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Abstract 

Smart charging is related to a possible adjustment of the charging sequences with some energetic 

constraints. It can be defined in different ways, namely depending on the specific objectives. However, 

they all result in similar consequences for the charging sequences, with regard to conventional charging: 

potential delay, interruption(s) and power modulation of the charging cycles.  

It is commonly admitted that smart charging will be necessary to face the growing deployment of EVs, 

namely for the local grid operators. Moreover, from the user point of view, smart charging can be seen as 

an additional motivation for the choice of an EV instead of a conventional car, if e.g. lower electricity 

tariffs are proposed for charging flexibility. 

In this paper, a quantitative evaluation is performed of EV battery ageing, in function of the charging 

conditions, with a special focus on the smart charging specificities. The study is based on real data from a 

three years continuous monitoring of five Peugeot iOn cars, a first of a kind campaign that was performed 

in Belgium in the Brussels area during the period 2011-2014. Different use profiles and charging patterns 

were observed. Among other elements, battery capacity and battery efficiency and their evolution in time 

were calculated, taking into account various factors, such as the seasonal impacts.  

It will first be highlighted that, whatever their charging patterns, all the considered cars are showing a 

significant flexibility potential, making them good candidates for smart charging. The impact of smart 

charging on battery ageing will then be discussed, with a focus on the charging frequency, the average state 

of charge and the impact of faster versus slower charge on battery capacity. This long time monitoring 

period allows to clearly identify the time evolution trends, leading to unique conclusions from the real life. 
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1 Introduction 

Smart charging is related to a possible 

adjustment of the charging sequences with some 

energetic constraints. It can be defined in 

different ways, namely depending on the specific 

objectives. However, they all result in similar 

consequences for the charging sequences, with 

regard to conventional charging: potential delay, 

interruption(s) and power modulation of the 
charging cycles.  
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It is commonly admitted that smart charging will 

be necessary to face the growing deployment of 

EVs, namely for the local grid operators.  

Moreover, from the user point of view, smart 

charging can be seen as an additional motivation 

for the choice of an EV instead of a conventional 

car, if e.g. lower electricity tariffs are proposed 

for charging flexibility.  

In this paper, a quantitative evaluation is 

performed of EV battery ageing, in function of 

the charging conditions, with a special focus on 

the smart charging specificities. The study is 

based on real data from a three years continuous 

monitoring of five Peugeot iOn cars, a first of a 

kind campaign that was performed by GDF 

SUEZ in the Brussels area (Belgium) during the 

period 2011-2014, with support from the Vrije 

Universiteit Brussel.  

2 Test conditions 

2.1 Three-years field test with five 

cars 

Five Peugeot iOn cars (16kWh LMO batteries) 

were used continuously as personal leasing cars 

and/or as service or business pool cars. Some of 

the cars were used in the same context/by the 

same person since the beginning of the tests, 

while other cars have known a change in their 

attribution during the three years (Figure 1). A 

dedicated monitoring system was developed by 

the Research & Technology Division of GDF 

SUEZ. 

The cars show very different consumption 

profiles, depending on their use. Some key 

figures are given in Table 1 below. 

 
 

 

 

 

 

Table 1: Key data of the cars 
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EV1 8583 72.2 25.7 2.1 18.0 

EV2 33919 40.3 43.5 16.2 20.9 

EV3 25362 41.5 48.2 10.3 15.5 

EV4 16712 24.3 40.4 35.3 18.1 

EV5 5901 55.1 34.9 10.0 18.6 

2.2 Laboratory tests 

In parallel to the field test study, the Battery 

Innovation Center of Vrije Universiteit Brussel 

performed an extended experimental analysis on 

cell level of different lithium-ion chemistries for 

battery electric vehicles. The lab exists of several 

state-of-the-art battery test devices (± 250 test 

channels), which can be used at cell and module 

levels. Then, the lab has also extended types of 

climate chambers and impedance spectroscopy test 

channels. 

In this paper, the experimental field tests will be 

compared to laboratory results at cell level. 

3 Charging flexibility potential 
The energy content of the charging sequences is 

shown in Figure 2 below for the five considered 

cars.  

The energy content was found to take a wide range 

of values, with an important number of small 

charging sequences (<2kWh), and another 

concentration around 8..9kWh, being about 50% of 

the battery capacity. Given the available and 

needed charging time, all the considered cars were 

showing a significant flexibility potential, making 

them good candidates for smart charging.  

Note that, at the time of the monitoring campaign, 

only conventional charging was applied by the five 

cars considered. 

 

 

 
Figure 1: Distribution of the cars to the different users 
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Figure 2: Distribution of the energy per charging cycle 

for the five cars 

4 Impact of time on battery 

capacity evolution 

4.1 Overview of the battery 

degradation 

The battery pack of the Peugeot iOn is a lithium 

ion graphite manganese 16kWh pack that was 

developed by Mitsubishi and Yuasa in 2008. 

In the following analysis, the battery capacity is 

calculated as the following ratio, for each trip: 

 

Battery capacity (kWh) = energy consumed 

(kWh) / SOC decrease (%) (1) 
 

A filtering is performed on the raw data, as 

developed in [1].  

The battery capacity time evolution is evaluated 

for the 5 cars (Figure 3). A clear decrease of the 

battery capacity is observed with time, for all the 

cars. 

The average battery degradation of the 5 cars, for 

the total three years monitoring period, is 

between 0.33 and 0.97kWh/year, depending on 

the car.  

4.2 Time evolution of the battery 

degradation 

Besides the global, three years results, an other 

approach is chosen, based on a sliding window 

along the time axis, for each car. The evolution of 

the battery degradation can then be obtained.  

In this paper, we focus on the long term battery 

evolution. For that reason, and in order to limit the 

impact of numerical noise, all the following trends 

will be considered with a two years sliding 

window. By doing so, the seasonal effects are also 

eliminated from the results. 

The time evolution of the battery degradation is 

illustrated in Figure 4 below. 

 

Figure 4: Average battery capacity evolution 

(kWh/year), with a two-year sliding window centered on 

the day mentioned on X-axis (red: EV1; green: EV2; 

blue: EV3; cyan: EV4; magenta: EV5) 

The EV3 (blue) and EV4 (cyan) cars show a 

reducing degradation speed with time (globally 

increasing curves in Figure 4). On the other hand, 

the EV1 (red) and EV2 (green) cars show an 

increasing degradation speed with time (globally 

decreasing curve in Figure 4). 

 
 

 

Figure 3: Battery capacity evolution in time, for the three considered years, based on SOC evolution and energy 

consumption during trip [1] (M3-1 = EV1; M4,trip = EV2; M3-2 = EV3; M3-3 = EV4; M3-4 = EV5) 
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5 Impact of charging frequency 

on battery capacity evolution 
Smart charging can involve the decomposition of 

charging sequences into several blocks, to e.g. 

better follow a local, intermittent renewable 

energy production or to properly follow the 

consumption peaks. 

At the beginning of the monitoring campaign in 

2011, the considered cars and charging stations 

were not able to interrupt and restart the charging 

sequences. The impact analysis of the charging 

frequency that is proposed here is based on 

complete charging cycles, as programmed by the 

users, with no interruption.  

The time evolution of the charging frequency and 

the relation between the charging frequency and 

the battery degradation are shown in Figure 5 (a) 

and (b) below, respectively. 

 

(a) 

 

(b) 

Figure 5: (a) Time evolution of the charging 

frequency; (b) battery capacity evolution (kWh/year) 

in function of the charging frequency; two years 

sliding window centred on the day mentioned on X-

axis (red: EV1; green: EV2; blue: EV3; cyan: EV4; 

magenta: EV5) 

 

EV2 (blue) and EV3 (cyan) cars show the highest 

time evolution of their charging frequency, 

because of a change in the use of the cars 

(reduction of the driven distance). 

When considering the general position of the data 

sets of each car in Figure 5 (b), less negative 

degradation values are globally observed when the 

charging frequency is higher. However, this trend 

is not unique, since EV2 (blue) and EV3 (cyan) 

cars show very distinct battery degradation values, 

while their charging frequencies are in the same 

range. 

Within the data sets of each car, the trend is also 

unclear: for EV1 (red), EV2 (green) and EV5 

(magenta) cars, an increasing charging frequency 

leads to a lower battery capacity decrease, while 

the EV3 (blue) and EV4 (cyan) cars show a 

stronger battery degradation when the charging 

frequency is higher. 

With smart charging and decomposition of 

charging cycles into several blocks (i.e. more, 

smaller charging cycles), much higher charging 

frequencies could be expected, that could lead to 

more incisive trends. 

6 Impact of the average state of 

charge 
Smart charging can involve the delay of the 

charging sequence, e.g. to wait for the end of a 

consumption peak, or to wait for the availability of 

solar energy. Waiting more before charging means 

having a lower state of charge for a longer time. 

The average state of charge is calculated based on 

the total time, including driving, charging and no-

action periods. Lower average state of charge are 

expected with smart charging than with 

conventional charging. 

The time evolution of the average state of charge 

and the relation between the state of charge and the 

battery degradation are shown in Figure 6 (a) and 

(b) below, respectively. 

When considering the general position of the data 

sets of each car in Fig. 6 (b), a higher battery 

degradation is found for the cars showing an 

average state of charge around 70..80% (EV1 (red) 

and EV3 (blue) cars). Below and above this range 

(EV2 (green), EV4 (cyan) and EV5 (magenta) 

cars), the battery degradation is less negative. 

 

World Electric Vehicle Journal Vol. 7 - ISSN 2032-6653 - ©2015 WEVA Page WEVJ7-0616



EVS28 International Electric Vehicle Symposium and Exhibition  5 

 

(a) 

 

(b) 

Figure 6: (a) Time evolution of the average SOC ; (b) 

battery capacity evolution (kWh/year) in function of 

the average SOC; two years sliding window centred 

on the day mentioned on X-axis (red: EV1; green: 

EV2; blue: EV3; cyan: EV4; magenta: EV5) 

Within the data sets of each car, two different 

trends are found. The EV1 (red), EV2 (green) 

and EV5 (magenta) cars show an almost constant 

2 years average state of charge throughout the 

whole monitoring period. The EV2 (green) and 

EV4 (cyan) cars show a more significant time 

variation of their average state of charge; their 

battery degradation is less important when the 

average state of charge increases. 

7 Impact of charging power 
Smart charging can involve the modulation of the 

charging power during the charging cycle, in 

order to properly follow a dynamical constraint. 

The impact of charging power was investigated 

in [1], leading to useful results for the present 

discussion. 

An intensive use of Mode 4 fast charging (50kW 

DC) was made with the EV2 (green) car during 

several months (period centered around day 640 

in Figure 4), while the other cars only charged in 

Mode 3 (3.7kW AC). The intensity of Mode 4 use 

is shown in Figure 7 hereunder. 

 

 

Figure 7: Proportion of Mode 4 charging and average 

power of the Mode 4 cycles per month 

Given the rapidly decreasing shape of the fast 

charging curves, the average charging power per 

cycle is much lower than 50kW, and most of the 

time below 16kW (i.e. below 1C or 1It). 

The time evolution of the battery capacity 

degradation slopes was shown in Figure 4.  

The EV2 (green) car (having experienced intensive 

fast charging) shows an increasing degradation 

speed with time (globally decreasing curve in 

Fig.X(b)). However, this phenomena is already 

observed during the period before the use of 

intensive fast charging and can therefore not be 

linked to the use of fast charging. Moreover, the 

EV1 (red) car shows a similar increasing 

degradation, with no use of fast charging at all. In 

other words, no relation can be shown between the 

battery capacity degradation and the charging 

power [1]. 

8 Laboratory results 

8.1 Average SOC 

The behaviour of lithium-ion batteries during 

calendar life at different storage conditions is not 

well identified because the investigation works are 

only performed at high operating temperatures. A 

comprehensive analysis was performed in 

laboratory, whereby the experimental data has 

been combined with numerical tools and post 

mortem analysis for having a clear overview of the 

battery behaviour [2]. 

In Figure 8, the evolution of capacity degradation 

as function of storage time at different state of 

charge levels and temperatures is evaluated for 

LFP cells. As one can observe, the capacity 

degradation is higher at higher SOC levels.  
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Figure 8: Battery capacity evolution as function of 

operating temperature and storage time  

This observation is favourable to smart charging. 

It differs however from the field results presented 

before, where different trends were emphasized, 

depending on the car. Moreover, the battery cell 

technologies are not the same (LMO vs LFP). 

The laboratory results show that the battery 

capacity degradation is also strongly impacted by 

the operating temperature. This parameter was 

not considered in the field analysis, since the 

seasonal impacts (including temperature) were 

cancelled by the sliding window approach. 

8.2 Charging power 

The cycle life of a battery is strongly dependent 

on the applied charging current rate. The main 

reason for the obtained evolution is related to the 

formation of lithium plating at high current rates 

[3]. This process is not fully reversible where 

lithium ions form metallic lithium at the surface 

instead of the intended intercalation. This results 

into decrease of the active material and further 

degradation of the battery capacity. This process 

is more important with higher charge current 

rates, as shown in Figure 9. 

 

 

 

Figure 9: Evolution of remaining capacity versus cycle 

life for lithium iron phosphate battery type (2,3Ah, 

cylindrical) 

During the field tests, the charging current used by 

all the cars (including EV2 when using the Mode 4 

fast charging, as shown in Figure 7), was on 

average below 1It. The total number of charging 

cycles of each car was also far below 1000. With 

those conditions, the laboratory results show no 

difference between the capacity evolution, 

independent of the It value (up to 2.5It). This is 

consistent with the conclusions of the experimental 

results with Mode 4 smart charging.  

9 Combined impact of parameters 
The results obtained in the previous sections show 

no evidence of a general, unique impact of the 

parameters on the battery degradation. The 

laboratory results give an additional insight, but do 

not explain all the observations. 

In the following, a multi-regression analysis is 

performed, in order to evaluate the role of different 

parameters on the long time battery degradation, 

and their potential combined effect. 

The coefficient of determination R
2
 is calculated 

for each car between the real battery degradation 

and a linear combination of one up to five 

parameters, as follows: 

 

Degradation (kWh/year) = A0 + 
A1*[CumulatedTime] + A2*[ChargingFrequency] 

+ A3*[AverageSOC] + A4*[YearlyDistance] + 

A5*[ChargingEnergy] (2) 
 

In equation (2), the cumulated time represents the 

number of calendar days since the first use day of 

the considered car. The charging frequency and the 

average SOC are taken as defined in section 5 and 

6, respectively. The charging energy is the average 

energy charged per charging cycle. The charging 

frequency, average SOC, yearly distance and 

charging energy are taken as the average values on 

the 2 years window centered on each value of the 

considered cumulated time.  

The best combination is identified for each number 

of parameters, as the one with the highest R
2
 (the 

more R
2
 is close to 1, the better the regression). 

In Figure 10 below, the evolution is shown of R
2
, 

for each car and each number of parameters. 
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Figure 10: Evolution of R
2
 with the number of 

parameters considered in the interpolation of the 

battery degradation 

Except for the EV5 (magenta) car, all cars are 

reaching a high R
2
 value with already 2 or 3 

parameters. This means that the most important 

factors for the long term battery degradation are 

well included in the evaluation. 

In Table 2 hereunder, the order of importance of 

each parameter is given for each car. Parameters 

in green (resp. red) have a positive (resp. 

negative) impact on the battery degradation. The 

three first parameters by order of importance are 

highlighted in orange for each car.  

 

Table 2: Influencing parameters, by importance 

 

 Charging 

Freq 

Avg 

SOC 

Charging 

Energy 

Cumul 

Time 

Yearly 

Distance 

EV1 1 2 4 5 3 
EV2 1 3 4 2 5 
EV3 3 5 4 1 2 
EV4 3 2 5 1 4 
EV5 5 1 3 2 4 

 

Note that the results for EV5 are of lower quality, 

due to a smaller useful data set after filtering, and 

low variation of the parameter values; it will 

therefore not be discussed hereunder. 

The ranking order of the parameters is very 

different from one car to another one. No global 

trend can be observed regarding the parameters 

of influence. However, some trends appear. 

For each car, the first parameter of influence has 

a positive impact on the battery degradation.  

For EV1 and EV2, a higher charging frequency 

(more charging cycles) corresponds to a lower 

battery degradation: this is of particular interest 

when smart charging is concerned. 

For EV3 and EV4, a higher cumulated time 

corresponds to a lower battery degradation. 

For each car, the yearly distance (or the total 

energy consumption) has a positive influence on 
the battery capacity degradation. 

For each car, the second or the third parameter of 

influence has a positive impact on the battery 

degradation, while the other one has a negative 

impact, respectively. 

Among the parameters involved in a smart 

charging approach (charging frequency, average 

SOC and charging energy), charging frequency 

and average SOC are the most impacting factors. 

10 Conclusions 
The long time monitoring that was performed on 

five cars allows to clearly identify the time 

evolution trends, leading to unique conclusions 

from the real life. 

It was found from the monitoring data that a higher 

average state of charge of the cars had no negative 

effect on the battery degradation. This result is not 

in phase with the laboratory results at cell level, 

and should be further investigated with more cars. 

The impact of the charging energy per cycle was 

found to be limited on the battery degradation.  

The impact of the charging frequency is unclear, 

and should be further investigated, in real smart 

charging conditions. 

Finally, the influence of the charging power level 

was found to be negligible, in real conditions and 

at lab scale. 

The present study gave a first flavor of what could 

be expected from smart charging, on battery 

degradation evolution, based on the first 

commercial EVs available and conventional 

charging conditions. 

In a next step, the evaluation of the battery 

capacity degradation will have to be performed 

with new EVs and in real smart charging 

conditions, meaning shift-able, interruptible and 

modulating cycles. Laboratory results with other 

battery technologies will also help to better 

understand the potential and limits of lithium ion 

batteries for smart charging. 
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