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Summary 

The Electric Power Research Institute (EPRI) and its project partners have developed some of the highest 

resolution and most complete Light- and Medium-Duty Plug-in Hybrid Electric Vehicle Truck operational 

data for Odyne and Via trucks.  This data was collected through a CDMA / GMS transmitter plugged into 

the CAN communication bus of the fleet.  This paper discusses the process of transforming these raw 

datasets into a scientific database of driving and charging events using data quality management, filtering, 

processing and decision support tool development.  The result is a dataset with demonstrable utility for 

vehicle design, policy analysis, and operator feedback.  

Keywords: PHEV (Plug in Hybrid Electric Vehicle), Medium-Duty, Bucket Truck, Data Acquisition, Policy 

1 Introduction 

The Electric Power Research Institute (EPRI) and the US utility industry are interested in understanding the 

means by which grid electricity will enter the transportation energy sector.  The quantity, timing, and 

statistical distribution of electricity consumption have near-term and long-term effects on utility planning 

for loads, assets, profitability, and sector growth [7, 12]. 

In the near-term, the function of the various types of OEM (original equipment manufacturer) electrified 

vehicles that are for sale is the most effective indicator of how consumers will use electrified vehicles [1, 7, 

14].  To gather data on the function of these vehicles and the behavior of their users, EPRI and The US 

Department of Energy have developed a program to gather and store GPS (geographical positioning 

system) derived location data along with detailed vehicle operation data from a sample set of light- and 

medium-duty PHEV trucks being utilized as utility bucket trucks and general support trucks [14].  Because 

of the very large scope of this effort, there exists a need to synthesize these large datasets into databases and 

toolsets that can communicate the results of these studies to researchers and stakeholders.  

With the development of distributed data collection technologies, many other researchers have developed 

techniques to collect, store and synthesize operation data from vehicle fleets [1, 8, 9, 10, 11, 12, 13, 14].  

Characterizing the operation of PHEVs is of particular interest to transportation system researchers because 

of the well-documented dependency of vehicle fuel consumption on individuals’ driving and charging 

habits [1, 2, 3, 6, 8, 10, 11, 12].  In many previous studies [1, 10, 11, 12], datasets have relied on the data 

collected from private individuals, and have therefore encountered privacy and traceability concerns.  In 

this study, we have collected vehicle operation data from commercial light- and medium-duty vehicles.  In 

general, these vehicles represent a unique study subset of the US vehicle fleet that have not been studied in 
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detail before. In addition, because these are fleet-owned vehicles, the collection of correlated GPS and 

vehicle operational data does not present as many privacy concerns.  

On the other hand, the increased scope of this data collection effort has led to a variety of technical and 

“big data” management challenges that have been addressed.  In discussing the “reality” of these data 

collection projects, their limitations, and the technical means used to generate results from them, this paper 

seeks to improve and contribute to the state of the art in the field of large-scale big data transportation 

system data collection projects.  

Colorado State University (CSU) has developed an algorithm to identify drive and charge events from the 

raw vehicle data files with the 1-second data sampling frequency.  These results can be viewed directly in 

an Excel Spreadsheet format with charts as demonstrated in the Decision Support Tools Development 

section, or used for additional scientific analysis, as demonstrated in the Results section.  By summarizing 

the low-level high frequency data into a list of higher level events, the data size can be greatly reduced into 

a format that provides great utility for answering policy, vehicle design, and operational questions about the 

vehicle fleet using significantly less computational power. 

 

2 Methods 

2.1 Dataset and Project Overview 

In this project, EPRI and CSU sought to summarize the very large raw dataset to produce a smaller subset 

of data with immediate utility to answer policy, design, and operational questions about PHEV vehicles. 

This summary data was then used to calculate the actual energy consumption of these light- and medium-

duty vehicles, investigate charging frequency, and generate utility factor curves.  This was done using 

vehicle-derived data, including driving distance, battery state of charge, fuel injection rate into the engine, 

charging station power, and more.  

For this analysis, the EPRI Commercial Truck dataset was used [14].  This dataset was brought online in 

January 2015, and the analysis in this paper covers data collected through July 2015.  There are two 

different fleets of vehicles in this dataset.  The first fleet consists of 119 medium-duty Odyne Electric 

Trucks, and the second fleet consists of 177 light-duty Via Electric Trucks [14]. 

To collect this data, tracking devices were integrated with the CAN communication bus of these vehicles, 

and a CDMA / GMS transmitter was used to send information to a central database.  Most of the CAN 

signals were recorded every second while the vehicle was in operation, so the data sampling frequency was 

very high [14].  High-rate data sampling has many advantages.  For example, it provides the capability to 

investigate short term events and improves the overall accuracy of calculation.  However, the high data 

resolution also presents challenges in terms of managing and processing large amounts of data.  In total, 

about 160GB of CSV data were downloaded from the central database and processed for this analysis 

work.  A MATLAB script running on a single core took multiple days to fully analyze the dataset.  Note 

that not every CAN communication bus signal was utilized for this study, and the data that was downloaded 

from the full database is just a subset of the total available data from the vehicle fleet. 

Due to privacy considerations based on the information contained in the database, this dataset is not 

publically available and is considered protected information.  EPRI is solely responsible for granting and 

denying access to this dataset.   

 

2.2 Data Management and Quality 

The dataset was originally downloaded directly from EPRI’s main database hosted on Amazon Redshift 

using an R script with embedded SQL.  The Amazon Redshift database already had some low-level 

filtering applied to the data to eliminate known bad sensor data.  The SQL embedded in R was used to filter 

out irrelevant CAN signals at the very beginning of the analysis, so they wouldn’t have to be parsed 

through later in the resulting CSV files.  These R scripts created a single CSV file for each vehicle month, 

which were then processed in MATLAB.  
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The first step of the MATLAB processing involved converting the CSV data into a .mat file data format 

and performing some basic data validation.  Resaving the data added time to the overall processing 

sequence, as the data had to be written to and read from the disk an extra time.  However, it was also 

generally more beneficial to save intermediate data, so that later processing steps could be rerun without 

reprocessing all of the data through the preliminary steps. Due to the large file size, a feature was built into 

the code that would only read in a portion of a CSV file to break up those files into multiple .mat files.  

These .mat files could then be loaded individually into the computer memory for analysis to avoid 

overloading the available RAM. 

Basic data validation was also performed in this preprocessing step.  The basic data validation primarily 

verified the data file format, such as correct number of table columns and proper delimiters.  Most of the 

data was properly formatted, but it was also important to remove even very uncommon errors to prevent 

later analysis scripts from crashing.   This data cleaning made the general analysis process more robust.  

 

2.3 Data Processing and Filtering - Compiling Driving Events List from Raw Data 

To analyze the raw data into meaningful results, the data processing and filtering steps were closely 

integrated.  Often, the data was re-filtered after each processing and analysis step.  This section walks 

through the process of how the raw 1-second sampling frequency data was converted into a meaningful list 

of vehicle driving events.  These driving events were also presented along with associated statistics, such as 

trip distance, time duration, energy usage, and State of Charge (SOC).  Then, the next section shows how 

this algorithm to identify driving events can be modified to identify charging events. 

The biggest challenge to identifying these drive events was data quality, as there are some situations where 

the data for an event is incomplete.  Therefore, it is critical for this algorithm to be reasonably robust when 

applied to imperfect data that contains some errors, while remaining effective enough to still produce 

realistic results.  

A drive event is considered to be a single vehicle trip starting when the vehicle begins moving and ending 

when the vehicle stops moving.  Each drive event is recorded in a single spreadsheet row, along with 

additional information about the date, the time, the trip duration, the distance traveled, the fuel and 

electricity consumption, the initial battery state of charge, the final battery state of charge, and information 

identifying the individual vehicle.   

The drive mode for each vehicle was also identified along with each drive event, and these are categorized 

as Charge-Depleting (CD), Charge-Sustaining (CS), or Blended driving mode.  A charge-depleting mode is 

when the vehicle is driving only on battery power, and this drive mode is powered by energy from the 

electric grid.  A charge-sustaining mode is a traditional Hybrid Electric Vehicle (HEV) mode, in which 

energy from the gasoline engine is recaptured and stored in the battery and the source of vehicle energy 

comes from conventional gasoline.  A blended drive mode is a variation of charge-depleting mode where 

the gasoline engine is used to slow the rate of battery depletion, and the vehicle is operating on both grid 

and gasoline energy.  For Odyne, the vehicle only operates in a blended and CS mode, so there is no CD 

mode on Odyne. On Via, the vehicle only operates in CD and CS modes, and the Blended mode is used to 

categorize driving events where the vehicle transitions from CD to CS mode [14].  How the driving modes 

are defined could also be further refined in future analysis work. 

Data processing and filtering began after the data was converted into a MATLAB data format, as described 

in the Data Management and Quality Section.  When the analysis was run, any individual vehicle data file 

that had less than 5000 logged data points in a month was removed from the analysis.  These small data 

files could have been the result of vehicles that were never driven or vehicles that did not have a functional 

tracking system installed.  Then, the following data points for relevant CAN bus messages were extracted: 

Vehicle Speed, Vehicle Odometer, Battery State of Charge, Vehicle Charging Station Voltage (when 

vehicle is being charged), Vehicle Charging Station Current, and Engine Fuel Injection Rate.   

Once these messages were extracted, each signal was run through a time stamp filter that removed 

duplicate time stamps.  This step was very important, as occasionally there were multiple different values 

reported at the same time for a single CAN bus signal.  These multiple reported values caused significant 
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problems later in the data analysis script if not removed. The algorithm kept the first reported value and 

removed the rest. 

Next, the data points from the fuel injection rate, battery voltage, battery amperage, and battery SOC were 

interpolated onto the timestamp values for vehicle speed using linear interpolation.  Since the data was 

collected asynchronously, interpolation was a good method to realign and project all of the data vectors for 

different signals onto a single time stamp value.  Vehicle speed timestamps were used for the projection 

target because these data points were generally only recorded when the vehicle is driving.   

Drive events and modes were then estimated based on the following criteria:  

1) Vehicle speed greater than 0.01 mph was considered driving (vs. other events in the data such as 

charging, etc).   

2) Charge-Sustaining (CS) mode occurred when the battery was at less than 5% SOC for Odyne, 

and was at less than 22% SOC for Via.  

3) Charge-Depleting (CD) mode occurred when the vehicle was driving and not in Charge-

Sustaining Mode.   

See the sample MALTAB code below to illustrate this logic process.  Note that these steps were applied to 

all of the raw data points collected at the 1-second sampling frequency.  Later on, once more information 

was compiled about the driving events, the CD and CS modes were redefined.   

  % Filter for identifying all drive events  
  Drive_Filter = Drive_Speed > 0.01; 

   
  % State of charge limit for CS Mode in Battery % SOC 

  CS_SOC_Limit = 5; % Odyne 

  % CS_SOC_Limit = 22; % Via 

 

  %% Primary Filters 

  % A CS Event is when the vehicle SOC is below the CS SOC Limit 

  CS_Filter = (Drive_Filter & Drive_SOC < CS_SOC_Limit); 

   
  % A CD Event is any time the vehicle is driving and is not in CS mode 

  CD_Filter = (Drive_Filter & ~CS_Filter); 

Next, to find the start and end locations for each drive event, the script looked for a change in the vehicle 

trip conditions where the drive conditions transitioned from true to false in the list of all raw data points.  

This was done by creating a logical vector based on the drive criteria, offsetting the values by one index 

value to create another offset vector, and then subtracting the vectors.  Any non-zero value in the resulting 

vector indicated a change in driving conditions, and the sign of the value indicated whether the vehicle 

started or stopped driving.  To augment this method, a secondary method was also implemented to identify 

large gaps between time stamps greater than 300 seconds.  Any event with a time stamp gap greater than 

300 seconds was split into two different events at the time gap, as it was assumed that the lack of recorded 

data indicated that the vehicle was not running.  Note that the data collection system installed on the 

vehicles only recorded data points when the vehicle was in operation or charging.  If any of the start and 

end times for an event were equal, that event was removed from the dataset.  Next, if any 2 events took 

place less than 120 seconds apart, they were recombined into a single event, as a stop of less than 2 minutes 

was considered inconsequential.  Finally, any drive events with less than 5 data points were removed to 

prevent small idiosyncrasies in the data from being recorded as significant events.  Filtering out these small 

blips in second-by-second sampling frequency data was very important, because there were often small 

anomalies in the data that added noise to the bigger picture.  Combined, these methods robustly identifed 

events when the vehicle was driving. 

Once the start and end times of drive events were located, those starting and ending time stamps (or index 

values) were used to locate other relevant information from the dataset to calculate statistics of interest for 

any particular driving event.  The statistics calculated for each event include distance traveled, fuel used, 

electric energy used, change in SOC, the start time and date, and the event duration.  A trapezoidal 
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integration was also used to find the integrated values of some variables, such as fuel use, distance traveled, 

and electric energy usage when only the time-rate signal was available.  Note that speed was integrated to 

calculate distance even though an odometer signal was available because some of the Via odometer data 

was known to be faulty.  Ideally, an odometer signal should be used to calculate distance if it is available, 

but that was not the case for this dataset. 

At this point, some of the previously defined charge-depleting trips were redefined to be either blended or 

charge-sustaining mode, based on additional information from the relevant summary statistics for each 

event. 

For this data analysis, a vehicle charge-depleting trip was redefined as blended mode when: 

1) The delta SOC for a previously identified charge-depleting trip was negative (i.e. charge was 

decreasing),  

2) The fuel consumption was positive, and  

3) The initial SOC was above the CD / CS transition SOC that was set at 5% for the Odyne analysis 

and 22% for the Via analysis.  

Charge-depleting trips were redefined to be in charge-sustaining mode based on the following criteria: 

1) Delta SOC increased over the duration of the event. 

2) Fuel consumption was greater than zero and the vehicle was not in blended mode.  

Every other condition was considered to be a charge-depleting mode.  See sample MATLAB code below to 

illustrate this logic: 

Blended_Condition = ((CD_SOC_Delta < 0) & (CD_Fuel > 0) & …   

  (CD_SOC_Initial > CS_SOC_Limit)); 
CS_Condition = (CD_SOC_Delta >=0 | (CD_Fuel > 0 & ~Blended_Condition)); 
   

for Iteration = 1:number_of_charge_depleting_events 
  % Determine Drive Mode 
  if Blended_Condition(Iteration) 
    CD_T_Mode{Iteration} = 'Blended'; 
  elseif CS_Condition(Iteration) 
    CD_T_Mode{Iteration} = 'CS'; 
  else 
    CD_T_Mode{Iteration} = 'CD'; 
  end     

end  

 

This last step produced the final values used to define the driving event modes in the event summary 

spreadsheet.  The final results were then exported into an Excel spreadsheet format.  This completed the 

data processing and filtering needed to identify drive events.  These results can be reimported into 

MATLAB for additional analysis or viewed as a stand-alone document.   

 

2.4 Data Processing and Filtering - Compiling Charging Events List from Raw Data 

The algorithm used to identify charging events is similar to the algorithm used to identify driving events.  

For this analysis, a charge event is considered to be a time duration when power was being delivered to the 

battery from the charging station.  Alternatively, a charge event could possibly be defined as a time when 

there was a voltage across the charging station. Using only voltage would account for time when the 

vehicle was plugged in but already fully charged, as power transfer stops when the battery is full. 

 

Charge events are also identified as Level 1, Level 2, or Level 2+ charges, which depends on the charging 

station type.  A Level 1 charger has a charging level of 120 volts, a Level 2 charger has a charger voltage of 

240 volts, and a Level 2+ charger has a charger voltage of 240 volts with a power greater than 3.3kW [5].  

The charge level for charging events was determined by finding which of the rated charging station voltage 

levels the actual charging voltage signal was closest to. 
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Here are some notable differences in the charging events summary calculation when it’s compared to the 

driving events summary calculation: 

1) This calculation used signals for the charging station voltage, charging station current, and vehicle 

battery SOC. 

2) A vehicle was considered to be in a charging event when: 

a. The charging power was positive and greater than 100 watts.  Charging station power was 

calculated by multiplying the charging station current signal by the charging station 

voltage signal. 

b. The duration of the charging event was greater than 2 minutes. 

3) All signals were interpolated onto either the Charging Station Voltage or Charging Station Current 

signal time stamps.  The projection target was chosen to be the signal with the most time stamp 

values.   

4) Any event with a time stamp gap greater than 2400 seconds was split into two different charging 

events at the time gap.  Any two events with a time stamp gap of less than 2400 seconds were 

combined into a single charging event. 

5) Charging events with no change in SOC were removed.  Then, the final state of charge was defined 

as the maximum SOC for the charging events, due to errors caused by approximating end locations 

of the charging event.  This removed some negative delta SOC values.  After the final SOC was 

redefined, any charging event that still had a negative change in SOC was removed. 

 

2.5 Code Validation 

Result validation is very important to the data analysis process.  Just because a data analysis script reads in 

data and produces numbers does not guarantee that those results are useful or accurate.  Therefore, it is 

critical to build validation tools into the data analysis script to track the script execution process so 

intermediate steps can be evaluated.  Below is a list of some of the validation tools that were developed for 

this project. 

 A system to track custom error messages was embedded into the script, so that problems with 

individual files could be traced back to a specific point in the dataset.  The data analyst still had to 

define and program the error code definitions into this framework, based on their discretion. 

 In addition, there was an option to easily create custom graphs of intermediate data from the data 

analysis process for each vehicle.   

 A run log of console print screen output was also recorded.  It was up to the data analyst to add 

print screen statements into the code to document the script execution process in a useful manner.  

 

2.6 Decision Support Tool Development 

Once the raw data was compiled into an event summary spreadsheet, it was very easy to post-process the 

data into charts and figures.  Additional software could be written to visualize the data, such as a web app, 

or the data can be processed directly in Microsoft Excel.  Below are some sample Excel graphs to 

demonstrate how the event summary data can be quickly visualized to support fleet management decisions, 

vehicle design, public policy, and research questions.   
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Figure 1: Examples of Data Visualizations in Excel for Decision Support 

  

Figure 2: Examples of Data Visualizations in Excel for Decision Support 

 

2.7 Recommendations for future analysis work 

For future work, here are some additional suggestions that could possibly be used to improve the data 

analysis methodology outlined in this paper.  These suggestions were not widely implemented in this study, 

but are instead seen as logical next steps to build on the methods presented in this paper. 

As datasets grow larger, it will become more important to parallelize the data analysis algorithm and run it 

on a computer cluster or multi-core machine.  For this study, some very initial preliminary work was done 

in the area of code parallelization, but it was found that the same results could be produced with less coding 

work and hardware investment by just letting the machines run for longer.  However, if the data size grew 

by another order of magnitude or if tighter deadline ruled out multi-day run times, parallel computing 

would have a much larger payoff and should be considered.   

More of the available CAN communication bus signals could be integrated into the Utility Factor 

calculation to develop additional alternate Utility Factor calculations.  For example, since both electric 

charging energy and fuel injection rate are available, the ratio of electric energy to gasoline used could be 

used as an alternative measure of utility factor.  
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3 Application of Summarized Dataset and Results 

Once the raw dataset is transformed into summarized event data, it’s very easy to generate useful numbers 

and additional analysis to support decisions related to policy, fleet operation, and vehicle design.  For 

example, this study generated utility factor curves from the summarized event data for the fleet of trucks, 

which supports both policy and vehicle design decisions [2, 7].  Utility Factor (UF) curves for PHEV 

Medium-Duty Work trucks have also never been published, so the results from Odyne are immediately 

useful.  Then, to better understand how the number of daily charging events could affect utility factory, 

some additional statistics about the charging events were compiled.  The charging event statistics support 

operator feedback and public policy by indicating that utility factor could be improved if the vehicles could 

be frequently recharged during the day [2, 6, 7, 11].   

 

3.1 Utility Factor Curve Discussion 

This section describes and presents the calculation of Utility Factor (UF) results for both the Odyne and Via 

Fleets.  There are three curves on these graphs.  The first curve is the standard utility factor curve in the 

SAE J2841 specification that was based on NHTS (National Highway Transportation Survey) data [4].  The 

second curve is the truck UF curve, calculated using the SAE J2841 methodology [4].  The third curve was 

calculated using the truck data, but with the SOC-based correction factor added to the standard SAE J2841 

methodology to account for the possibility of more than one charge per day.  It should be noted that the 

standard SAE J2841 methodology assumes that vehicles are fully recharged only once every day, which 

may or may not be an accurate assumption [1, 2, 4, 6].  Previous work has explored alternate Utility Factor 

definitions [2, 6]. 

The below equations are used to calculate the modified SOC based utility factor curve.  These equations are 

a slight modification to the standard SAE J2841 Fleet Utility Factor (FUF) Equation: 

𝑈𝐹(𝑅𝐶𝐷) =  
∑ min (𝑑𝑘,𝑅𝐶𝐷∙𝐶𝑘)𝑑𝑘∈𝑆

∑ 𝑑𝑘𝑑𝑘∈𝑆

       (1) 

𝐶𝑘 =  
max (|∆𝑆𝑂𝐶𝑘|,100−𝑆𝑂𝐶𝐶𝑢𝑡𝑜𝑓𝑓)

100−𝑆𝑂𝐶𝐶𝑢𝑡𝑜𝑓𝑓
       (2) 

In the SOC-based utility factor curve Equation, Ck is a factor that increases the effective RCD in the SAE 

J2841 Fleet Utility Factor Equation, based on the total daily change in battery State of Charge, ΔSOCk.  To 

calculate ΔSOCk, the change in state of charge values for every vehicle trip in a day are added together.  

Note that the absolute value of ΔSOCk is taken to ensure that the value is always positive.  The term 100 - 

SOCCutoff represents the percent SOC change that would occur during one fully charge-depleting trip.  The 

SOCCutoff value represents the battery state of charge level in which the vehicle transitions from a charge-

depleting to a charge-sustaining mode, and in this analysis the value was set to 5% for Odyne and 22% for 

Via.  Note that the SOCCutoff value depends on the specific model of vehicle and its hybrid control system 

architecture.  The idea behind the Ck factor is that if a vehicle recharges during the day in between trips, its 

ΔSOCk will be greater than its 100 - SOCCutoff, thus increasing the true charge-depleting range of the vehicle 

for the day.  If ΔSOCk is less than 100 - SOCCutoff, the utility factor equation for the day will be the same as 

the SAE J2841 utility factor.  It should also be noted that if the vehicles are not charged at least once per 

day, the SOC-corrected utility factor equation will output the exact same curve as the standard SAE J2841 

methodology. 

Below are the two graphs that summarize the Utility Factor curves for both the Odyne and Via Fleets: 

World Electric Vehicle Journal Vol. 8 - ISSN 2032-6653 - ©2016 WEVA Page WEVJ8-0300



EVS29 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium      9 

 
Figure 3.  Odyne UF Curve 

 

Figure 4.  VIA UF Curve 

For the medium-duty Odyne trucks, it can be seen that the UF is higher than the standard SAE J2841 UF 

curve.  From a design perspective, this means that these trucks can be designed with a smaller battery than 

otherwise would be needed if the standard SAE J2841 UF curve was used to meet performance 

requirements.  From a policy perspective, medium-duty trucks may not need as strict of emissions 

requirements as other commuter vehicles, as they are inherently driven in such a way that increases UF.  

The SAE J2841 UF curve is just an average of all vehicles in the US, whereas smaller subfleets within the 

set of all vehicles may have different usage and UF curves [1, 2].  However, it should also be noted that 

Odyne trucks do not operate in a true all EV (electric vehicle) mode until the battery is depleted, which is 

an assumption of the SAE J2841 methodology [4, 14].  Instead, the Odyne Trucks use a blended CD 

vehicle mode where some gasoline power is used to extend the range of the electric battery.  So in reality, 

the actual gasoline displacement of the Odyne trucks will be less than the gasoline displacement estimated 

by these UF curves.  The actual gasoline displacement of these vehicles could likely be improved if their 

control strategy was reprogrammed to have a true EV mode, or a blended driving mode that used more 

electric power than the current driving mode.   

For the light-duty Via trucks, it can be seen that the UF is much closer to the standard SAE J2841 UF curve 

than the Odyne trucks.  In this situation, it looks like the SAE J2841 UF curve does a good job of 
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approximating the actual real world UF of Via trucks.  However, there is still a slight difference, so 

depending on the accuracy needed, the UF curve presented in this paper may still be required. Unlike 

Odyne, the Via trucks operate in a true EV mode until the battery is nearly depleted, so the Via UF curves 

are likely representative of their actual performance in the field. 

In the Odyne and Via Truck UF curves, it’s also interesting to see that the SOC correction factor did not 

make a significant difference in the UF curve, so in this situation the standard SAE J2841 assumption of 

only one charge per day appears to be very reasonable.  It’s possible that the vehicles are only being 

charged once per day in line with the SAE J2841 standards, and if the charging pattern of the fleet changed, 

there would be a significant difference between the two UF methodologies.  To better understand the story 

of why these two curves are so similar, charging event statistics are discussed in the next section to verify 

this hypothesis. 

Overall, the truck UF curves show that light- and medium-duty commercial PHEV’s are a great application 

for PHEV’s.  The fact that their utility factor curves are equivalent to or higher than the standard SAE 

J2841 curve means that on average, light- and medium-duty truck PHEV’s can displace at least as much if 

not more gasoline than privately owned commuter PHEV’s.  Displacing gasoline with electric power can 

create many positive economic and environmental benefits [7].   

 

 

3.2 Charging Summary Statistics Discussion 

Some additional charging event summary statistics were generated to better understand the Truck UF 

curves in the previous section.  Below is a table of these numbers for both Odyne and Via: 

 

Table 1: Charging Event Summary Statistics for Odyne and Via 

 Odyne Via 

Total Number of Vehicle Driving Days 1279 1679 

Total Number of Charging Events 1850 1076 

Average Number of Charging Events per Vehicle Driving Day  1.45 0.64 

Mean percent change in battery SOC for charging events 35.0 54.4 

Median percent change in battery SOC for charging events 26.5 62.0 

Average percent change in battery SOC for all charging events 

per vehicle driving day (%) 

50.7 34.8 

Mean final battery SOC after charging event (%) 91.8 90.9 

Median final battery SOC after charging event (%) 100.0 100.0 

Most charging events almost completely refill the battery, as can be seen in the demonstration graphs under 

the Decision Support Tools Development section.  If a large number of charging events did not completely 

refill the battery, the SAE J2841 UF curve assumptions may not be accurate. 

Combined, these charging event statistics show that in general the fleet is being recharged along the lines of 

the SAE J2841 assumption of only one fully replenishing battery charge per day.  This explains why the 

two different utility factor curve methodologies presented in the previous section have such similar results.  

It’s also notable that on average, the Via Fleet is not being fully recharged after every day of driving.  This 

information should alert the Via Fleet operators that they can potentially improve their efficiency by 

recharging the vehicles more often.  This recommendation is also noted in EPRI’s Report [14] on page 4-

26, which was reached independently of the results in this paper. 

The Odyne fleet is charged more than once per vehicle driving day, but analysis showed that a large 

number of charges only replenishing the battery by a very small amount (see graphs in Decision Support 

Tools Development section).  Therefore, it’s reasonable to conclude that the Odyne vehicles are being 

plugged in on days when they are not driving and are already mostly charged. 
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From an operational perspective, there could be a lot of room for utility factor improvement for both the 

Odyne and Via fleets if multiple charges could be facilitated throughout the day [2, 6, 7, 11, 14]. 

All of the charging statistics presented in this section (3.2) were calculated from the summarized event data 

using about 80 lines of MATLAB code (including whitespace and comments) which ran on a single core in 

a matter of seconds.  The same analysis could have also been performed in Microsoft Excel.  For 

comparison, the MATLAB code written to create the event summary from the raw second-by-second 

driving CSV data was thousands of lines of code, and took multiple days to run on a single core.  

Maintaining summarized event data can greatly simplify, streamline, and expedite the data analysis process 

when new questions of research, design, operation, or policy are posed. 

 

4 Conclusions 

The event summary methodologies presented in this paper may be beneficial to future vehicle tracking 

projects that require analysis of high resolution data from on-board tracking sensors.  The ability to 

summarize a large database of second-by-second driving data points into a list of longer term events is a 

particularly difficult task, especially when the data collection devices are not 100% reliable.  However, 

when compiled correctly, this event summary list is also very useful.  To demonstrate the utility of these 

event summary statistics, utility factor curves, charging summary statistics, and demonstration histograms 

were generated. 

This work is also novel because it is the first time that UF curves have been published for a fleet of 

Medium-Duty PHEV Trucks.  The presented UF charts for Odyne provide additional evidence that 

different policies may be needed to govern different vehicle classes, and that a single overarching UF curve 

for every situation may not be appropriate [2].  

The truck UF curves also show that light- and medium-duty trucks are an effective application for PHEV 

technology, as light and medium-duty PHEV’s displace a large amount of gasoline with electric power.  

These PHEV’s can displace at least as much gasoline as privately owned commuter PHEV’s, if not more.   
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