.3
32.9

3519
4062

47.6
54.4

Class 5
4377
4902

9.5
10.9

4643
4902

19.8
21.3

3934
4902

23.9
30.8

4008
4902

32.4
41.0

4325
4902

56.8
67.9
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Table 2 shows the range in projected cost per kWh for each MY 2025 PEV type and P2W
class at a production volume of 450,000 packs per year. It is well known that battery cost, when
expressed on a cost per kWh basis, is sensitive to total pack capacity and power-to-energy (P/E) ratio.
Accordingly, the costs for these packs, for which designs and costs were determined by BatPaC, reflect
these trends, with the highest specific cost per kWh projected for smaller PHEV20s and the lowest
specific cost for larger BEV200s.

Table 2. Projected pack-level direct manufacturing costs for MY 2025 by vehicle type and range ($/kWh, 2015$).

PHEV20 PHEV40 BEV75 BEV100 BEV200

Class 1 371–388 250–258 205–223 173–185 145–151
Class 2 352–365 242–251 193–211 165–177 137–144
Class 3 337–361 237–247 186–205 159–172 133–140
Class 4 319–346 232–246 176–204 155–165 126–134
Class 5 277–309 227–241 160–189 146–155 115–124

4. Discussion

4.1. Validation of Battery Sizing

Here we assess the effectiveness of the battery sizing methodology by comparing the battery
capacities in production vehicles to those that would be predicted by the methodology for their
respective curb weights, driving ranges, and derating factors used in certification. As shown in Table 3,
the methodology predicts capacities quite close to those seen in several existing BEVs.

Table 3. Comparison of projected capacities to those of selected production vehicles.

Example Range (mi) Curb Weight (lb) Derate Factor Gross kWh Projected Gross kWh Error

Nissan Leaf 107 3340 0.70 30 30.3 1%
Chevy Bolt 238 3580 0.70 60 61.6 3%

Model S P85D 253 4963 0.738 85 88.75 4%
Model S 60 210 4323 0.796 60 57.5 −4%
Model S 85 265 4647 0.796 85 84 −1%

One uncertainty affecting the comparison is the true usable capacity of each vehicle, as compared
to our assumptions of 90 percent for BEV200 and 85 percent for other BEVs. Manufacturers do
not consistently publish usable capacity and it is difficult to verify the accuracy of reported values.
Another uncertainty is the true gross capacity, for which reported values may be similarly imprecise.
Differences in vehicle efficiency from our assumptions may also affect the comparison.

Figure 3 illustrates another perspective aggregated over a larger population of examples.
The battery capacities of actual and projected vehicles are normalized to curb weight, which more
directly expresses the efficiency with which a vehicle of a given weight converts gross battery capacity
to miles of label range. In the figure, the battery capacity per unit curb weight (kWh/kg) of comparable
production BEVs is compared against that of comparable MY 2016–2017 production BEVs. A 75 percent
range derating factor is assumed for BEV200+ vehicles (the plotted range of production vehicles that
certified with a different derating factor was adjusted to represent what their range would have been if
they had certified using a 75 percent factor. It can be seen that the predicted BEV battery capacities
closely follow the trend line established by comparable MY 2016–2017 BEVs. Results for PHEVs
were similar.
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production BEVs [3].

On close examination of the plot, it can be seen that for vehicles with shorter ranges, such as
BEV75, BEV100, and PHEV20 (not shown), the trend line for projected capacity runs slightly below the
trend line of production vehicles, as the methodology is tuned to predict future capacities for these
vehicles somewhat smaller (on average) than are currently found in MY 2012–2017 production vehicles.
This reflects our expectation that vehicles from that time frame that were marketed with a short range
(which in the figure are represented largely by relatively low-production examples from a diversity of
manufacturers) may tend to embody a lesser degree of optimization than the longer-range data points
which represent higher-production examples from a smaller group of other manufacturers (Tesla and
General Motors). In other words, we expect a slightly greater potential for future powertrain efficiency
improvement to remain for these shorter-range vehicles than for longer-range vehicles, relative their
current state.

4.2. Validation of Cost

It is important to reiterate that battery costs are affected by many influences, and future projections
are subject to uncertainty. Comparing one set of projections to those from other sources requires a full
understanding of the factors considered by each source. As a first-level comparison, here we compare
our projected costs to two widely reported sources that are commonly cited in similar comparisons in
the literature.

4.2.1. Estimating Pack Costs from Cell Costs

One way to validate cost estimates is to compare them to examples of actual costs. Cost at a pack
level is rarely disclosed publicly but is sometimes encountered at the cell level. Here we develop a
basis for comparing cell costs to pack costs to enable a comparison to the pack costs estimated here.

We collected several sources that suggest a ratio of total pack cost to constituent cell cost, or that
allow such a ratio to be derived [14–20]. Further detail on our use of these sources is provided at pp.
5–124 of [2]. As seen in Table 4, most of these sources suggest a ratio of about 1.25 to 1.4.

To further inform this issue, we derived pack-to-cell ratios from costs estimated by BatPaC for
a pack configured similarly to that of the Chevy Bolt. The Bolt pack is 60 kWh, arranged 96S3P in
ten modules with a varying number of cells per module. Because BatPaC requires a fixed number of
cells per module, we modeled 100S3P in ten modules of 30 cells using NMC622-G chemistry at annual
production of 100,000 packs and a target 10 s pack power of 100 kW. Figure 4 shows the ratio of pack
cost to cell cost for various pack capacities of this construction and suggests a factor of about 1.3 would
apply to a 60-kWh pack.
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Table 4. Ratios of total pack cost to cell cost suggested by information in published sources.

Source Ratio

Kalhammer et al. [14] 1.24–1.4
Element Energy [15] 1.6–1.85

Konekamp [16] 1.29
USABC [17] 1.25

Tataria/Lopez [18] 1.26
Keller [19] 1.2
UBS [20] 1.32–1.44
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4.2.2. Comparison of Projected Costs to Other Sources

In October 2015, General Motors (GM) publicly commented on its cell costs for the Chevy
Bolt BEV [21]. These costs have been widely reported in the literature and are frequently cited in
comparison to future projections. GM reported a cell cost of $145 per kWh for 2015 to 2019, dropping
to $120 per kWh in 2020 and to $100 per kWh in 2022. Assuming cell-to-pack factors of 1.3 and 1.5,
the 2015–2019 figure would translate to $190 to $220 per kWh on a pack level, while the figures for
2020 and 2022 would translate to $156–$180 and $130–$150 per kWh, respectively. Our estimates for
BEV200 pack cost, which range from approximately $120 to $150 per kWh and which we attribute to
2025, compare well to the 2022 pack-converted costs of $130–$150 per kWh.

The analysis described in this paper generated costs only for the year 2025 and only for the six
P2W classes modeled. These costs acted as inputs to a downstream analysis (not described in this
paper) that generated costs for intervening years by applying a reverse learning curve based on a
range of production volumes, for a group of specific PEV technology packages corresponding to the
29 vehicle classes considered in the broader analysis. The yearly estimates resulting from these curves
were ultimately used to project PEV vehicle costs in the broader analysis and are somewhat more
conservative on a cost per kWh basis as compared to the raw 2025 costs reported in Table 2.

Figure 5 compares the yearly cost estimates for the various P2W classes of BEV200 to the
pack-converted GM costs. Our estimates appear consistent with or somewhat conservative relative the
trend established by the estimated GM cost (converted to pack-level cost).
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As a further comparison, Figure 6 plots our estimated costs for larger packs (PHEV40 to BEV200)
against the survey of published future cost estimates reported by Nykvist and Nilsson [22]. Our estimated
costs for these packs also lie within the range of future cost trends suggested by this survey.
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5. Conclusions

We outlined a spreadsheet-based method to project battery gross capacities, motor and battery
power ratings, and battery costs for an array of future PEVs. A relationship between 0–60 time and
the power rating of the electric drive motor was derived from empirical data. A range of cost ratios
between total pack cost and constituent cell cost was derived from published sources and BatPaC
output data to assist in the comparison of cell costs to pack costs. The projected battery capacities
appear to align well with trends established by production PEVs in the market. Projected costs for
BEV200 appear consistent with widely cited cell costs for a production BEV, and projected costs for
PHEV40 and BEVs appear consistent with trends described in the literature.

Supplementary Materials: Supporting data is available online at Regulations.gov, in EPA Docket
EPA-HQ-OAR-2015-0827. For chart data, search for Docket Item “EPA-HQ-OAR-2015-0827-5788” titled Data and
Charts for Selected Figures in Electrification Chapters of Proposed Determination TSD and see Microsoft Excel
attachment to that entry. For BatPaC modeling data, search for “EPA-HQ-OAR-2015-0827-5824” and follow the
instructions given therein to locate and examine the source data.
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