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Abstract

The specifications that define an automotive development project are established at an early point in the

process and define the direction of such a development, and changing these decisions becomes more costly

the further the project progresses. Tools to enable better consideration of choice can help prevent this. The

tool presented is designed to aid with the decisions needed when embarking on the development of a

vehicle that incorporates electric-vehicle technologies and the important choices made regarding the battery

pack required by such a vehicle. The tool incorporates a sizing model for determining the number of cells

and the configuration required to meet a specified battery requirement. The tool then uses a 1-d model to

determine some of the basic thermal and power characteristics that can then be used to inform other parts of

the design specification. When attached to a database containing cell information, the tool can pre-select

candidate cells to meet the requirement, and rapid execution time of the tool means that it can be used to

quickly compare between cell choices, at a level understandable by all stakeholders in the decision making

process.
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1 Introduction
When undertaking the development of a new
automotive product, a set of initial requirements
is drawn in order to meet the intended market
space, covering aspects such as performance,
lifespan, cost of use, cost of manufacture, price
point and many other factors of its design [1].
This leads to other requirement specifications
such as sizing, technologies to use and other
more engineering aspects of the initial design [2].

When one of the technologies involved for
consideration is electric vehicle (EV)

technologies, the engineering design further
evolves to include factors specific to this
technology:- drive trains, power distribution
systems, charging systems, electric motors and
batteries [3]. Within these, the battery is at the core
of the eventual performance of an EV product,
governing factors such as range, dynamic
performance and lifespan. The battery also
represents a significant proportion of the product’s
value [4], and its design can inform other aspects
of system design such as cooling and electronic
management systems.
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2 Aims and Modelling
Parameters

The lithium ion battery systems currently
favoured by EV systems are a rapidly growing
market, with the number of providers of lithium
ion cells growing at a steady rate [5]. Ideally, a
battery design for an EV product would analyse
and compare all the available cells to arrive at a
perfectly informed choice. This would require
highly detailed models and a quantity of time that
makes such an approach impractical; for
example, to demonstrate the performance of a
battery over 10 years, 10 years of data for every
cell type would need to be collected. The design
of the battery is central to the overall design, and
needs to be established quickly so that the rest of
the design process can continue.

This tool aims to provide a means to quickly
compare cells against high-level requirements,
allowing an informed choice of battery and cell
characteristics as soon as possible during the
design process. The models used prioritise rapid
approximation over precise accuracy, but enables
the selection of a few ‘best candidates’ that meet
the performance requirements, and produce
details of factors that impact other areas of
design; thermal output and physical dimensions.
This allows other areas of design to proceed with
knowledge of the battery design, carried out in
parallel with the detailed finalisation of the
battery design.

To achieve this, the model was designed to test
cells against multiple drive cycles that simulate
the power demands of an EV system matching
the requirements of a design. A sizing model
would determine the number and configuration
of a given cell type required to meet this power
demand and generate a pack specification. A
thermal model is then used to determine the
amount of heat generated during drive cycles
against different internal cooling models, and
overall heat generation and temperature rises
calculated. An accuracy target of ±15% was
chosen for both the cell power model and thermal
generation, suitable for high-level candidate
selection and scope for selecting models based
on speed.

3 Sizing Tool Models
For ease of use and portability, the models were
constructed using Microsoft Excel, combining
spread sheets and macros to produce the desired

models while keeping the execution time for
models to a minimum within the constraints of the
software. This means reducing the complexity of
the models as far as possible while maintaining the
desired accuracy level.

3.1 Pack Sizing

The pack sizing model takes several factors into
consideration from the EV design specification:
pack weight, pack dimensions, peak power output,
nominal power output and total capacity. The
number of series cells required is based on pack
voltage requirements, calculated as

௦݊௘௥௜௘௦ =
௏ುಲ಴಼

௏಴ಶಽಽ
(1)

The parallel number of cells is calculated from
either the total energy capacity or peak power
requirements. The parallel strings determined by
energy requirement are calculated by

௉݊஺ோ஺௅௅ா௅(ா) =
ாುಲ಴಼

௡ೞ೐ೝ೔೐ೞ× ஼஺௉಴ಶಽಽ (஺௛) ×௏಴ಶಽಽ(௏)
(2)

or by power requirement as

௉݊஺ோ஺௅௅ா௅(௉) =
௉ುಲ಴಼

௡ೄಶೃ಺ಶೄ×൫ூ௠ ௔௫಴ಶಽಽ×௏಴ಶಽಽିூ௠ ௔௫಴ಶಽಽ
మ ×ோ௜௡௧಴ಶಽಽ൯

(3)

Assuming that all cells have identical internal
resistance, the pack resistance is calculated using

ܴ݅݊ ௉஺஼௄ݐ = ܴ݅݊ ஼ா௅௅ݐ ×
௡ೄಶೃ಺ಶೄ

௡ುಲೃಲಽಽಶಽ
(4)

The maximum pack current is calculated using

ܫ݉ ௉஺஼௄ݔܽ =
ቆ௏ುಲ಴಼∓ට௏ುಲ಴಼

మ ିସ×ோ௜௡௧ುಲ಴಼×௉ುಲ಴಼ቇ

ଶ×ோ௜௡௧ುಲ಴಼
(5)

The pack weight, dimensions and costs are
calculated from configurable scaling factors based
on the estimated proportion of the contribution to
the total pack made by the cells.

3.2 Thermal Generation Model

Once the pack has been sized, a basic estimate of
its heat generation can be made for use in the
thermal and cooling models. The maximum pack
heat generation is calculated by

ܣܧܪ ௉ܶ஺஼௄ = ܫ݉ ௉஺஼௄ݔܽ
ଶ × ܴ݅݊ ௉஺஼௄ݐ (6)
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The maximum cell heat generation is the result of
equation 6 divided by the total number of cells.

The heat transfer coefficient, expressed in
W/m2K, is also calculated as a guideline for the
amount and type of cooling required by a pack
configuration. This is calculated by

ܭ =
ுா஺்಴ಶಽಽ

஺ோா஺಴ೀೀಽ×( ಾ் ಲ೉಴ಶಽಽି்಴ೀೀಽ)
(7)

3.3 Cooling Model

The cooling model calculates the heat transfer
between the pack and a coolant. This is achieved
by constructing a 1-d thermal network between
the pack and the coolant, shown as an electrical
equivalent representation in figure 1.

Figure 1 Thermal network used by cooling model

The cell is represented by the heat capacity
attached to the left hand of this model, and the
coolant attached to the right of the model. The
capacitances and resistances represent the heat
capacity and thermal resistance of the various
connecting components within the cell. The
precise configuration of thermal components
depend on a combination of cell format
(cylindrical or pouch) and cooling method (none,
tab, surface heat-transfer plate).

The parallel paths represent the thermal paths
through the positive and negative tab
connections. The other components represent
other interface elements of the thermal path, such
as cell wall, tabs, glue, heat transfer plate and
coolant tube wall. The heat capacity and thermal
resistances of each individual component are
calculated based on dimensions and material [6,
7], and then used in the thermal network
illustrated in figure 1.

Using this cooling information, the maximum
amount of heat extraction is calculated. This is
subtracted from the pack heat generation, and the
remaining heat energy used to calculate the
temperature rise of the pack based on the heat
capacity of the pack.

4 Parameter Data and
Assumptions

4.1 Parameterisation

To parameterise the models, a quantity of cell data
is required, as well as some knowledge about
predicted cooling design.

For the cells, the information required is available
from detailed data sheets. As part of the Catapult
project, the relevant data has been collected into a
unified database which can be used to select cell
data and provide a rapid means to compare
candidate cells for a given set of requirements.

For the cooling model, knowledge about the
dimensions and materials likely to be used as part
of the cooling systems is required. This is
configurable within the tool, and the current
iteration of the sizing model includes systems
currently under consideration by the Catapult
project.

4.2 Assumptions

In constructing this model, certain assumptions
have been made. Much of the parameterisation
data is sourced from data sheets, and so represents
an ideal mean; the accuracy considerations of the
natural variations in manufacture are not explicitly
considered, but can be included as part of a
sensitivity analysis.

For the sizing model, no restrictions are placed on
cell number or configuration, and so do not take
into account the size of available module units (for
instance, the available cell module requires the
cells to be used in multiples of 12). Nominal
resistances and voltages are used throughout,
ignoring any voltage variation affects that may
occur due to load, ageing or variations in state of
charge.

The 1-d nature of the thermal model prevents the
modelling of any thermal gradients and all of the
heat flow is through the considered heat path,
ignoring the possibility of alternatives.
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5 Tool usage and data
presentation

Figure 2 Full tool overview

Once the models have been configured, the tool
can now provide a rapid means of comparing
candidate cells. The user first enters their pack
requirements in the first yellow section, followed
by updating the cell list. This compares the
requirements against the cell database collected
by the Catapult project, collated from available
datasheets from cell manufacturers, and pre-
selects the 10 best candidates for consideration.

5.1 Sizing Results

Figure 3 Sizing results

The user can now select a cell of interest, and the
sizing model reacts dynamically to the selection of
the user, updating the results immediately.

5.2 Thermal Results

Figure 4 Thermal Results

Once a cell has been selected, the thermal
performance of the cell over various drive cycles
can now be considered. A number of drive cycles
are included with the tool (Artemis, FTP, NEDC),
although additional drive cycles can be configured
into the tool, based on either a power requirement
profile or a velocity profile and a simple road
vehicle model (with configurable vehicle). Once a
drive cycle is selected, the user can now examine
the differences in thermal performance by
choosing between different cooling approaches.
The execution time for the cooling models is the
greatest, and computation takes a few seconds on a
standard Windows computer.
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5.3 Other Information

Figure 5 Other information

As well as thermal information, details about the
electrical performance and energy requirements
of a drive cycle are also included. This is useful
to compare the differences in maximum levels
(of, for example, power) with those seen in
typical duty cycles.

5.4 Sizing Sensitivity Analysis

Figure 6 Sample from the sensitivity analysis

In addition to the performance results, a
sensitivity analysis of the pack sizing model is
included. This shows how the number of series
or parallel strings of cells will alter in response to
change in requirements, allowing the user to see
at a glance where possible improvements or
concessions can be made. This also allows
possible effects on vehicle performance to be
investigated (e.g. the effect of ageing modelled
by increasing the cell resistance).

6 Model Validation
In order to validate the models used by the tool,
the results generated were compared to real data
collected by TMETC and obtained through the
Low Carbon Vehicle Technology Programme
(LCVTP). This was done at cell and module level
for the collective thermal and cooling models.

To analyse the performance of the model, the
mean temperature error was calculated

ܯ ݁ܽ ݊ =ݎ݋ݎݎ݁ ∑
|்೘ ೚೏೐೗ି ்೘ ೐ೌೞೠೝ೐೏|

௡
(8)

If the mean error for a cycle lay within ±15% of
the measured value, the model was deemed to have
performed well for the purpose of this tool.

6.1 Cell

A sample cell was instrumented with
thermocouples at 5 points on its surface. This cell
was then subjected to full discharge cycles at 1C,
3C, 5C and 10C, a full charge cycle at 1C and two
drive cycles based on collected drive cycles from a
BEV (battery electric vehicle) and HEV (hybrid
electric vehicle).

Figure 7 Temperature rise of the sample cell under
discharge conditions against the 1-d thermal model
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The constant performance tests, representative
examples shown in figure 7, when compared to
the results provided by the 1-d model used by the
tool, show a mean error of 0.9°C for the 3C test,
and 1.9°C for the 5C test. This represents an
error <10% and well within the required
accuracy for this model. There is greater variance
at the extremes of state of charge; however this
could be expected of the coarse model, since the
internal resistance increases considerably at low
state of charge.

The dynamic drive cycle tests shown in figure 8
performed similarly to the constant performance
tests, with a mean error of 0.7°C for the BEV
cycle and 5.6°C for the HEV cycle, and within
the required 15% accuracy, with a noted over-
response to high C-rate transients.

Figure 8 Temperature rise of the sample cell during
BEV and HEV drive cycles against the 1-d thermal

model

6.2 Module

A module was constructed using the same types of
cell as used during the cell validation, and the
central cell of the module was instrumented with 8
thermocouples attached to its surface at different
points. The module used a surface heat transfer
plate as its cooling strategy.

The module was subjected to 4 tests: discharge at
1C and 4C, and the same BEV and HEV drive
cycles. Figure 9 shows how the module during the
constant discharge tests. These tests matched the 1-
d model with a mean error of 1.2°C for the 1C test
and 4.2°C for the 4C test. This matches closely to the
<10% error of the individual cell, and showed the
same inaccuracy at extreme state of discharge.

Figure 9 Temperature rise of the sample module under
discharge against the 1-d thermal model

Figure 10 shows a dynamic behaviour from the
model that closely matches the real module data,
with mean error of 1.6°C for the BEV cycle and 0.3°C

for the HEV cycle. This suggests that the model
performs better when considering modules or
packs exercised over a realistic state of charge
range as seen in vehicles.
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Figure 10 Temperature ruse of the sample module
during drive cycles against the 1-d thermal model

7 Conclusion
In this paper, a tool has been presented that
allows rapid comparison between cell choices for
high-level pack design decisions. A sizing model
generates a battery pack using a selected cell, and
can be altered quickly to compare cell types. The
1-d model used by the tool then generates useful
power and thermal data that can be used to
further inform design decisions. The tool
executes in a few seconds, hence facilitates for
the consideration of many cell types within a
small timeframe, and it can be automated.

The models used are fairly simple and make
some broad assumptions. More complex models
would improve the accuracy of the 1-d model
results, but this would come at the expense of
speed. The purpose of this model is to provide
early-stage information to guide initial design
decisions, and so more accurate models were
deemed unnecessary for this stage, and should be
reserved for the more detailed design work
further down the development process.

Validation work carried out on the 1-d model
shows that the model performs well within the

15% accuracy target under standard conditions,
although extreme conditions (low/high state-of-
charge, high C-rate transients) present problems to
the model. This was deemed acceptable for the
purposes of this tool for the same reasoning as
above, and more detailed design work can be
carried out to address these situations.
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