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Abstract 
Deployment of the hydrogen supply infrastructure is one of most critical issues that must be addressed for a 

successful market transition to fuel cell electric vehicles (FCEV). Not only must hydrogen refuelling 

infrastructure be constructed, it must also be commercially viable and sell hydrogen to customers at retail 

prices that will encourage the continued expansion of the vehicle market. The objective of this study is to 

develop a station deployment optimization model and analyze station network economics and risk of 

investment. The model optimizes key deployment decisions to meet fuel demand by trading off 

infrastructure cost and fuel accessibility cost. Decision variables are when, where to build and the size of 

stations. Fuel accessibility cost is relative to gasoline, measured by additional detour time in order to access 

hydrogen refuelling stations.  A case study is conducted for the City of Santa Monica in California. 

Deployment schemes generated from the optimization model are relatively robust to assumed level of fuel 

inconvenience cost, suggesting that the importance of station scale economy outweighs fuel convenience, 

subject to the caveats of model limitations. The model does not capture the dynamic interaction between 

vehicle demand and refuelling convenience. If vehicle demand was modelled endogenously, the importance 

of refuelling convenience would be valued higher by the model. Another factor might be that the area of 

study is small, which limits potential detour time savings that could be achieved from adding more stations. 

Cash flow analysis results suggest that the station network at the study area (the city of Santa Monica) may 

endure negative cash flows for about a decade. Driving patterns of early FCEV adopters matter to the 

economics of city station network. If FCEV users on average have long annual driving distance and trips 

are concentrated within the region, the profitability of local station networks would be improved. 
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1 Introduction 
Deployment of the hydrogen supply 
infrastructure is one of the most critical issues 
that must be addressed for the success of fuel cell 
electric vehicles (FCEV).  There are 10 hydrogen 
stations in operation now in the U.S. [1]. 

California has been the leading state that promotes 
the deployment of hydrogen stations. California 
Fuel Cell Partnership (CaFCP) has proposed to 
build 68 stations by 2018 [2]. As now, 8 stations 
are already open and 51 stations are under 
construction (Figure 1). 
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Figure 1: Hydrogen station rollout in CA 

Source: http://cafcp.org/stationmap 
 
Construction of hydrogen stations requires large 
up-front capital investment. However, station 
revenue during the early commercialization 
period is expected to be small when vehicle 
numbers are low.  Thus the revenue is not 
sufficient to offset capital cost and maintenance 
expense for a long time. A good understanding of 
the economics of early stations is essential for 
investment decision making, risk management, 
and government policy design. Earlier work has 
studied the economics of early hydrogen stations 
in California from different angles. For example, 
Ogden and Nicholas [3] used cluster strategy to 
explore the scenarios of introducing early 
hydrogen stations and vehicles. Clustering refers 
to rolling out stations in a few concentrated 
geographic areas within a large region (e.g Irvine 
within Los Angeles Basin).  Station cost and cash 
flows were estimated for Southern California. 
Eckerle and Garderet [4] also conducted cash 
flow analysis for proposed 68 stations in 
California with the purpose of designing suitable 
incentive schemes to encourage investment.  
 
This paper builds on previous studies and 
analyses hydrogen station network economics at 
a cluster with rich supporting information. What 
is different in this paper is that the station rollout 
strategy is determined by an optimization model 
which trades off infrastructure cost and refuelling 
convenience. The model considers driving 
pattern heterogeneity in order to more accurately 
estimate hydrogen fuel demand at the area of 
interest. Besides cash flow calculations from 
2015 to 2030, the paper also computes N-year 

net present value (NPV) at each year as a measure 
for investment risks. N-year NPV is defined as the 
NPV of the cash flow during the next N years. 
 

2 Approach 

2.1 Optimal Station Deployment Model 
The station deployment model optimizes key 
deployment decisions to meet exogenous fuel 
demand by minimizing system cost, which is the 
sum of infrastructure cost and fuel accessibility 
cost. Fuel accessibility cost is relative to gasoline, 
measured by additional detour time in order to 
access hydrogen refuelling stations. Decision 
variables are when, where to build and the size of 
stations.  
 
Adopting the notations in table 1, the optimization 
model is described by equations (1) – (4).  

Table 1: List of notations  

Notations variables 
i index for candidate station sites 
t index for year 
T planning horizon (t=1 to T) 

itx  binary decision variable, whether to 
build a station at site i in year t 

is  decision variable, station size at site 
i in year t 

tC  infrastructure cost 

tA  fuel accessibility cost 

tCc  capital cost 

tCf  fixed O&M cost 

tCv  variable O&M cost 

td  exogenous hydrogen fuel demand 

tu  maximum station utilization rate 

r  discount rate 
m  lower bound for station size 
M  upper bound for station size 
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 ,iT i iTmx s Mx i≤ ≤ ∀  (4) 
 
where the objective function defined in equation 
(1) is the NPV of infrastructure cost and fuel 
accessibility cost, which are functions of decision 
variables. Constraint (2) states that supply 
capacity (after discounted by station utilization 
rate) must exceed demand. Constraint (3) 
requires that once a station is open, it cannot be 
closed within the planning horizon. Constraint 
(4) restricts the station size either to be zero or a 
positive value confined by the lower and upper 
bound.  
 
Infrastructure cost consists of capital cost, fixed 
operation & management (O&M) cost, and 
variable O&M cost. Hydrogen stations are 
assumed to be onsite Steam Methane Reformers 
(SMR) with the exception that the model can 
choose between a SMR and a mobile refueler in 
the first year. Cost numbers are collected from 
industry, as reported by Ogden [5].Capital cost 
and fixed O&M are fitted very well by power 
functions (Figure 2&3). Fitted cost functions are 
used in the model for deciding optimal station 
size. Variable O&M includes the cost of natural 
gas feed and the electricity cost of compressing 
hydrogen.  
 

 
Figure 2: Station capital cost curve 

 

 
Figure 3: Station fixed O&M cost curve 

 

2.1.1 Fuel accessibility cost 
Apparently early FCEV buyers would prefer high 
fuel availability (measured by the ratio of the 
number of hydrogen stations and the number of 
gasoline stations); however, to achieve high fuel 
availability in early commercialization implies 
deploying more small-sized stations and/or lower 
station utilization, which in turn leads to the loss of 
station scale economy and increased hydrogen cost.  
 
Fuel accessibility cost is estimated by the 
following equation: 

 ( )* t
t

dA v
h

d h=  (5) 

where δ is average incremental detour time for a 
hydrogen refuelling trip, compared with gasoline 
refuelling, v  is the value of time, and η is a 
multiplier ( 1η ≥ ) to reflect the annoyance and 
frustration perceived by  FCEV early adopters. The 

term  td
h

calculates the number of refuelling trips 

at all stations, where d is total hydrogen demand 
at the region and h is FCEV tank capacity. Detour 
time δ is a function of hydrogen station coverage, 
as represented by the ratio of the number of 
hydrogen stations and gasoline stations.  
 

2.1.2 Determining hydrogen demand 
 
Hydrogen demand ( td ) is calculated outside of the 
optimization model, as a function of the number of 
FCEVs, driving pattern, and FCEV fuel efficiency. 
FCEV market penetration at the region of interest 
is assumed to be exogenous, constrained by the 
Zero Emission Vehicle (ZEV) mandate [6].  
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Since this paper concerns station deployment and 
economics in a city, driving pattern data are used 
to distinguish between miles refuelled at local 
stations and miles refuelled outside the city.  
Driving pattern data is obtained from 2009 
National Household Travel Survey (NHTS) [7]. 
We classified California drivers into 6 groups: 
frequent driver & long commute (FLC), frequent 
driver & short commute (FSC), average driver & 
long commute (ALC), average driver & short 
commute (ASC), moderate driver & long 
commute (MLC), and moderate driver & short 
commute (MSC). Driving profile at each group is 
characterized by parameters of mean daily 
distance and commute distance, which are used 
to define a Gamma distribution function (Figure 
4). As shown in [8] and [9], Gamma distributions 
are a convenient and reliable way to describe day 
to day variations of daily driving distance.  
 

 
Figure 4: Heterogeneous driving profiles 

 
For each driver group, the number of days when 
daily driving distance exceeds a threshold value 
(e.g. 100 miles) is calculated using the Gamma 
distribution. Then miles driven at these days and 
associated fuel demand are assumed to be 
refuelled at local stations. A higher share of 
frequent drivers with long commute distance 
(and consequently less trips exceeding the 
threshold) is expected to contribute more to local 
station business. 

3 Results 
The project developed an Excel-based model, 
which takes input of FCEV attributes and 
penetration assumptions, driver characteristics 
including driving pattern, value of time, and 
discount rate, as well as infrastructure 
assumptions including station capital cost and 
O&M cost as a function of station size and type. 
The model outputs station deployment solutions 

(when & where to build and station size) and 
calculates cash flow and total system cost.  
 
Based on clustering strategy of station deployment, 
the case study focuses on station network in the 
city of Santa Monica. FCEV market penetration is 
assumed to follow the path in figure 5, which is 
consistent with ZEV-compliance scenario in [3]. 
Average time to refuelling stations in Santa 
Monica is a function of fuel availability, as plotted 
in figure 6.  
 

 
Figure 5: Assumed FCEV sales and on-Road number 
 

 
Figure 6: Aveage time to stations in Santa Monica 

Note: Fitted curves based on figure 6 in [10] 
 
Given the maximum number of stations to deploy 
(10 stations in this case), the problem is to decide 
to build what size of stations at which year. The 
factors in consideration are station scale economy 
and refuelling convenience. Large stations have 
better scale economy in terms of both capital cost 
and O&M cost but have lower utilization rate, 
particularly in the early market. To reduce 
refuelling inconvenience, building more small 
stations is desirable but at the price of decreased 
scale economy. The optimization approach is 
expected to find the right balance of these factors 
and minimize the system cost. Besides solving the 
problem using optimization approach, we also 
tried a heuristic method, named as small station 
first strategy, where stations sizes are predefined 
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and increase linearly over time. A new station is 
built whenever existing capacity cannot meet 
exogenous fuel demand. The small station first 
strategy is designed to mimic ad hoc decision 
making in project planning. 
 
 The solution from the optimization model is 
listed in the 2nd column of table 2, which builds 9 
stations in total. Station sizes do not increase 
monotonically over time.  The system cost 
(infrastructure cost + fuel accessibility cost) from 
the optimal solution is 24.67 million dollars 
(equivalently, 9.04$/kg hydrogen), compared 
with 28.99 million dollars (10.63$/kg hydrogen) 
from the small station first strategy.  

Table 2: Station deployment (size in kg/day & year) 
from two build-out strategies  

Year Optimal Solution Small Station First 
2015 100 100 
2016   
2017   
2018 739 444 
2019   
2020   
2021  514 
2022 875 583 
2023  653 
2024 775 722 
2025 902 792 
2026 934 861 
2027 630 931 
2028 821 1000 
2029 823  

 
Cash flow analysis was conducted (Figure 7 for 
the optimal solution and Figure 8 for the small 
station first strategy). Positive cash flow includes 
hydrogen sales revenue. Hydrogen price is 
assumed to be $10/kg. Negative flow includes 
annual O&M cost and capital cost as a lump sum 
payment at each year when a station is open. 
Station owners endure net loss for about a decade 
before the break-even point.  Figure 7 shows 
annual cash flow becomes positive in 2025 and 
cumulative flow is negative until 2027. Figure 8 
for small station first strategy shows a little 
worse station economics: cumulative cash flow is 
not positive until 2029. 
 

 
Figure 7: Station network cash flow from the optimal 

solution 

 
Figure 8: Station network cash flow from the small 

station first strategy 
 
In the next we examined investment risks and 
implications for public-private partnership. Since 
station cash flow is negative for at least a decade, 
Investors’ planning horizon is an important factor 
which determines how they perceive the risk of the 
investment. Figure 9 shows the next-N-year net 
present value (NPV) at each year, which is defined 
as the NPV of the cash flows during the next N 
years. As expected, investment risk will be 
(perceived) smaller if the investors enter the 
market late or if they are more patient (indicated 
by a longer planning horizon). Figure 9 also shows 
government buy-down cost, which is defined as 
the cumulative sum of negative cash flows over the 
period. Namely, buy-down cost measures 
government subsidy cost if it wishes to pay for all 
losses before positive cash flows.  
 

 
Figure 9: Next N-year NPV 
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At the early market for FCEVs, much of the 
market behaviour remains unknown. Thus it is 
necessary to examine the sensitivity of model 
results to important model parameters. We have 
analyzed the sensitivities of the annoyance 
multiplier in fuel accessibility cost calculation 
(η in equation 5) and the mix of driver groups 
which is used to determine fuel demand. The 
default value of the annoyance multiplier is 3, 
which reflects other cost (e.g. annoyance) 
perceived by early FCEV adopters in addition to 
the cost of the detour time for refuelling trips. 
The cost of the time is assumed to be $20/hour. 
We tried different values of the annoyance 
multiplier: 1 for no annoyance cost and 10 for 
high annoyance cost. Solutions from the 
optimization model do not change when these 
two values are used. In fact, the model generates 
different solutions only when the annoyance 
multiplier is very large (e.g. 100), which opts to 
build more small stations early on.  These results 
suggest station rollout strategies are relatively 
robust to assumed level of annoyance multiplier, 
implying the importance of station scale 
economy outweighs fuel accessibility in station 
planning. However, our model does not represent 
the dynamic interaction between station 
deployment and FCEV market penetration. If 
FCEV sales were endogenous to the model and 
dependent on refuelling convenience, then the 
importance of fuel accessibility should be higher 
than reflected in our current model. Integrated 
modelling of station deployment and FCEV 
demand will be one of future research directions. 
 
Reference driving pattern assumes that drivers 
consist of 2% frequent driver & long commute 
(FLC), 2% frequent driver & short commute 
(FSC), 25% average driver & long commute 
(ALC), 25% average driver & short commute 
(ASC), 23% moderate driver & long commute 
(MLC), and 23% moderate driver & short 
commute (MSC). The mix is calibrated to NHTS 
data such that the calculated average annual 
driving distance matches the actual average 
annual driving distance in California in NHTS 
database. As discussed in section 2.1.2, different 
driver groups contribute differently to local 
station business, i.e., they have different share of 
fuel demand met by local stations.  It is unknown 
whether early FCEV adopters are driving 
differently from the average drivers. Thus we 
designed alternative cases to test the sensitivity 
of model results to assumed mix of different 
driver groups. “100% FLC” case assumes that 

early FCEV drivers are all FLCs who have the 
highest share of fuel demand met by local stations 
in the city.  
 
“100% FLC” case has larger fuel demand than the 
reference case, though FCEV numbers are the 
same. As a result, “100% FLC” case has improved 
profitability. Figure 10 shows that the cumulative 
cash flow becomes positive in 2023, 4 years earlier 
than the reference case.  

4 Discussions and Conclusions 
This study develops a station optimal deployment 
model that trades off infrastructure cost and fuel 
accessibility cost to find out station size and rollout 
timing while meeting exogenous fuel demand. A 
little surprisingly, model solutions are relatively 
robust to assumed level of fuel inconvenience cost, 
suggesting that the importance of station scale 
economy outweighs fuel convenience. The caveat 
is that the model does not capture the dynamic 
interaction between vehicle demand and refuelling 
convenience. If vehicle demand was modelled 
endogenously, the importance of refuelling 
convenience would be valued higher by the model. 
Another factor might be that the area of study is 
small, which limits potential detour time savings 
that could be achieved from adding more stations.   
 
Cash flow analysis results suggest that station 
network at the study area (the city of Santa 
Monica) may endure negative cash flows for about 
a decade. Driving patterns of early FCEV adopters 
matter to the economics of city station network. If 
FCEV users on average have long commuting 
distance and less long trips outside the cluster, the 
profitability of local station networks would be 
improved. This result implies that it is important to 
incorporate FCEV driving pattern into station 
planning. 
 
Investment risks perceived by investors would 
depend on their planning horizon, as illustrated by 
next N-year NPV results. To reduce the amount of 
public investment for subsiding early stations, 
private investors would need to have longer 
planning horizon or more investor patience. 
Investors may be more patient if they perceive less 
technological and policy risk. 
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