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Abstract 

Splitting power is a tricky problem for series plug-in hybrid electric vehicles (SPHEVs) for the multi-working modes of 

powertrain and the hard prediction of future power request of the vehicle. In this work, we present a methodology for 

splitting power for a battery pack and an auxiliary power unit (APU) in SPHEVs. The key steps in this methodology 

are (a) developing a hybrid automaton (HA) model to capture the power flows among the battery pack, the APU and  a 

drive motor (b) forecasting a power request sequence through a Markov prediction model and the maximum likeli-

hood estimation approach (c) formulating a constraint stochastic optimal control problem to minimize fuel consumption 

and at the same time guarantee the dynamic performance of the vehicle (d) solving the optimal control problem using 

the model predictive control technique and the YALMIP toolbox. Our simulation experimental results show that with 

our stochastic model predictive control strategy a series plug-in hybrid electric vehicle can save 1.544 L gasoline per 

100 kilometers compared to another existing power splitting strategy. 

Keywords: Hybrid Systems, Model Predictive Control, Markov Prediction, Energy Management, Hybrid Electric Vehicle 

1. INTRODUCTION 

Series plug-in hybrid electric vehicles (SPHEVs) are 

emerging as an attractive alternative for fuel-efficient 

vehicles. They have a relatively longer driving range and 

lower cost compared to battery electric vehicles as an 

auxiliary power unit (APU) is included in the powertrain 

to supplement the power output [1]. As shown in Figure 

1(a), this series architecture only allows the motor to 

provide propulsion power to meet the power demand at 

wheels, but the two energy sources---battery pack and 

APU---allow a flexibility for the manipulation of split-

ting the power demand of the vehicle.  

As shown in Figure 1(b), when driver accelerates the 

vehicle, an AC/DC couples the electricity from a battery 

pack and an APU, or from one of them [2], and with the 

electricity, an electric motor outputs a power to drive the 

vehicle; when driver brakes the vehicle, part braking 

energy is recovered through the electric motor (working 

in generation mode) to the battery pack for storing; 

whenever the APU outputs more electricity other than 

the necessary for driving the vehicle, the redundant part 

is transferred to the battery pack for storing; and when 

the vehicle is parked and plugged into power grid, the 

battery pack is charged [3]. In addition to the multiple 

working modes of the powertrain mentioned above, oth-

er hybrid dynamics also create the hybrid nature of the 

powertrain of SPHEVs, such as the variations in engine 

state (start/stop), and the limited availability of the bat-

tery pack due to the upper and lower boundaries on its 

state of charge (SOC) [4]. Furthermore, for higher fuel 

efficiency, the APU is designed with a small size and 

always outputs limited electricity, which is unable to 
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satisfy the power request of the vehicle independently. 

In order to guarantee the dynamic performance of the 

vehicle, the SOC of the battery pack is usually required 

to be higher than 25% during the whole driving range 

[5]. Nevertheless, for lower cost of the electricity than 

the fuel oil per unit power, it is preferred to discharge 

the battery pack to provide electricity for driving the 

vehicle. Thus, modeling the powertrain with hybrid dy-

namics, predicting a power request sequence, and then 

splitting the power for the battery pack and the APU in 

real time are the necessary technologies for SPHEVs. 

However, for different driving habits and changing driv-

ing conditions, it is hard to predict an accurate power 

request sequence for the vehicle. Therefore, the hybrid 

essence of the powertrain and the hard prediction of the 

power request make the power splitting tricky. 
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Figure 1 : Powertrain architecture and power flows of the 

SPHEVs 

Previous works on the power splitting of the SPHEVs 

mainly focus on fuel cost minimization and emission 

reduction. The first methodology is based on the deter-

ministic optimal technique [6, 7, 8, 9, 10]. It formulates 

the optimal control problem with a certain driving cycle 

by discretizing the continuous state space and control 

space into finite grids, and then applies the deterministic 

dynamic programming (DDP) to solve the optimal prob-

lem numerically [8]. Although (almost) global optimiza-

tion solution is obtained with the DDP technique, it 

strongly depends on a specific driving cycle, and it is 

impractical to apply the DDP algorithm in the vehicle-

mounted embedded controller for its high complexity of 

computation. The second methodology is based on the 

non-deterministic optimal control technique [6, 7, 11, 18, 

19]. Lin C C et al. [11] first model the power request as 

a Markov chain, and then use a Markov prediction mod-

el to estimate the probabilistic distribution of the future 

power request based on the previous power requests and 

vehicle speeds, and finally, formulate a stochastic opti-

mization problem to minimize the fuel cost over an infi-

nite horizon and solve the problem with stochastic dy-

namic programming (SDP) technique. The prediction of 

the power request in [11] is particularly appealing in this 

work, since it makes the optimal control independent of 

a specific driving cycle for the optimization is based on a 

probabilistic distribution, rather than a single cycle [2]. 

However, SDP also has a drawback of high complexity 

of computation. Recently, the model predictive control 

(MPC) is emerging as an attractive technique to solve a 

constraint optimal control problem with a finite horizon, 

which reduces the computation complexity greatly if the 

objective function can be built as a quadric form [12, 13]. 

For applications, the MPC has been used to split power 

for hybrid electric vehicles (HEVs) [14, 15, 16] and 

plug-in hybrid electric vehicles (PHEVs) [17],  where 

the researchers are mainly focus on tracking a certain 

driving cycle. For an uncertain driving cycle, Bernardini, 

D. et al. [18] propose a methodology to transform the 

stochastic model predictive control (SMPC) problem to 

a standard MPC problem through an optimization tree 

with the maximum likelihood estimation and a cost func-

tion with the probability factors. With a low computation 

complexity, the SMPC approach has been applied to 

split the power for HEVs [19]. Compared to HEVs, the 

power splitting of SPHEVs need to guarantee the dy-

namic performance of the vehicle while minimizing the 

fuel cost. To this end, we add a time-varying constraint 

to the state of charge of the battery pack while splitting 

the power for SPHEVs.  

For modeling the powertrain of SPHEVs, previous 

works treat this as a linear system [19]. In practice, the 

components in the powertrain have multiple working 

modes during the vehicle driving as discussed before. 

The state-of-the-art techniques from hybrid system mod-

eling and control provide an approach to model the 

powertrain with strong soundness and split the power 

with the stochastic model predictive control. 

In this work, we present a methodology for splitting the 

power for SPHEVs. Firstly, we develop a hybrid autom-

aton (HA) model to capture the power flows among the 

battery pack, the APU and the drive motor. Secondly, 

we construct a constraint optimal control problem with a 
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transformation model from the HA form. [21] Thirdly, 

we model the power request as a homogeneous Markov 

chain, and then estimate its probabilistic distribution 

with reference to the current states. Fourthly, we propose 

a novel method with a SOC penalty function to guaran-

tee the vehicle dynamic performance while minimizing 

the fuel consumption. Finally, we solve this optimal con-

trol problem with stochastic model predictive control 

technique. This work is the first instance of applying 

hybrid system modeling and SMPC techniques to opti-

mize the power splitting for SPHEVs. The four key steps 

in our methodology are: 

 Modeling. We design an optimal operation curve 

with best fuel economy for the APU to reduce the 

complexity of the control problem, and then based 

on the curve and the experimental data, we build the 

steady-state and dynamic fuel consumption models 

for the APU. We define a piecewise linear model to 

describe the changes of the state of charge (SOC) of 

the battery pack based on the charging and discharg-

ing modes, and then we decouple the system. Then, 

we build a quasi-static vehicle simulation model, and 

present the driving distance model and the energy 

consumption model. Finally, we develop a HA mod-

el to capture the evolution of the power flow of the 

powertrain.  

 Power Request Prediction. We divide the feasible 

region into S intervals based on the distribution of 

the values of the power request, and use the average 

value of the power request fall on the interval i to 

represent the power level of state i. Subsequently, 

we model the power request as a homogeneous 

Markov chain, and propose an algorithm to estimate 

the transition probability matrix of the power request 

based on the history driving cycle. 

 SMPC Design and Solution. We design a power 

splitting scheme for the powertrain, and then trans-

form the HA model to a piece wise affine (PWA) 

model with two disturbances including the power 

request and the vehicle speed.  Furthermore, we de-

sign a time-varying SOC reference, and then define 

a SOC penalty function for battery energy consump-

tion control. We formulate a constraint stochastic 

control problem to minimize the fuel consumption 

while guarantee the vehicle dynamic performance, 

and apply SMPC technique to transform the stochas-

tic control problem to a standard MPC problem. Fi-

nally we formulate and solve the problem in 

YALMIP toolbox [22]. 

 Simulation and Results. We use the china typical 

driving cycle for city bus to estimate the transition 

probabilistic matrix. And then, we test the SMPC 

approach on the diving cycle, and compare the per-

formance of SMPC approach with a deterministic 

MPC technique mentioned in [19].  

2. MODELING 

As shown in Figure 1, the battery pack, the APU and the 

drive motor are the main components in the powertrain. 

We begin with modeling the state of charge (SOC) of 

the battery pack, the steady-state and dynamic fuel con-

sumption of the APU, and the dynamics of vehicle, and 

then we develop a hybrid automaton model to capture 

the power flows among the components.  

2.1 Battery Pack  

The state of charge (SOC) is a normalized physical vari-

able used to indicate the remaining electric energy of the 

battery pack (SOC=0 indicates that the battery pack is 

discharged completely, SOC=1 indicates that the battery 

pack is fully charged). Since the existence of internal 

resistance of the battery pack, we compute SOC with the 

energy losses, which are represented by an efficiency 

coefficient )( Batt . For the discharging and charging 

modes of the battery pack, we use a piecewise linear 

function to approximate the evolution of SOC as 
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BattE represents the electric energy storage of the battery 

pack when it is fully charged. 

2.2 Auxiliary Power Unit  

The APU consists of a gasoline engine and a generator, 

and the output shaft of the engine is directly connected 

to the input shaft of the generator (see Figure 1a). As a 

matter of fact, the APU has two degrees of freedom 

(DOF) which are engine speed )( e and generator 

torque )( mT , or engine torque )( eT  and generator 

speed )( m . However, to reduce the complexity of the 

prediction model and solution algorithm, we take the 

output power )( APUP  as the only input of the APU, rather 

than use of e and mT as the inputs. To realize this, we 

design an optimal operation curve for the APU based on 

the comprehensive consideration of the efficiency maps 
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of the engine and generator. In the curve, the corre-

sponding speed and torque can make the APU obtain the 

highest efficiency for a given output power. Once the 

target output power of APU is optimized by the control-

ler, a low level controller will adjust the APU to the tar-

get power in terms of optimal engine speed and genera-

tor torque in the curve. Therefore, we take the target 

power )( APU

P as the input of the APU, and take the output 

power )( APUP as the state, and we build a quasi-static 

model based on the assumption as following. 

 )()( APUAPU tPtP   (3)  

To compute the fuel consumption of the APU, we build 

a steady-state fuel consumption model based on the effi-

ciency maps of the engine and the generator, and we 

also consider the dynamic fuel consumption. Owning to 

the low efficiency of the APU for a small output power, 

we restrict the minimum generation power to 5 kW 

when the APU starts. In other words, when the APU 

input is less than 5 kW, we set it to 0 kW and then shut 

down the engine. Therefore, we define the steady-state 

fuel consumption as a piecewise model,  
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where steadyfuel is the specific fuel consumption of APU, 

and its unit is g/(kW·h). In order to formulate a quadric 

problem, we define 2f as a quadratic function.   

  755, APU

2

APU2  PbPPaf opt  (5)  

Based on the fuel consumption experimental data of the 

APU as shown in Figure 2, we use a second-degree pol-

ynomial to fit the points of ),( APU, ii fuelP but except (0, 0) 

based on the principle of least square, and we ob-

tain 3617.39t opP  kW. 

To simplify the problem, we extend the domain of 

)(APU kP  in 2f to zero, and redefine steadyfuel   

   750, APU

2

APU  PbPPafuel optsteady  (6)  

and then, when the input of the APU is optimized, we 

use the equation (7) to approximate the optimization 

solution to guarantee the equation (4). 
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Furthermore, the fuel consumption experiments show 

that reducing the frequencies of start-stop and transients 

from one power point to another can improve the fuel 

economy of the APU, and if we limit the output power 

variations, the dynamic regulating process will be short 

and smooth, and the APU can almost operate along the 

optimal curve. Thus, the dynamic fuel consumption is 

considered in this work, and we model it as a function 

of APUP . 

  2APUPcf dynamic   (8)  

where dynamicf is the fuel consumption of APU, its unit is 

g/h, and c is a constant. Obviously, by applying equation 

(3), the fuel consumption models of (6) and (8) can be 

defined as a function of 

APUP and  APUP respectively. 
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Figure 2 : APU optimal specific fuel consumption curve  

2.3 Vehicle  

The vehicle model used in this work is also quasi-static, 

which is wrote as a program code in MATLAB based on 

the maps and equations of different components of the 

vehicle.  

As previously mentioned, to guarantee the vehicle dy-

namic performance, we must reasonably distribute the 

remaining electric energy of the battery to the remaining 

trip. To realize this, we estimate the future energy de-

mand of the remaining trip based on the energy con-

sumption level in the past. Thus, we present the models 

of the driving distance and energy consumption of the 

vehicle as follows.  

 auts )(  (9)  

 reqPtW )(  (10)  

where s (km) is the driving distance for the past, and W 

)hkW(   is the energy consumption for the past. 
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2.4 System Decoupling 

In order to satisfy the power request from the motor, the 

powertrain need to satisfy the following constraint dur-

ing the driving process. 

 )()()( APU tPtPtP reqBatt   (11)  

On the basis of previous analysis for the coupling system 

as shown is Figure 1, we find the strategy based on the 

input 

APUP is equal to 

BattP . In order to directly control the 

APU to keep it almost operating along the optimal curve, 

we choose 

APUP as the input. By integrating the formulas 

of (3) and (11), we can obtain 

 )()()( APU tPtPtP reqBatt    (12)  

Through combing equation (12) and (1), we dis-

place BattP by 

APUP to decouple the system. And then the 

SOC model (1) is redefined as a function of 

APUP  and 

reqP . 
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2.5 Hybrid Automaton Model 

With the charging and discharging modes of the battery 

pack, we develop a HA model to capture the power flow 

in the powertrain. We treat the vehicle speed au and the 

power request reqP  as two disturbances (see Figure 3). 
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Figure 3 : The HA model for the powertrain of SPHEVs 
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3. POWER REQUEST PREDICTION 

3.1 Stochastic Prediction Model 

The vehicle power request is affected by the combina-

tion of various complex factors, such as driving condi-

tions and driving habits. And the participation of the 

humans led to the future power request changes random-

ly. As a matter of fact, the future power request se-

quence )}(,),1(),1({ NkPkPkP reqreqreq   is difficult to 

exactly estimate during the driving process. However, 

building a reasonable and scientific mathematic predic-

tion model to forecast the future power request is the 

premise of realizing the optimal control for power split-

ting of SPHEVs.  

In this work, we apply the theory of stochastic process to 

analyze the probabilistic characteristics of power request 

from the history driving cycle. Firstly, we divide the fea-

sible region into S intervals (see Figure 4). Each interval 

constitute a state represented by an index j respectively, 

and the average value ),,2,1,( SjPj  of all power re-

quest in interval j is used to represent the size of power 

level.  

APUP

BattP
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Figure 4 : Interval division of the feasible region 

Secondly a homogeneous Markov prediction model is 

built to describe the probabilistic distributions of future 

power request. And the model is defined by a transition 

probability matrix SSR    

  1,21,)(|)1(
1

,,  


S

j

jijiireqjreq ,S,,jPkPPkP  P  (14)  

Thirdly, we design an algorithm to calculate the transi-

tion probability matrix  from the driving cycle. 

Finally, we predict the probabilistic distributions of 

power request in each step of the future during a predic-

tion horizon N is by using model (14). 
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3.2 Transition Probability Matrix Estimation 

In this work, we use the flowing procedure to calculate 

transition probability matrix  from the driving cycle. 

(i) calculating the power request sequence with respect 

to the history driving cycle, 

(ii) defining the classification intervals, and defining 

state index to represent each interval, 

(iii) classifying each power request of the sequence 

based on the classification intervals, and calculating 

the mean value of power request belonging to the 

same state, 

Table 1 : Power Classification Rules 

Intervals State Index Average Power 

],( 1,reqP  1 1P  

],( 2,1, reqreq PP  2 2P  

      

),( 1, SreqP  S SP  

(iv) counting the frequency }21,|{ , ,S,,jif ji  which is 

the number of the occurrences of the transition 

from state i to j in the sequence, and calculating the 

transition probability  


S

j jijiji ff
1 ,,, , 

(v) setting a threshold min , and normalizing each row 

of the transition probability matrix  again after 

deleting the probability less than min . 

4. STOCHASTIC MODEL PREDIC-

TIVE CONTROL DESIGN 

4.1 SMPC Approach 

Predicting the sequence of future power request or giv-

ing a reference sequence is the premise of using optimi-

zation method to solve the problem of power splitting 

for SPHEVs. In this work, we use a Markov prediction 

model to forecast the probabilistic distribution of the 

future power request, and then we apply the SMPC ap-

proach designed by Daniele Bernardini and Alberto 

Bemporad [18] to solve the stochastic control problem. 

The main idea of SMPC technique is designing an opti-

mization tree with maximum-likelihood estimation 

method to provide a reference sequence for future power 

demand, and then building a cost function with the prob-

abilistic factors to transform the SMPC problem to a 

standard deterministic MPC problem.  

4.2 Model Transformation 

In order to use SMPC technique to solve the control 

problem, we transform the HA model to a piece wise 

affine (PWA) model, and we begin with designing a 

power splitting scheme as show in Figure 5. Since the 

dynamic fuel consumption is modeled as of function of 

gradual variations of target power of the APU, we take 

the *

APUP as the new input of the system to reduce the 

complexity of the optimization problem.  
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Figure 5 : Closed-loop system structure 

where )(*

APU kP is defined as  

 )1()()( *

APU

*

APU

*

APU  kPkPkP  (16)  

according to equation (3), we have 

 )1()()( APUAPU

*

APU  kPkPkP  (17)  

Additionally, we add the output power )1(APU kP to the 

state vector. And with a sampling time sTs 2 , we dis-

cretize the HA model to a PWA model as follows. 
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where ])(),(),(SOC),1([)( APU
 kWkskkPkx is the system 

state vector, )()( *

APU kPku   is the input, 

])(),([)(  kukPkf areq is the disturbance vector, and 
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4.3 Controller Synthesis  

Based on the power prediction model, PWA prediction 

model of the system and the SMPC technique, we design 

a controller to minimize the fuel economy while guaran-

tee the dynamic performance of the vehicle. And the 

objective function is composed of three parts: (a) the 

first part denotes steady fuel consumption used to keep 

the APU almost operate along the optimal curve during 

the generation process; (b) the second part is a penalty 

function used to limit the frequency and amplitude of the 

regulation of APU to reduce the dynamic fuel consump-

tion; (c) and the last part is also a penalty function used 

for battery SOC control to guarantee dynamic perfor-

mance of the vehicle.  

4.3.1 Battery SOC Control  

As previously mentioned, management of the electric 

energy consumption of the battery pack is necessary for 

guaranteeing the dynamic performance of the vehicle. 

Thus, we design a SOC reference line for the prediction 

horizon in each control step (see Figure 6), and then we 

use the quadric difference of the SOC and SOC refer-

ence values to define a penalty function for battery SOC 

control. 

The main idea of SOC reference design is to equally 

distribute the remaining electric energy of the battery 

pack into the rest trip based on the future energy demand 

estimation. First of all, we calculate the average energy 

consumption per kilometer )(w for the past driving dis-

tance, and limit its minimum value as the average energy 

consumption of china typical driving cycle for city bus 

h/km)kW2866.1( 0 w .   
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Simultaneously, we estimate the future energy demand 

for the rest trip based on the energy consumption level in 

the past. 

  )()()( 0 ksskwkWrest   (20)  

Afterwards, for each control step k , we equally assign 

the remaining SOC according to the future energy esti-

mation value )(kWrest  and the power demand prediction 

sequence. Moreover, to ensure the SOC reference can 

reach the desired value )(SOC endref, at the end of the trip, 

we assign the remaining SOC reference instead of the 

real SOC of the battery. So we define the desired varia-

tions of the SOC reference as  
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 ,N,i ,32   

Finally, we define the SOC reference as following. 
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Therefore, when the prediction value of future energy 

demand of i  step is negative, the SOC reference value 

keeps the value of the former. 
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Figure 6 : Tracking the SOC Reference  

4.3.2 Optimization Problem Formulation 

As we use the algorithm of optimization tree design in 

[18], here, we repeat the definition of the relevant sym-

bols as follows. 

T  : the set of the optimization tree nodes, defined 

as 

},,,{ 21 NTTTT  , 

)(isucc  : the successor of node i in the optimization 

tree, 

)(ipre  : the predecessor of node i in the optimization 

tree, 

TS   : the set of leaf nodes, defined as 
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},,2,1,,,2,1,),(:{ SjNiTjTsuccTS ii   , 

i  : the probability of reaching iT from 1T . 

Based on the optimization tree nodes },,,{ 21 NTTTT  , 

we obtain the sequence of the future power re-

quest },,),({
2 NTTreq PPkP  , where NiP

iT ,,2,  is the average 

power of state iT (see Table 1). To simplify the notation, 

in the following formulation, the sym-

bols ix , if , iu , iy , irefx , , i , )(ipre are used to de-

note
iTx ,

iTf ,
iTu , 

iTy , 
iTrefx , ,

iT , )( iTpre  respectively. Thus, 

we model the SMPC problem as 

    





 




 


jj

SΤj

jirefiirefi

ΤΤi

i RuuxxQxxJ
\

,,

\ 1

min   (24a)  

subject to, 

 )(1 kxx   (24b)  

 )(1 kff   (24c)  
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 STiFfDuCxy ipreipreiprei \,)()()(   (24f)  

 }{\, 1TTixi X  (24g)  

 STiui \, U  (24h)  

 STiyi \, Y  (24i)  

and 
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Px

xx
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X
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 }{ m ax,APUm in,APU PuP 


U  (24k)  

 }{ max,min, BattBatt PyP 


Y  (24l)  

where )0,0,,( 2211 QQdiagQ   is a diagonal matrix, 11Q , 

22Q  and R are nonnegative value scalar weights, 

]0,0,0,1[C , 1D , ]0,1[F . Note that the objective 

function (24a) is modeled with two functions: one is to 

minimize the fuel consumption of the APU. We keep the 

APU operate around the optimal point optP by impos-

ing optref PP ,APU to maximize the fuel economy of the 

APU. And then we limit the variations of the output 

power to make the APU almost operate along the opti-

mal curve and shorten the dynamic regulation process 

through a penalty function of the input. The other func-

tion is to make the trajectory of SOC evolve along the 

reference line to ensure the dynamic performance of the 

vehicle for the whole trip 0s by impos-

ing )(SOCSOC ik

refref  . In addition, the objective function 

is constrained by (24b)-(24l), where (24b) and (24c) de-

fine the initial states and disturbances of the system re-

spectively. For a given prediction horizon, the second 

element )( au of the disturbance f is only used to calcu-

late the state variable )(ks , and we only use the initial 

value of )(ks  (except )1( ks  )2( ks …) to estimate the 

reference line of SOC. Since the vehicle speed is an ex-

ternal input of the closed loop system, here we don’t 

need to care its future value. But the future value of the 

first element )2,( , iP ireq of the disturbance f is obtained 

by optimal tree design algorithm based on the Markov 

model. Other constraints are related to the input and out-

put characteristics of the APU and battery pack.  

5. SIMULATION and RESULTS 

We test the SMPC approach on the china typical driving 

cycle for city bus (see Figure 7) based on the vehicle 

simulation model designed by us. The cycle is a se-

quence consists of vehicle speed to be tracked, and the 

driving range of the cycle is 5.904km. Thus, we repeat 

this cycle several times to form an 80km driving cycle. 
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Figure 7  : China typical driving cycle for city bus 

Even though the driving cycle is specific, we use it to 

estimate the transition probabilistic matrix of the power 

request for the Markov prediction model (14). First of all, 

we use the formula given by vehicle dynamics to calcu-

late the power demand at wheels. 
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 21.153600
,

2

2  (25)  

where au (km/h) is the vehicle speed, u  is the accelera-

tion (m/s2), and other variables are vehicle parameters. 

Simultaneously, we consider the braking energy recov-

ery to improve the fuel economy, and we define the re-

covery proportion as a function of the decelera-
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tion )0( u , and then the power request of the motor is 

defined as    



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


0,)(
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3 dmddmd

dmddmd

req
PPuf

PP
P


 (26)  

We calculate the power request sequence for the driving 

cycle in Figure 7 by using the formula (26). As shown in 

Figure 8, the minimum and maximum values of the 

power request are -71.79 kW and 174.55 kW respective-

ly. 
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Figure 8 : Power request sequence for the driving cycle 

Afterwards, we estimate the transition probability matrix 

using the procedure introduced in chapter 3.2(see Figure 

9), and then we built the Markov prediction model for 

prediction of probabilistic distribution of the future pow-

er request.  
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Figure 9 : Transition probability matrix 

Based on the previous work, we test the SMPC approach 

in MATLAB software for the 18 tons city bus, and use 

the YALMIP tool box to solve the control problem for 

each step. For simulation, the system’s initial conditions 

are ]0,0[])1(),1([)1(  areq uPf , 

]0,0,95.0,0[])1(),1(),1(SOC),0([)1( APU
 WsPx , km800 s , 

26.0SOC endref, , 25.0SOCmin  , 0.1SOCmax  , 70max,APU P  

kW, 10min,APU P  kW, 10max,APU P  kW, 120min, BattP  

kW, kW240max, BattP , hkW60 BattE , 92.0Batt , and 

we choose 5-

11 101Q , 1000022 Q , 02670.R   as a set 

of weights in the objective function of (28a). The predic-

tion horizon is 10N , and the nodes of the optimization 

tree are built with the same length as N . 

Here, we compare the performance of SMPC to a deter-

ministic MPC approach presented in [19], namely the 

frozen-time MPC (FTMPC). For a given prediction 

horizon N , the FTMPC also has no information about 

the driving cycle, but assumes the future power request 

as a constant equals the current value. And the simula-

tion results for SMPC and FTMPC are list in Table 2.  

Table 2 : Fuel consumption comparison 

  FTMPC SMPC 

2
APU

ΔP   [kW] 481.9896 223.2843 

steady fuel cons. [L/100km] 30.3041 32.2123 

dynamic fuel cons.  [L/100km] 4.3075 0.9244 

equivalent fuel 

cons.  
[L/100km] 39.9176 38.3636 

economy improve [%] — 3.89 

Where 
2

APU

ΔP  is the Euclidean Norm of the variation of 

the APU output power for the whole simulation inter-

val 8929simN , and its value indirectly represents the fre-

quencies and the amplitudes of the variations of the 

APU output power. As shown in Table 2, the APU op-

erates more smoothly for SMPC, which can be directly 

observed in Figure 10. And if we limit the variations of 

the output power of the APU, the fuel economy will be 

improved. The equivalent fuel consumption consists of 

steady-state fuel consumption, dynamic fuel consump-

tion and the equivalent conversion of the electricity con-

sumption to fuel in terms of the cost. According to the 

results in Table 2, the city bus tested in this work can 

save 1.554 L gasoline by applying SMPC approach 

compared with FTPMC (economy improve 3.89%). 
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Partial enlarged figure for the first 2000 seconds: power 

request of the vehicle (dashed line), output power of the 

APU for SMPC (solid line), output power of the APU 

for FTMPC (dashed-dotted line) 

Figure 10 : Comparison of the output power of APU based on 

SMPC and FTMPC approaches 

Since the two SOC reference lines almost overlap to-

gether, we only plot the SOC reference for SMPC, and 

the reference consists of the second value of SOC refer-

ence of each calculation step k, namely, ),2(SOC{ 1

ref  

)}2(SOC,),2(SOC2 simN

refref  . In Figure 11(a), we find the 

reference can keep the SOC trajectory to track itself 

from the initial value to a low level close to the mini-

mum SOC, while never permit the SOC trajectory over-

pass the lower boundary. Obviously, during the whole 

trip, the approach realize that keeping the battery pack 

release energy slowly and equally for the whole trip 

through tracking the reference. That is to say, the feasi-

ble conditions of the optimization problem for each cal-

culation step are guaranteed. In Figure 11(b), it is clear 

the SOC trajectory for SMPC tracks the reference batter 

than the trajectory for FTMPC, because the power re-

quest prediction helps to adjust the output power of the 

APU.  
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(a) SOC reference line for SMPC(dashed line), SOC trajectory for 

SMPC (solid line), SOC trajectory for SMPC (dashed-dotted line) 
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(b) Partial enlarged figure for the first 2000 seconds: SOC refer-

ence line for SMPC(dashed line), SOC trajectory for SMPC (solid 

line), SOC trajectory for FTMPC (dashed-dotted line) 

Figure 11 : The trajectory of SOC of the battery pack for 

SMPC and FTMPC 

The results of the fuel consumption of the APU and the 

equivalent fuel consumption of the vehicle are show in 

Figure 12. We find their increasing tendency is linear. 

The main reason is we make the battery release electric 

power equally for the whole trip.  
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Figure 12 : Equivalent fuel consumption of the vehicle and 

fuel consumption of the APU 

6. CONCLUDING REMARKS 

In this work, we propose a methodology for online opti-

mal splitting power between the APU and battery pack 

based on hybrid system modeling, the theory of stochas-

tic process and the SMPC technique, and our approach 

makes an 18 tons city bus save 1.544 L gasoline per 100 

kilometers compared with a deterministic MPC ap-

proach. By modeling the power demand as a homogene-

ous Markov model where the transition probabilistic 

matrix can be estimated from the history data, we make 

the optimal control independent of a specific driving 

cycle. We build a HA model to capture the power flow 

of the powertrain, and we first synthesize the hybrid sys-

tem modeling and SMPC approach to solve the power 

splitting problem for SPHEVs. In addition, we set a 

time-varying SOC reference to guarantee vehicle dy-

namic performance. However, the verification of the 

approach is not studied in this work, and the component 

dynamics are ignored. Thus, our future work will focus 

on verification, improving the algorithm of optimization 

tree design, and system dynamics modeling. 
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Appendix 

Table 3 : Symbol description 

Symbols  Description Units 

dmdP
 : power demand at the wheels kW 

reqP
 

: power request of the drive mo-

tor 

kW 

iP  : average value of power request 

belong to the state i 

kW 

APUP  : output power of the APU kW 

APUP   variation of the APU output 

power 

kW 

Symbols  Description Units 

BattP  : output power of the battery 

pack  

kW 

SOC : 
state of charge of the battery 

pack 
- 

s  : driving distance km 

W  : energy consumption for the past kW.h 

k

refSOC  : SOC reference for step k - 

steadyfuel  : fuel consumption of steady-

state 

g/kW/h 

dynamicf  : dynamic fuel consumption  g/h 
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